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Abstract :

In 1989, Dipper and James [2] extend the notion of a Schur
algebra, [see Green 8], to obtain the q-Schur algebra Sq(n,r). One of the
main difficulties that can not be solved is to determine a suitable
mathematical formula for the product between two elements in Sy(n,r),
except for the mathematical formula introduced by Green in [8] and the
programming formula that supported this formula which is given by [11]
when g=1.
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In this paper, we will take q in general, trying to find the
- mathematical formula which is not known till now. The solution for this -
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£ A CO’l;n'pOS’it‘l'O“n pforris a ‘sequence (Kiy Ha, ...) of ﬁon-ﬁégativé
~integers such that | |= Z Hi =r. The integers w;, for i1, are the parts of

‘ u;"ifpti#O for i>m, we identify with (, p, vy ). A pompositiqn uis

| . ~a partition if i 2 iy, for all i>].
The 'diégram'of’ Yduhg ofa composition 1 is the subset
W={xy) 1<y <p, “and x> 1}of NxN,
The elements of [u] are called the hodes of u; more generally, a
~~node is any element of NxN. Itis useful to represent the diagram of p as
: ~ an array of boxes in the plane. For example, if 1=(2,3) then [u]=5%]

[fuis é:composition of n then a pi-tableau is a bijection
t[u] - {1,2,....n}

A p-tableau t is row standard (resp. row semi-standard) if the
entries in t increase from left to right in each row (resp. if the entries in
each row in t are non-decreasing), t is standard (resp. semi-standard) if p
is a partition and the entries in t increase from left to right in each row
and from top to bottom in each column (resp. M IS a partition, t is row
semi-standard and the entries in eqch column of t-are strictly increasing).

» More information about the number of tableaux found in [10].

Given any composition K, let t* be the row standard u-tableau in
which the integers 1,2,....r are entered in increasing order from left to
right along the rows of [u]. For example, if u=(2,3), then -

_[p
e
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If M—(Ml, s Mn) is a composmon of I, then the symmetrlc group G e
acts from the right upon the set of u—tableaux by permutmg the entrles 7
m31de a given tableau For example : 3 '

=P 54] ~,then t(235)”':: : 2']
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»2 q-Schur algebra

; We ﬁx an integer r>1 and the symmetrlc group G, acting on
1,2,...,r from the right. For i=1,2,. , let s; be the basic transposmon -
@, 1+1) and let S={sy, S2, :.+> Sr-1}- Then as a coxeter group [see 7] G, is
‘generated by Sy, S2, ...y Sl subject to the relatlons

si2=1 - for i=12,..,r—1,
sisj:sjsi - for I<i<j-lsr-2, L2

8818 = SiySiSim  for i=12,.,r-2

Suppose that w is an elcmcnl of G, and write w =s; é ~where
5 55, are clements of S. If k is minimal we say that w has length k and

write [(w)=k. In thls €ase, S .S, is called a reduce cxpncsslon for w.

Now, let R be a commutative domain with | and lct q be an
drbltmry clement of R. The Iwahori-Hecke algebra H=Hy ((G)) of Gy
[see 5], is the unital associative R-algebra with generators Ty, Ta, ..., T,
and relations:

(T, -q)T,+1)=0 for i=12..,r-1
_ TT, =TT, for 1<i<j-1<r=2,}...(2.2)
T.T, T, =T, TT,, for i=12,.,r-2

i Tt i+l

In particular, when q=1, the first relation in (2.2) reduces to T =1.
By the reduced expression for w, define T, =T; ...T; .

Dipper and James in [3] proved the following relations:
Lemma (2.3): Suppose that seS and weG;. Then

ey T, - if I(ws)>I(w),
2 qus'l‘(q"l)Tw if l(WS)<1(W)

_—_____———-————__;_-—_————————_‘———_———___——
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, Theorem Q. 4) The Iwahori- Hecke a]gebra H is free as an R module
w1th basis {TwlweG }. ‘ :

" The Young subgroup G =G, x...xG'“"' of G, is the' row

| stablllzer‘oft*. Then G, is generated by SmGu, since s;eG,, if and only if i
and i+1 are in the same row of t*. Let H(G,,) be the sub-algebra of H

~ generated by {Tsls,e S‘mG;‘}. By Lemma (2.3) and Theorem (2.4), H(G,)

j is free as an R-module with basis {TyweG,}. Consequently,

TH(G Y= H(G \x xH(G, ).

