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Introduction

Initial and boundary value problems with integro-differential equations are common in applications of (bio-)engineering as
well as physical and biological modeling. CFDM to approximate solutions to such problems, especially in the context of the
ordinary and partial differential equation has attracted much interest [1-10].

However, comparatively, there has been less progress made in determining high-order CFDM in terms of integro-differential

equations (IDE). Therefore, considerable works have been focusing on developing efficient high-order numerical schemes for
approximating solutions of integro-differential equations. This work concentrates on the second order FIDE:

b
u'(x)+pulx) =f(x)+ AJ- k(x, t) u(t)dt, (D

with Dirichlet boundary conditions: ’
u(@) =a,  ud)=4. (2)

For x,t € [a, b], where A, p, a, and S8 are constant values, f(x) and k(x, t) are known functions and u(x) is the solution to be
determined.
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Recently, there has been a growing interest in using higher-order numerical methods for solving partial differential equations
(ODEs) and (PDEs). One approach that has gained attention is the use of compact difference approximations, which can
achieve a high level of accuracy with a relatively small number of grid points. These approximations make use of five grid
points, corresponding to a compact patch of three cells surrounding a selected node, to cancel out second-order truncation error
terms. This allows for the development of alternative, lower-derivative expressions that are equivalent to the higher-order
truncation error terms [10]. This approach can lead to more efficient and accurate solutions for ODEs and PDEs.

Several numerical solutions of the integro-differential equations have been studied by compact finite difference methods
including [11-13]. Numerous authors have developed numerical methods for integral and integro-differential equations
recently, see references [14-19].
This work aims to derive a general formulation and approach for developing such higher-order compact (HOC) schemes for
the second-order Volterra integral. This derivation is based on applying numerical quadrature rules along with the properties
of ordinary differential equations. Furthermore, we compute the order of convergence numerically for each method. The
proposed methods are tested on various PIDE to demonstrate their efficiency and accuracy in providing approximate solutions.
The results show that the of order fourth and sixth CFDM s effective in solving PIDEs and can be used to obtain reliable
solutions for a variety of applications.
The work is organized as follows. In section 2, the derivation of HOC method is given in detail. Some numerical experiments
and algorithms are shown in section 3. Finally, conclusions are given in section 4.

2. Compact finite difference method

This section presents a way to develop a CFDM based on the fourth and sixth-order approximation for the FIDE.
2.1 Fourth-order (CFDM4)

Ui —2Ui+ U
h2

To derive the CFDM4 for (1), applying 82u; = is a second-order central difference scheme [9], gives:

h?
Sfui = uj +5u u® +o(n). 3)

To obtain a compact 0 (h*) approximation, we take the derivative of Eq. (1) Wlth respect to x, which gives:

u® = —pu! + f" + 2 f k() wdt, 4)
where u; = u(x), f; = f(x), k;; = k(x,t) and u; = u(t). Inserting Eq. (4) |nto Eq (3), we have:
h2
82u; = u!’ +E —pul + ' + Af ki j widt | +0(h*). (5)
Some simplification in the above equation implies that:
h2
82u; — = f' — f k(o ug
u=——12 1250 0 1% L o, (6)
1 bt
12

Substituting Eq. (6) into Eq. (1) we obtain:
) ph? ph? h* "
S;u; +p 1—6 i 1—— fl+—fl +A 1_6 J-k(u)ujdt+ 12 fk(l])u]dt 7
The integral parts on the right-hand side of Eq. (7) will be handled numerlcally using the Comp0s1te Boole’s rule [20] given
by:

*n 7 (3) ()1
f u(x)dx =5 7u(x0) + 322u(x2] 1) + 122 u(x4] 2) + 14 Z u(x4]) + 7u(x,) | (8)

Therefore, using Eq. (8) for Eq. (7) we obtain:
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n

n
b 2h 5 T
Jo kapwdt = [7k(i,0) Ug + 3237 K2j-1) Uzj1 + 12 251)1 kiaj-2) Uaj—2

+14 Z( ) K Uaj + Tk un] 9

T 3

f k(l ]) j dt - _5 |:7kE:,0) uo + 32 ij'=1 k(i,Zj—l) uzj_l + 12 Z]il k(’;Aj—Z) u4_j_2

-1 " "
+14 254:)1 k(i,‘l—j) U4j + 7k(i,n) un] . (10)

