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Introduction

Fuzzy Differential Equations (FDEs) are a type of differential equation that use imprecise values to model systems where some
elements are not precisely defined. These equations were first introduced by Lotfi A. Zadeh, a pioneer in Fuzzy Set Theory, in
1965 [1]. Since then, many researchers and scientists have developed and expanded FDEs in various fields, including
engineering, physics, and computer science. FDEs differ from ordinary differential equations in that they contain fuzzy terms
instead of precise numbers. They can be solved using techniques like fuzzy curves, fuzzy logic, and fuzzy inference, and they
are useful for dealing with uncertainty and ambiguity in real-world systems. However, the use of FDEs is still in development,
and they remain an active area of research for mathematicians, computer scientists, and other researchers[2-3] [9]. Over the past
few years, there has been a considerable amount of scientific research focused on finding both theoretical and numerical
solutions for FDES[5-18]. This study contributes to that research by introducing a solution for a fuzzy differential equation and
utilizing computer software to employ the Runge-Kutta method to solve specific cases and obtain an approximate solution.

In recent years, there has been significant interest in the solution of fuzzy differential equations (FDESs) due to their numerous
applications in various fields. This study introduces a numerical method for solving FDEs utilizing the Runge-Kutta method
with a 6th order Butcher scheme. The efficiency and accuracy of the proposed method are demonstrated through its application
to several fuzzy differential equations, showcasing its ability to provide reliable approximate solutions. The results have shown
that the sixth-order method is effective in solving FDESs and can provide reliable solutions for various applications. The proposed
method presents a promising approach for tackling FDEs in practical scenarios where obtaining exact solutions is challenging.

The present article outlines a numerical approach for solving fuzzy differential equations using the Runge-Kutta Sixth method.
The method proposed in this study involves the utilization of a fuzzy derivative to transform the fuzzy differential equation into
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an ordinary differential equation. The fuzzy derivative is then approximated using the classical derivative, and the resulting
ordinary differential equation is solved using the Sixth's Runge-Kutta method. The method is illustrated through several
examples, and the results are compared with existing methods to demonstrate its effectiveness. Overall, the article provides a
valuable contribution to the field of fuzzy calculus and differential equations.

The objective of this study is to achieve enhanced and more precise outcomes in solving fuzzy differential equations compared
to previous research [17] [21-24]. This is accomplished by introducing a novel method that incorporates Seikkala-derived
techniques and a sixth-order numerical approach.The study presented a report on solving linear and non-linear problems,
provided a comprehensive analysis of errors, and presented precise numerical results close to the exact solution of the MATLAB
program. By improving the accuracy in solving differential equations, it is possible to enhance the ability to use these techniques
in practical solutions in various fields such as science and engineering.

1. Preliminaries

The book or article [4] provides a general explanation of fuzzy numbers. Triangular-shaped fuzzy numbers are commonly used,
where the base of the triangle is an interval [p, 8], and the vertex is defined by the number a, denoted as n. A triangular fuzzy
number V" can be defined by these three values: p, a, and .
The fuzzy triangular numbers are denoted as ' = (p/a/B). The membership function for a fuzzy triangular number v =
(p/a/B) is defined as follows:

( n—p

a—p

M) = in iy

a—=p

The membership function specifies the degree to which an element belongs to the fuzzy set V', with values ranging from 0 to

1. The triangular shape of the membership function indicates that elements closer to the vertex a have a higher degree of
membership, while elements farther away from o have a lower degree of membership.

When the graph over the intervals [p, a] and [a, B] is not a straight-line segment, we denote the fuzzy numberas P = (p/a/pB),

indicating that the triangular shape of the fuzzy number is only partially defined by the values of p, a, and . To have a triangular

shape, the membership function graph of a fuzzy number must be continuous. Furthermore, the following conditions should be
satisfied:

psSn<a

as<n<sp

e p<ac<spP

e The membership function is non-decreasing on the interval [p, a] and non-increasing on the interval [«, B].
The single point b is the core of N if v = (p/a/B) or N = (p/a/B). Let T be the collection of all fuzzy integers with a
triangle or triangle-like shape, and let « € T.
Triangular-shaped fuzzy numbers and « € T.
Now, define k-level set

[u]e = (Mlu(m) 2x},0 <k <1
Which is a closed-bounded interval
[l = [w1(r), uz(K)]

The truth of the following claims is undeniable.
1. u, (x) Is a left-continuous bounded non-decreasing function on [0, 1].
2. u, (k) Is a right-continuous bounded non-increasing function on [0,1].
3. 1y (k) <u,(x)forall k € [0, 1]. For more details, see [4].