TN} /'—“\" N, 2

For example, if p=(2,3), t" = ; i 3 , then

Gp':Gp, xGuZ :GQG3 = <S|,33,S,‘ >

Mathas in [12], proposc the following proposition:

- Proposition (2.5): SUppose that p is a composition of r and let

D, ={deG,|t"d is row standard}. Then D is a complete set of
right coset representatives of G, in G .
Definition (2.6): Let t be a tableau of type 0 and let y be a composition.

Then y(t) is the tableau of type y obtained from t by replacmg each
entry i in t by j if i appears in row j of t'.

For example, let t = 113 4_L5 J and y=(3,2,1). Then

26
y—[1]2]3] [t ]2]2]
t s and y(t) 3 .
L 6]
Definition (2.7): Let p and y be compositions. Then ppy if
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If ey we say thét-u'd,olmiry,l%t’éé y-,If 'lt‘lzvf{anafuiyﬁwé W?ité‘lxel L

o Matllas in [12], xga\le w1th along prove the follol&ing_ t'vjvol’rkesults.:f' .

Lemma (2 8): S‘uppose' that‘ déDv‘rJﬁD"l‘ ‘,vl'llere H and y’f’are" “

composmons of r. Then d lG W m G G’ for some T ofr

Proposntlon (2 9) Suppose that u and y are composmons ofr and let

| | y(t“d) is row sem1 standard and t“dl>t
D, = d eG, whenever tls a row standard tableau '
| lsuch thaty(®) =y(t*d)

In fact, D,, =D, r\D~
Definition (2. 10) On define ML to be the rlght H-module m, H, where

ZTW an elemento ll(G“)

weG,

For the same example'al’ler Theorem (2.'4); vthen
= (14T)) (4T T T T T T TS T ).

| By Lemma (2.8) and Proposition (2’.9),,' we have y(t"d) and p(t'd")
are both row semi-standard and L

K , S
>Tym, = > T, = > mT . (2.11)
u(t"y)=L : weGudGY‘ Y(tHx). )
yeD, xeD,

'Consequently, d  determines an H-module  homomorphism

(pw :M? > M*" given by q)w(m h)= (;j;}l‘ h for all heH. In fact,

these elements give a basis of Homyu(M!, M¥) and this is free as an R-

module with basis {(pw |deD,, }, see [12, Theorem 4.7].

Dipper and J ames in [2], define g-Schur algebra by
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S (1) = EndH ( @’M“)*
R\ jiea(n,r) :

- where /\(n r) be the set of composnlon of r w1th at most n non- zero

parts. By definition S (n,r)= @ Homy (MY M“) and so q -Schur

u,yen(n,r)
algebra is free as an R-module with basis {(pw |de Dw }; see [1 and 2].

3.SolVe the problem algebraie and 'numericéll ;

From the previous, we see the difficulty of this problem where the
number of probabilities d depends basically on r, so, these probabilities

are d,. So, whenever r is large the computation process will be more'

- complex especially when n is large too.

‘ In this section, we will try to solve this problem algebrarc and
numerically with a fix n equal 2.

| First step

3 Write Lhe values of y and p which are belong to A (2, r) in such
- table as follow:

: » —
(r,o) { (-1, .00 1 (@2e-2) [ (Ir-1)
(.0) |
r-1,1) : ~ I O 3.1)
i — s
(2,r-2)
(1,r-1)
Second step

As illustrated previously in section (2), the probabilities number d
which make y(t"d) semi-standard rows when y=(r,0) is d,;. Because in any
case of p shown in (3.1), then the numbers that will be appear in the
tableaux y(t"d) will be holding the digit 1, then they are considered a semi
standard rows.
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—[1432]
=[4132]
=[3124]
~Pw [3142]
P11=[3412]
P12=[4312]
PI3=[2134]
Pl4=[2143]
P15=[2413]
[4213]
P17=[23 14]
P18=[2341]
P19=[2431]
P20=[4231]
P21=[3214]
P22=[3241]
P23=[3421]
P24=[4321]

The Group B:
Bl={40]
B2=[13 ]
B3=122 |
B4=[31

Cthse 1 for B1, 2 for B2,,,andsoon:3

A4PB; Semi standards
123 112 | o |
4 2 | , B I
12 4 11 2 N
3 2 |
1 4 2 Nil
= . |
114 }l
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:,:”;4 BERIS et | sy J‘Tt\u. J‘,

Nl

Nl

2 .

Nil

o

Nil

Nil-

ey

Nil

1

4 3

o™

1

1

Nil

1

Nil

1

Nil

|
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& W

423 Nl
21 Nl

32 4 Nil

1 L

342 NIl

432  Ni

'3 R

Number of semi standard samples = §
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