Substituting Eq. (9) and Eq. (10) into Eq. (7) then using second-order central differencing scheme we obtain:

n n n
F s 71
Villigr T Y2l + V1l — z Qi jy Ugj_1 — z bg jyuaj—2 — z CiujUsj = fi + aiug + Biu,, (11)
j=1 j=1 j=1
where:
214
p°h
=1 =-2 2 _
n=1 7 + ph 1
32Ah3 32 AphS 32 Aph®
a(ij) = 27 - 270 @i2j-1) + 270 (k(i+1.2f—1) + k(i—1,2j—1))
12 k3 12 Aph® 12 Aph?
W) =\ =57 =370 ) kasi-» + —55— (Kassaj-2 + ka-145-2),
14 k3 14 Aph® 14 Aph?
Chujp = 27 - 270 @i,4)) + 270 (k(i+1.4'f) + k(i—1.4j))'
hZ
fi= E(fm + 10f; + fi-1),
7Ah® 7 Aph® 7 Aph®
a; = ( >7 _W> @i,0) W(k(m,o) + k(i-1,0)),
7Ah3 7 Aph® 7 Aph3
Bi = ( 57 T W) ) W(k(Hl,n) + k(i—1m))-
2.2 Sixth-order (CFDM®6)
Starting with the derivation of the CFDM®6 for (1), gives:
h? h*
82u; = uf + —u® + —ul® + 0(n®). (12)

121 360 ht
Eq. (12) includes both 0(h?) and O(h*) terms since we want to approximate both of them in order to create an 0 (h®) scheme.
C)]

Applying 87 tou; ", we obtain:
u® = s2u + 0 (h?). (13)
Substituting Eqg. (13) into Eq. (12) yields:
h? h*
Sfui = uj' + o + 55 (80w + 0(h) +0(h®). (14)
Go back to Eq. (1), with take derivative, becomes:
u§4) —-pul' +f"+2 f k(i ;y widt. (15)

Substituting Eq. (15) into Eq. (14), leads to:
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b

2 4
82u; = ul' + (12 + %52) —pui + f' + Af ki widt | +0(h®), (16)
a
with some calculations, Eq. (16), yields:
SZU' _ (hz Sz)f” (hz h 62>f k( 2 u;dt
x % i i,j) Y
w' = 12 360 12 360 + 0. A7)
1- ( 360 )

Substituting Eq. (17) into Eq. (1) implies that:
2
s+ (19 (5+15502) Ju <1—p< #25502) ) £+ (54 5502

h?  ht h? bt
+,1<1--p<IE 360 ))Jﬂkon1hdt4-l(12 360 )Jﬂk0n1hdt (18)

Setting S2f" = (fi{1 — 2f" + fL)/h* and 82k(; jy = (K(isa) — 2k(i jy + k(i-1,j))/h? gives:

28 p?h* 28

2 T 2n4 = i i — 2 _ 4 .

( 2HPh" —ggpPh )”‘ (1 (360 )) (s +2ti-1) (h 3607" )fl
b

O oo+ i) + s RS+ +fi’_’1)+(h2—%ph fkanujdt

b
_ph? . p

(kgivsj) + kg 1,))u,du- h k@])u]dt+- (k@+1n-+ka_LD)ujdt (19)
360 360

a
The integral parts on the right-hand side of Eq. (19) WI|| be handled numerlcally using the composite Boole’s rule given by

(8):

b 2h > n
Jo k@ pwdt = [7k(i.0) Uo + 32 %5 Kizj-1) Uzj—1 + 12 Zgi)l K(iaj-2) Uaj-2

n

+ 14 Z( ) k(l 45) u4j + 7k(l n) u, (20)

n
b 2h >
Jo Gk y + kon ) widt == [7(k(i+1.0) +k-1,0) Uo + 3227 (ks1,2j-1) + Ki-1.2j-1) Uzj

n m_
+12 Zgi)1(k(i+1,4j—2) + k(i—14j-2)) Usja + 14 251)1 (kKgr1ap) + kaim1,4j)) Uaj +
+7(kie1m + K1m) Un] 1)

f k(”)u] dt = 7kE;'0) u0+322 1k(12] -1) uzj 1+122 1k(l4-] -2) U.4] 2
5 j= j=

+ 14 Z( ) k(l 4j) Waj + 7k(m) Uy, (22)

f (K(ie1jy + k(iza ) wjdt = [7(1‘(”1 0 + k(i—1,0)) o + 32 Zz 1 (K(is12j-1) + K(i—12j-1)) Uzj-1
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(3)-