2. A Fuzzy Cauchy Problem

Suppose the fuzzy initial-value problem [17]
3 = f(keW), wnel=[0T]

3 (0) = 4,
Such that ¢ is a fuzzy function of p, f(p., y(p)) is a fuzzy function of the scrips variable p and the fuzzy variable 4.
4 is the fuzzy derivative of ¢ and ¢ (0) = ¢, is a triangular or a triangular-shaped fuzzy number. We denote the fuzzy
function ¢ by ¢ = [¢1, ¢,]. It means that the k-level set of ¢ (w)for u € [0, T] is
[y = g1 K), ¥ (K], K€ (01]
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Also: [FW]e = [91(;K), 42 (1]
[F (kg = AW e; 1), 0m 4 0); 1]
We write: Fby)] = AWK, folw )]
We get: 9151 = fi(w (W) = FI 41 (15 ©), %2 (15 1)]

G2 (1) = (W) = Gl 91 (8 1), 92 (W 1]
Also, we write

[(ho)lc = [g1(hos 1), %2 (kos K],
We have the membership function by applying the extension principle:

flug@)(s) = suplyW@Is = f(L D)}, seER
So fuzzy number f(p, %(w))

Fly@)l = AW y@;n), 200 40); )] k € (0,1]
Where

filw,»(W; k) = min {f (W, w)|u € [g(W],}
(04 (W); k) = max {f (n, w)|u € [¢(W)],}

3. Runge-Kutta Method of Order Sixth

Example 1. Suppose the fuzzy initial value problem

{@}'(u) = f(hyW), wel=[0T]

%(0) =y,
The exact solution can be expressed as

(Yol = [Y1(uo; k), Y2 (Ho; 1],

The approximation solution can be represented as follows:

[pW]e = (91w, 42 (15 6],
By using the Runge-Kutta method of ordering the Sixth we get

7
Y1) — g1 (1K) = z 1*’/";&;‘,1( Mo (1 K)),
;«:

7
$a(tnsi ) = 92510 = ) wiya (i (5 10).
i:
Where £, 1, %, , define follow:

fe11 (W, w5 6)) = min {A. f (0, w) |u € [41(1; k), %2 (15 K]},
£e12(Wn, p (W5 6)) = max {A. f (0, w)|w € [y (1K), %2 (15 K]},

Fy1 (L, 9 (15 K)) = min {/b f <u +3 u>| w € [0:1 (W), Qa(kw(0)]

#a2(in (15 1)) = max {hf(”-" U | € (911 (1K (1)), 012 (1w (s K))]},
Fe31(Mp, (15 K)) = min { | }
ool 0000) = mae B (14 2, 0) € 10345 00010). 221 0T,
sl 904510) = min{A-f (45, 1)| @ € (020 90510), 02 (w515 0]},
Foa (1 (11 1)) = max {
{
masx |

h. f( +— u

hof

hof

Af (w2 )| w € [Q5r (1 (s 1)), Q52 (1 (s )1},
#os1 (W, (W K)) = min {A. f

hf

hf

€ [Q2,1(P-i (W K)): Qz,z(lli (W K))] ,

(w2 0)| e € [Qaa (54 (119), Qa2 (s 4G 1)1},
A5 2O 9 (0 10) = max (o f (w5, 00)| € 1941 (1 (8 10), Qa2 (1 9.5 10)1},
A6, (15 1)) = mm{ (n+30)|w € [251(w 4w 10), 052 (w4 )]},

Ao 2w 9 (510) = max (. f (w5, w)| w € (06, (15 4G5 1), Qo (14 1)1},
fe71 (W (W5 K)) = min{/L.f(u +A,u)|u € [Qe,1(l1} (W K))'Qe,z(lli y (W K))]}:
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fe72(Wn, (W5 K)) = max{ﬁ-f(u +A,u)lu € [Qa,l(u:y(u; K)),Qe,z(ui 3 (W K))]},
Where in the Runge -Kutta method of order Sixth
Q11 (15 6) = %1 (15 1) + 5 A1 (e, (15 1)),
Q12(15 ) = %2 (15 1) + 5 A2 (1, (15 1)),
Q21 (155) = 51 (1) + = Ay 1 (4 (115 K)),
Q02 (151) = %2 (15 1) + += £ 5 (1, (5 1)),
Q3.1 (151) = 41 (15 1) + Ao 3 (1 (105 1)) + 5 A1 (1, (15 1)) — == o1 (s (15 1)),
Q3.2 (151) = %2(15 1) + = A 21, $(15 1)) + 5 22 ( (G5 1)) = =g 2 (1, (15 1)),
Qa1 (W 6) = 41 (W5 k) — ik1,1(uwy(lli K)) + 2&2,1(Hw4./v(ui K)) — %ff’/sg(un’y*@i K)) — 2/&4,1(11”.%(11: K)),

Q42 (151) = %2 (151) = 2= A 21wy $(15 1) + 2 22 (s (G5 1)) = = R 2 (1 (15 1)) + 2 A2 (1 (G5 1)),
Q5,1 (155) = %1 (15 1) + 2 A1 (s 815 1)) = 2 A1 (s (15 1)) — 2 1 (1, 45 1)) + 5 Ao 1 (1, (15 ),

8 ’ 8
Q5,2 (15 1) = 42 (185 1) + 2 A 5 (s QG 1)) = = A3 2 (s B (18 1)) = > g 5 (1 (G5 1) + 5 52 (1s B (115 1)),

Q6,1(p’; K) = %1(“; K) + %’kl,l ( Hps /y'(u, K)) - 1—91/&2‘1 ( un'y(“’ K)) + g’k&l ( Wy /y)(u’ K)) +
= o (s 9 (5 1)) — o1 (s 9 (15 1)),

Q6,2(p’; K) =Y (IJ'; K) + %'&1,2 ( 1) ’y»(ll, K)) - 19—1/&2‘2 ( un'y(u’ K)) + gk&z ( un’y)(u, K)) +
%f’m,z(un,y(u; K)) = gfés,z(uwy(u: K)),

Now, using the initial condition we have

Y1(Mnr1 1) = 9 (s ;c) (g (W) + A1 (MG + o ((Rs1 (e (1) +
Raa (9 (1)) — 7 ((fcs 1(uw y (1)) +e1 (L % (1 1)),

Y1(Hpr1s k) = y’(uw K) + 120 (klz ( My +£72 ( Wopy(x)) + ((/532 ( woywr)+
Foa 2 (s 5015 1)) = = (s 2 (s (15 1))+, 2 (1, (15 1)),

4. Numerical Examples

Consider the following first-order FDE:
2 =f(ny@) wel=[01]
4(0) = (0.75 + 0.25k,1.125 — 0.125k), 0<k<1

By using the Runge-Kutta Method of ordering the Sixth, we get
AE R RY RS RS
%«’1(un+1:'€)=%1(un;K)[1+ﬁ+—+§+—+§+ ]
AE RS RY RS RS
Y2(Hn+15K) = Yo (s K) [1+ﬁ+—+§+—+§+ ]
The exact solution can be expressed as:
Y105 1) = 1(0; K)e", Y2 (0; k) = ¢, (0; k)e*
Atp=1,
Y, (1; 1) =[(0.75 + 0.25K)e, ( 1.125 — 0.125k)e 0<k<1
The exact and approximate solutions were found using the Runge Kutta Method of order Sixth. Moreover, the error was found
and plotted at u = 1inFig.1

Table 1. Comparison of the exact and approximated solutions for example 1.
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Runge Kutta of order sixth

Exact Solution

Error

K Butcher
%1 (W ) Y2 (W ) Y1(m; ) Yo (1i; ) E{(w; K) E;(n;; k)