(n
12858 (kiivraj2) + K(i14j-2) Uajoa + 1422 (k(1+141) + k(io14)) Uaj

+7(k(t+1 n) + k&—l,n)) un] . (23)
Substituting Eq. (20) —Eq. (23) into Eq. (19) we obtain:
: :
Yallivr + Vol + Valig — Z ag,j) Uzj-1 — Z b, jy Uaj—2 — Z Clij)Uaj = fi T aiuo + Biun,  (24)
=1 =1 =1
where:
p?h* 7
ri=1- (360) V2 ==2+ph* ——p2h4
__(641h% 224 AphS 81ph5 224 AR5
Aap = ( 45 2025 )k(i’zf‘I) 2025 (k(l“ 2j-0) F Ki-12j-) + 555 2025 kiizj-n +

8 AhS "
2025 (k(1+1 2j— 1)+k(i—1,2j—1))

_ (242R® 84 Aph® 3/1ph5 84 Ah°
b(i']') _( 45 - 2025 )k(i.4j_2) 2025 (k(l+14‘] 2) +k(l 1,4j— 2)) 2025 k(l4—j 2) +
3 AhS

2025 (k(l+14] 2) + k(l 1,4j-2)

__ (281h% 98 Aph® 7 Aph® 98 Ah° 7 AhS
C(l]) ( 45 - 2025 )k(i,4-j) 4050 (k(l+141) +k(’- 14])) t- - 2025 k(l4-]) 4050 (k(l+14-])

+k(i—1,4))

fiz(hZ_%ph‘*)ﬁ, 360(f1+1+fz 1)+ h4f1”+_(fl F )

360

14 Ah3 49 Aph® 7 Aph® 49 AR 7 AhS
i=( 45 2025 ) @0 ™ “g100 00 (Krroy T ka-10) + 550 7025 K0 ¥ 5100 100 (Kiisno) T kG20

_ (142r®  49Aph® 7 Aph® 49 An® 7 Ah®
ﬁi _( 45 - 2025 )k(i,n) 8100 (k(z+1n) +k(l 1n)) +— 2025 k(ln) 8100 (k(l+17’l) +k(l 1,n)):

3. Numerical Experiments

The section shows the accuracy of a proposed method, using MATLAB programming. The error norms of {2 and [® are used
to measure the error between the numerical and analytical solutions.
We denote by E errors terms given by:
E(x) =u (x) - UAppro.(x)
Let us introduce the three accuracy indicators when using space step size h, as follows:
e  The Absolute (pointwise) error as:

E(x) = |[E(x)|
e The l®-norm and [2-norm of the error as:
[*(E,h) = max[EG)|, (2B h) = VREL[EGP
<is<
e The order of convergence (Rate) is calculated as:

Error(N;)
log <E rror (Nz))

log (%—i)

Rate =

Algorithm

Input: N(rem(N, 4) = 0), a, b, p, and boundary condition u, and u,, , where (a = x4, b = x,,).

13
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Set: h = 2=,
N
fori «<— 0to N do
forj < 0to N do

x; = a+ ih.
end for
end for

fori — 1toN —1do
Ci = fi + ajug + Biuy.
. N
forj«<—1to (E) do
Bizj-1) < ~au -
end for
forj«<—1to G) do
Biaj-2) < ~bq, -
end for
forj«—lto(%—l) do
Biaj) < —CG0 -
end for
end for
fori —1toN—1do
By = Bt 72
if i <= N — 2 then
Bii+1) = Bairny t 1
Bi+1,i) = Bas1,py T 71
end if
end for
C=[C—y1up;Cy:Cpz; Cpog — ViUyl
Output: U «<— B\ C

Example 1: Consider FIDE:

2m

10m 5
u”(x) +5u(x) =4sinx + TCO s(x) + §J cos(x) t u(t) dt,
0
with boundary conditions: u(0) =0, u(2m) =0,
and exact solution is u(x) = sin (x).