0.1 2.1073614 3.0250833 2.1066684 3.0240885 6.9296722e-04 9.9474326e-04
0.2 2.2433202 2.9910936 2.1746255 2.9901100 7.1532091e-04 9.8356637e-04
0.3 2.2473644 2.9571039 2.2425825 2.9561315 7.3767478e-04 9.7238948e-04
0.4 2.3112996 2.9231142 2.3105395 2.9221521 7.6002856e-04 9.6121259¢-04
0.5 2.3792789 2.8891245 2.3784966 2.8881744 7.8238234e-04 9.5003570e-04
0.6 2.4472585 2.8551348 2.4464536 2.8541951 8.0473612e-04 9.3885880e-04
0.7 2.5152378 2.8211451 2.5144107 2.8202174 8.2708990e-04 9.2768192e-04
0.8 2.5152378 2.8211451 2.5823677 2.7862389 8.2708990e-04 9.2768192e-04
0.9 2.5832173 2.7871554 2.6503248 2.7522603 8.4944368e-04 9.1650503e-04
1 2.7191751 2.7191751 2.0387114 3.0580670 8.9415124e-04 8.9415125e-04

Figure 2. Graphical representation of the solution of the equation presented in Example.1 when £ = 0.01.

Example 2. Consider the Fuzzy initial value problem
(W) = 93(W* + 9,
where 9; > 0, fori= 1,2 are triangular fuzzy numbers, [21].
The exact given by

Where

$1(k) =
P(i) =

’ 02,1 () /91,1 (1),
’191,1(’()192,1(’();

[D1]ic = [91,1(1), 912 (1]

191,1(K)

9,,(x) = 0.75 + 0.25k,

The k-level sets of 4 (p) are

4(0) =0,

Y1 (W k) = & ()tan (P, (),
Y, (W ) = & (o) tan (P, (k).

and

= 0.5+ 0.5k,

&) = ’192,2(’()/191,2(’()'

P, (k) =

1,2 (K)ﬁz,z (x),

o

[9.] = [792,1(’0’ a2 (K)]

192‘1(’() = 1.5 + O.SK,
9,,() = 1.25 — 0.25x.

Y x) = 192,1(K)5352(¢1(K))'
Yo () = 192,2(K)59C2(1l’2 ().

which defines a fuzzy number. We get
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Filwy; k) = min{ﬁl/uz + 9, lu € [y (W y; 16 7), 4, (W k)], 9, € [191,1(’();191,2(@],192 € [192,1(’(); 192,2(’()]},
Fo(wyik) = max{ﬁluz + 9, u € [y (W K), (W K)], 9, € [191,1(")'191,2(’4)]'192 € [192,1(’()‘192,2(’()]}-
By using the Runge Kutta Method of order Sixth at£,,,0 < n < N

P11 (5 10) = (A013 () + 95,1(K)),

Py 2 (W3 K) = (ﬁﬁl () y% + 9, 2(k))

Fog1 (1516) = (A0130Qs 1% (3 1) + 01()),
P2 (15 16) = (A1 0001 2% (3 1) + 0(6)),
P 1 (15 16) = (A01300Q21% (i 1) + 85 (1)),
P2 (3 16) = (A1 5000257 (3 1) + 82(1)),
Foa1 (1516) = (A01300Q31% (i 1) + 85 (1)),
Foap (5 1) = (4912000327 (33 10) + 9251 ),
Fos 1 (115 10) = (A01300Q41% (3 1) + 81 (1)),
Fos 2 (13 10) = (A01500Q42% (3 1) + 82(6) ),
Foo1(11310) = (011000517 (3 1) + 9,1 (K) ),
P2 (13 1) = (A01500055% (3 1) + 82(6) ),
P2 (13 16) = (A01100Q61% (3 1) + 81 (1)),
P2 (13 16) = (A01500Q62% (13 1) + 82(6) ).