Table 1. Numerical Results for Example 1, by using CFDM4 and CFDM6 with N = 12, h = 0.5236
and 0 < x <2m

x; U(X) UAppro. (x) UAppro. (x)
CFDM4 CFDM6
/6 5.0000e-01 5.0059¢-01 4.9998e-01

14
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2m/3
5m/6
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/6
4m/3
3m/2
5r/3
11m/6
I12(E, h)

I°(E,h)
CPU-time
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8.6603e-01
1.0000e+00
8.6603e-01
5.0000e-01
1.2246e-16
-5.0000e-01
-8.6603e-01
-1.0000e+00
-8.6603e-01
-5.0000e-01

8.6615e-01
9.9967e-01
8.6627e-01
5.0143e-01
1.8444e-03
-4.9923e-01
-8.6693e-01
-1.0016e+00
-8.6704e-01
-5.0007e-01
2.4130e-03
1.8444e-03
1.784562

8.6606e-01
1.0001e+00
8.6605e-01
4.9991e-01
-1.4901e-04
-5.0009e-01
-8.6600e-01
-9.9992e-01
-8.6599¢e-01
-5.0002e-01
1.7052e-04
1.4901e-04
1.895163

—bB~ — Exact

Figure 1: Exact and Approximate Solution of CFDM4 and CFDM6 for Example 1 with N=20 and h = 0.3142

Table 2: Rate Convergence of CFDM4 and CFDM6 for I%(E, h) in Example 1

N 1> —CFDM4 Rate I? —CFDM6 Rate
12 2.4130e-03 1.7052e-04

24 1.4037e-04 4.1035 2.3573e-06 6.1767
48 8.6536e-06 4.0198 3.5835e-08 6.0396
96 5.3909e-07 4.0047 5.5610e-10 6.0099

Table 3: Rate Convergence of CFDM4 and CFDM4 for I*(E, h) in Example 1

N 1 —CFDM4 Rate [ —CFDM6 Rate
12 1.8444e-03 1.4901e-04

24 1.0831e-04 4.0899 2.0584e-06 6.1777
48 6.8042¢-06 3.9926 3.1289¢-08 6.0397
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96 4.2413e-07 4.0038 4.8557e-10 6.0098

® A0

e CFDIMA o
1.8 | —»— CcFDMB 7

Ahsolute Error u(x)

Figure 2: Comparison Absolute Error of CFDM4 and CFDM6 for Example 1 with N=12 and h=0.5236

Example 2. Consider FIDE:
4
—-9e8+1
u’(x) = 2u(x) = 2e7%* — — x* + f 2x*tu(t) dt
0

with boundary conditions: u(0) =1, u(4) =e™®
and the exact solution is u(x) = e~2*.

Table 4. Numerical Results for Example 2, by using CFDM4 and CFDM6 with N = 12, h = 0.3333
and0<x<4

x; u (X) UAppro. (x) UAppro. (x)
CFDM4 CFDM6

0.3333 5.1342e-01 5.1339%-01 5.1341e-01

0.6667 2.6360e-01 2.6357e-01 2.6360e-01

1 1.3534e-01 1.3531e-01 1.3534e-01

1. 3333 6.9483e-02 6.9470e-02 6.9488e-02

1.6667 3.5674e-02 3.5672e-02 3.5683e-02

2 1.8316e-02 1.8325e-02 1.8330e-02

2. 3333 9.4036e-03 9.4249e-03 9.4246e-03

2.6667 4.8279e-03 4.8608e-03 4.8561e-03

3 2.4788e-03 2.5210e-03 2.5129e-03

3. 3333 1.2726e-03 1.3184e-03 1.3087e-03

3.6667 6.5339-04 6.8951e-04 6.8145e-04

I2(E, h) 5.5724e-05 4.0040e-05

[®(E,h) 4.5808e-05 3.6067e-05
CPU-time 1.353563 1.324556

16
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—B= — Exact

—— CFDh4
g GFDMEB

Figure 3. Exact and Approximate Solution of CFDM4 and CFDM6 for Example 2 with N =20and h = 0.2

Table 5. Rate Convergence of CFDM4 and CFDM6 for I%(E, h) in Example 2

N 1> -CFDM4 Rate 1> —CFDM6 Rate
12 5.5724e-05 4.0040e-05

24 2.4233e-06 45233 7.7961e-07 5.6825
48 1.4023e-07 41111 1.2921e-08 5.9150
96 8.6612e-09 4.0171 2.0494e-10 5.9784

Table 6. Rate Convergence of CFDM4 and CFDM6 for I (E, h) in Example 2

N 1 —CFDM4 Rate 1 —CFDM6 Rate
12 4.5808e-05 3.6067e-05

24 2.0689e-06 4.4687 6.9973e-07 5.6877
48 1.3230e-07 3.9670 1.1646e-08 5.9089
96 8.3039%¢-09 3.9939 1.8469e-10 5.9786

17



Figure 4. Comparison Absolute Error of CFDM4 and CFDM6 for Example 2 with N = 12 and h = 0.3333
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Example 3. Consider FIDE:
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% 10°

.- CFDMA4
r | —*— cFDMB

T
3
u” (x) + 3u(x) = 2 cos(x) + 3me?* + Ef e?*t2u(t) dt
0

with boundary conditions: u(0) = 1, u(r) = -1
and the exact solution is u(x) = cos(x).

Table 7. Numerical results for Example 3, by using CFDM4 and CFDM6 with N = 12 h = 0.2618
and0<x<mw

x; U(X) UAppro. (x) UAppro. (x)
CFDM4 CFDM6
w/12 9.6593e-01 9.6594e-01 9.6592e-01
/6 8.6603e-01 8.6606e-01 8.6602e-01
/4 7.0711e-01 7.0715e-01 7.0710e-01
/3 5.0000e-01 5.0006e-01 4.9999¢-01
5m/12 2.5882e-01 2.5888e-01 2.5881e-01
/2 6.1232e-17 5.0538e-05 -3.5289¢-06
7m/12 -2.5882e-01 -2.5878e-01 -2.5882e-01
2m/3 -5.0000e-01 -4.9999¢-01 -5.0000e-01
3m/4 -7.0711e-01 -7.0711e-01 -7.0710e-01
5m/6 -8.6603e-01 -8.6605e-01 -8.6602e-01
11m/12 -9.6593e-01 -9.6595e-01 -9.6592e-01
I%(E, h) 6.1699e-05 9.1201e-06
I*(E, h) 5.7455e-05 7.9073e-06
CPU-time 1.927249 1.825943

18
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—B= — Exact
= CF D4
@ CFDME

Figure 5. Exact and Approximate Solution of CFDM4 and CFDM6 for Example 3 with N = 20 and h = 0.1571

Table 8. Rate Convergence of CFDM4 and CFDMG6 for I1?(E, h) in Example 3

N 1> —CFDM4 Rate 1> —CFDM6 Rate
12 6.1699e-05 9.1201e-06

24 4.1583e-06 3.8912 1.3713e-07 6.0554
48 2.6449e-07 3.9747 2.1224e-09 6.0137
96 1.6602e-08 3.9938 3.3054e-11 6.0047

Table 9. Rate Convergence of CFDM4 and CFDMS6 for I (E, h) in Example 3

N 1 —CFDM4 Rate 1 —CFDM6 Rate
12 5.7455e-05 7.9073e-06

24 3.8721e-06 3.8912 1.2174e-07 6.0213
48 2.4621e-07 3.9752 1.8841e-09 6.0138
96 1.5456e-08 3.9937 2.9363e-11 6.0037

19
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*® 10
5] T
-3
,BI. )
s © B
o codr s CEFDMA
—#— CFDME
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z 7 2 ]
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= 5L e B
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1 [ “a .'..I B
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D v 1 1 1 1 1 1 1 1
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Figure 6. Comparison Absolute Error of CFDM4 and CFDM6 for Example 3 with N = 12 and h = 0.3333

To provide the summary of the proposed method to find the approximate solutions based on applying compact finite difference
on FIDE of examples (1-3) that have been illustrated in Tables (1-9). The error norms of [? and [ are reported in Tables
(2,3,5,6,8 and 9) of the fourth order for space levels and compared with the results of the sixth order. From Tables (1-9) the
results of the sixth order are better than the results from the fourth. One of the reasons is due to the errors produced by the sixth
order scheme being much close to zero and the obtained numerical solutions indicate that the method is reliable and yields
result compatible with analytical solutions. In addition, the scheme is shown that the fourth and sixth-orders converge in space.