Where
Q1 (b3 1) = 241 (5 1) + 5 £ (b5 ),
1
Q1,2 (“vn; K) = yz(un; K) + 5%’/1,2(%: K):
Q011 1) = 41 (s 1) + 2 A1 (5 ),

Q.2 (5 1) = %2 (s 1) + 2 5 (b5 10,
Q3,1 (13 1) = 4 (b5 1) + =y 1 (5 1) + 5 A1 (b 1) = oy 1 (500,
Q.25 1) = %2 (s 1) + =R o (5 6) = 5 B2 (b5 1) + o2 (15 ),
Q1 (5 1) = 1 (5 1) = =P (b3 1) + 2 Ao (13 1) — =3 (s 1) — 2 g3 (b 1,
1 9 3 8
Qa2 (5 1) = 42 (5 1) = == oy 2 (s 1) + 2 A2 (b5 1) + o g 5 (s 1) + Ao ) + = s 1 (15 ),
Q51 (1 1) = 91 (s 1) + 21 (3 1) = 2 3 1 (s 1) = 2 g (b 1) + 5 s 1 (b ),
9 3 3
Q5,2 (13 1) = 41 (b 1) + 2 5 (s 1) = 230 (5 1) — S o2 (b 1) 5 s 5 (b 1)
9 9 63 18 16
QG,l(“-/n; K) = %1(%2 K) + a’kl,l(”vn; K) - sz,l(un; K) + 5&3,1(%2 K) + H’&Al-,l(pw;; K) - HkG,l(un; K):
Q61 (1 ) = 91 (i ) + 1&1 2 (5 1) = Ao 2 (5 1) + oy o (5 1) + o P2 (s 1) — T 5 (s 1),

Y1 (Mps15 1) = % (g K) + 120 (f"q 1 (M ) + foq, 1 (M5 1)) + ((k3 1 ( (M5 ) + Ry (Mps 1)) —
= (s (s 1)+ 1 (115 )
Y1(Mps15 1) = % (U5 K) + (/&1 2(Wps i) + 72 ( (Hy5 ) + ((k3 2(Mps K)) + v 2(Wps ) —

120

= (s 2 (s 1)+ 5 (115 ).

Table 2. Comparison of the exact and approximated solutions for example 2.
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Runge Kutta of order sixth

. Butcher Exact Solution Error
41 (Wi K) Y2 (Wi K) Y, (wi; k) Y, (w; k) Eq(; k) E;(w;; )

0.1 0. 9704689 3. 7880958 0.9078046 3.7881624 3.5662200e-4  6.6576100e-04
0.2 0.9586021 3.2858412 0.9585038 3.2857434 9.8256700e-4  9.7781100e-04
0.3 1.0129561 2.8913855 1.0128729 2.8912856 8.4085800e-4  9.9837500e-04
0.4 1.0715058 2.5913453 1.0714393 2.5919439 6.6581800e-4 5.986600e-04
0.5 1.1348995 2.3416595 1.1348316 2.3415333 6.7935300e-4  1.2628500e-04
0.6 1.2039571 2.1332124 1.2038061 2.1331433 1.5104400e-4  6.9088100e-04
0.7 1.2793052 1.9568565 1.2792807 1.9567137 2.252900e-04  1.4286800e-04
0.8 1.3624589 1.8051566 1.3623814 1.8051545 7.7536800e-4  2.0164000e-05
0.9 1.4544626 1.6783412 1.4545053 1.6733254 4.2745200e-4  8.6955000e-04

1 1.5574458 1.5574458 1.5574077 1.5574077 3.3809800e-5  3.3809000e-05

Figure 2. Comparison of the exact solution and approximate solution for example.2 when 4 = 0.02.

5. Conclusion

The analysis of errors in the proposed method highlights its effectiveness, with convergence improving as the step size
decreases. The article provides a valuable contribution to the field of fuzzy calculus and differential equations, emphasizing
the importance of these modern techniques in modeling and solving complex problems with uncertainty or incomplete
knowledge. The method's simplicity and accuracy make it a useful tool for researchers and practitioners in various fields.

Overall, the article presents a clear and comprehensive explanation of the proposed method and its potential practical
applications. The method's effectiveness and accuracy make it a valuable addition to the existing approaches for solving
fuzzy differential equations. The article provides a solid foundation for future research in the field, and the proposed method
can be further improved and optimized for specific applications.
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