Conclusion

In this paper, we proposed a robust and efficient numerical scheme for solving FIDE problems using a compact finite difference
method based on fourth and sixth orders. The key idea of this research was to implement a combination of fourth and sixth
orders, with the composite Boole’s rule to solve FIDE, resulting in a highly accurate and computationally efficient numerical
solution FIDE. Additionally, the accuracy of the proposed method is demonstrated by considering three test problems. The
precision of the scheme has been measured by considering several test problems and calculating 12 and I* error norms for
different space levels. From Tables (1-9) and Figures (1,3 and 5), numerical experiments demonstrated that the results that are
obtained from the proposed method are efficient, reliable, fruitful, and powerful. Overall, the proposed method is a significant
step forward in the field of solving FIDE problems. It offers a robust and efficient numerical approach that can achieve high
levels of accuracy. In the future, this work can be solved by finite element methods for more details see [21-27].

Acknowledgment

Authors would like to thank of the financial support from Koya University.

Conflict of interest
The author has no conflict of interest.
Reference
1. H.-H. Cao, L.-B. Liu, Y. Zhang and S.-m. Fu, "A fourth-order method of the convection—diffusion equations with
lz\lgflmann boundary conditions," Applied Mathematics and Computation, vol. 217, no. 22, pp. 9133-9141, 15 July

2. Y.Fu,Z. Tianand Y. Liu, "A Compact Exponential Scheme for Solving 1D Unsteady Convection-Diffusion Equation
with Neumann Boundary Conditions," arXiv preprint arXiv:1805.05728, 2018 May 15.

20



10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.
21.

22.

23.

24,

25.

26.

217.

EDUSJ, Vol, 32, No: 3, 2023 (9-22)

C. Yao, Y. Zhang, J. Chen, X. Ling, K. Jing, Y. Lu and E. Fan, "Development of a fourth-order compact finite
difference scheme for simulation of simulated-moving-bed process,” Scientific reports, vol. 10, no. 1, pp. 1-13, 08
May 2020.

M. A. Pirdawood and Y. A. Sabawi, "High-order solution of Generalized Burgers—Fisher Equation using compact
finite difference and DIRK methods,"” In Journal of Physics: Conference Series, vol. 1999, no. 1, p. 012088, 2021.

J. Biazar and M. B. Mehrlatifan, "A compact finite difference scheme for reaction-convection-diffusion equation,"
Chiang Mai Journal of Science, vol. 3, pp. 1559-1568, 2017.

Y. A. Sabawi, M. A. Pirdawood and M. I. Sadeeq, "A compact Fourth-Order Implicit-Explicit Runge-Kutta Type
Method for Solving Diffusive Lotka—Volterra System," In Journal of Physics: Conference Series, vol. 1999, no. 1, p.
012103, 2021.

P. Roul, V. P. Goura and R. Agarwal, "A compact finite difference method for a general class of nonlinear singular
boundary value problems with Neumann and Robin boundary conditionsApplied Mathematics and Computation 350,"
Applied Mathematics and Computation 350, pp. 283-304, 2019.

Y. Cai, J. Fu, J. Liu and T. Wang, "A fourth-order compact finite difference scheme for the quantum Zakharov system
that perfectly inherits both mass and energy conservation," Applied Numerical Mathematics, vol. 178, pp. 1-24, 2022.
M. Nabavi, M. S. Kamran and J. Dargahi, "A new 9-point sixth-order accurate compact finite-difference method for
the Helmholtz equation,” Journal of Sound and Vibration 307, no. 3-5, pp. 972-982, 2007.

F. M. Okoro and A. E. Owoloko, "Compact finite difference schemes for Poisson equation using direct solver,” Journal
of Mathematics and Technology, vol. 3, pp. 2078-0257, 2010.

A. F. Soliman, A. M. A. El-Asyed and M. S. El-Azab, "Compact Finite Difference Schemes for Solving a Class of
WeaklySingular Partial Integro-differential Equations," Mathematical Sciences Letters, vol. 1, no. 1, pp. 53-60, 2012.
A. F. Soliman and M. S. EI-Azab, "Compact Finite Difference Schemes for Partial integro- differential Equations,"
American Academic & Scholarly Research Journal, vol. 4, no. 1, pp. 6-13, 2012.

J. Zhao and R. M. Corless, "Compact finite difference method for integro-differential equations,” Applied mathematics
and computation, vol. 177, no. 1, pp. 271-288, 2006.

E. Yusufoglu, "Improved homotopy perturbation method for solving Fredholm type integro-differential equations,”
Chaos, Solitons & Fractals 41, no. 1, pp. 28-37, 2009.

Garba, B. Danladi and S. L. Bich, "On solving linear Fredholm integro-differential equations via finite difference-
Simpson’s approach," Malaya Journal of Matematik (MJM), vol. 8, no. 2, pp. 469-472, 2020.

R. I. Esa, "Approximate solution of Fredholm Integro Differential equation using Quadrature Formulas methods,"
International Journal of Scientific Research in Science, Engineering and Technology, vol. 9, no. 6, pp. 284-291, 2022.
Chen, Jian, M. He and Y. Huang, "A fast multiscale Galerkin method for solving second order linear Fredholm integro-
differential equation with Dirichlet boundary conditions," Journal of Computational and Applied Mathematics 364, p.
112352, 2020.

Muthuvalu, M. Sundaram, E. Aruchunan, M. K. M. Ali, J. V. L. Chew, A. Sunarto, R. Lebelo and J. Sulaiman.,
"Complexity Reduction Approach for Solving Second Kind of Fredholm Integral Equations," Symmetry 14, vol. 14,
no. 5, p. 1017, 2022.

Cakir, H. Guckir, F. Cakir and M. Cakir, "A novel numerical approach for Fredholm integro-differential equations,"
Computational Mathematics and Mathematical Physics, vol. 62, no. 12, pp. 2161-2171, 2022.

R. S. Esfandiari, Numerical methods for engineers and scientists using MATLAB®, Crc Press, 2017.

Y. A. Sabawi, A Posteriori Error Analysis in Finite Element Approximation for Fully Discrete Semilinear Parabolic
Problems, 2021.

M. Sabawi, "A posteriori error analysis for semidiscrete semilinear parabolic problems,” 2018 Al-Mansour
International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT),
pp. 58-61, 2018.

M. A. M. Sabawi, Discontinuous Galerkin timestepping for nonlinear parabolic problems, University of Leicester:
PhD dissertation, 2018.

Y. Sabawi, "Posteriori Error bound For Fullydiscrete Semilinear Parabolic Integro-Differential equations," In Journal
of Physics: Conference Series, vol. 1999, no. 1, pp. 012085,I0P Publishing, 2021.

Y. A. Sabawi, "Adaptive discontinuous Galerkin methods for interface problems,” in PhD Thesis, University of
Leicester, UK, 2017.

Y. A. Sabawi, "A Posteriori $ L_ {\infty}(H*{1}) $ Error Bound in Finite Element Approximation of Semdiscrete
Semilinear Parabolic Problems," Baghdad, Iraq, IEEE, 2019, pp. 102-106.

Y. Sabawi, "Adaptive discontinuous Galerkin methods for interface problems," (Doctoral dissertation, University of
Leicester), 2017.

21



EDUSJ, Vol, 32, No: 3, 2023 (9-22)

il Adle Aquadall B3 gasall (39 AN A8y jh aladiiody Abalinl) 4dalsil) ol g 3 Adaleal (gasad) Jad)

1}M@UM}ZJ*L’;J@QGwﬁﬁjlﬁh"d}*“)g‘)}“

Gl | Glall s S ey oS Gaala cdanall s o slad) IS ciamly Sl asle aud !
Gall | Gl adl a5 58 el gall L Raala ¢ A il A bzl ) Ay i anid 2

AaMAl

Bl 1 A5 51 (e Anaall 8 ganall (35 5all A8y jla aladind) Jeadl 138 (a8l Aalialadl) 2Ll o] gany 58 Alalae Jad Apaae 28y jla anndi 5o Jaall 1 (e gl
(s A iall 48y Hlall 36U i oy g and 112 el IR (g Lgbsa oy A jigal) (3 5hll Jall 48y FIDE. Jal 45 54ll Boole 208 e 2l bl
Aol lleal) RAISEN b Galiad) W s 5058 3 An el Ll L aee ke 8 aall 43S el Aallaall Ban s g o VA (g Janll 2
o Rasid) 3l o Jedas ol e flle 48 i ghne e i) Jal cpe S5 Le GE (005 At 3 Sl e 108 iad Janl) 138 35 (3l
FuY\quWBJLshJﬁA\@)H\ms?Lcds.ﬁg.i;)ﬁd\ii,g‘)kl\;laiwﬂ%ﬁg%aﬂ\%ﬁ!\wgaﬂ\ colzmdll 3 Gaaliall 5 aal I a3l

Aady Jla e Jpanl) Gy Cos B0 (e dlle Ul shase Gial e 1508 Ylad 5 B Gaae gl jis 48 FIDE. Sl da Jlae B

22



