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Introduction

In applied mathematics and physics, wave dynamics is one of the most engaging and intriguing problems, where modern
mathematical physics has been conducted to study solitary wave solutions and the related theory of integrable nonlinear
evolution equations in one-dimensional physical systems [1]-[4], which began with the physical observation of the integrable
Korteweg—de Vries (KdV) equation:

P + Pexx — 6P.P(x,t) =0, (1)

where, P(x, t) is the travelling wave solution. Also, the scalar nonlinear Schrodinger equation (NLS)
is attracted researchers in recent years. Respectively, the local and nonlocal have the following form:

iP(x,t) = =P, (x,t) — 20 |P|?P(x,t), 3]

iP(x,t) = =P (x,t) — 20 P*(—x,t) P?(x, 1), 3)
where, a complex value P (x, t) is a function with two real variables x and t, the symbol | | called the norm of a function and
in equation (2) represents P (x, t)P*(x,t) = |P|?(x,t). When ¢ = +1, equation (2 or 3) corresponds to the focusing case
solution, while the defocusing case solution is when o = —1, and (*), represents the conjugate of a function. The nonlinear term

inthe NLS equation IV (x,t) = P(x,t)P* (—x,t), represents a self-induced potential that satisfies the PT-symmetry condition
N (x,t) = N* (—x,t). Replacingx - —x andt — —t, the complex conjugate on equation (3) remains invariant [5]. This
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applies to the field of PT symmetry of quantum mechanics, PT-symmetric of optics, and research activities are currently taking
place in these areas [6]-[8].

The discrete NLS (DNLS) equation has two types local and nonlocal are presented in books and papers in the following form
[91-[12]:

d
iEan: _(:Pn+1_Z:Pn+-7)n—1)_0—|-7)n|2(-7)n+1+-7)n—1)' (4)
o d .
1 E:Pn = _(Pn+1_ZPn+-7)n—1)_O—Pn-rp—n(?n+1+?n—1)' (5)

where, P, (t) is a complex function in equation (4-5). Here 7 is the variable related to time and n € N represents an infinite
lattice. The nonlocal nonlinear term in equation (5) 2,2, is replaced by the local nonlinear term |2, |2 in equation (4) [5]. The
DNLS equation is also in the group of PT-symmetric model [13], where the self-induced potential »V,, = P, P~,. According
to classical optics, this condition guarantees that the equation is invariant under parity and time symmetry [14]. The DNLS
equation is over a century old [15]-[20], but it is still actively studied by mathematicians and physicists, where it is a
fundamental equation of quantum mechanics and is at the heart of several research areas, including nonlinear optics, quantum
computing, and theoretical physics. It is a nonlinear, dispersive partial differential equation that describes the evolution of a
wave function in time and space which means that small changes in its parameters can lead to changes in its solutions. A multi-
component system (MCS) of partial differential equations (PDESs) that serves as a generalization of the scalar NLS equation is
called the Manakov vector NLS system (MVNLS) [21]. This system is a member of a family of integrable systems. It has
become a prominent model due to its wide range of applications in various fields of physics and mathematics, such as optical
fiber propagation, plasma physics, and Bose-Einstein condensate [22], [23].

Solitary wave solution and also called soliton is a type of solution that can be obtained from an integrable system. Soliton is
experimentally discovered in many fields for instance chemistry, biology, and physics phenomenon: plasma and nonlinear optics
and many others. Bright and dark solitons are some types of solutions such as NLS, DNLS, and MVNLS. Numerical and
analytical methods are used to find the soliton solution, like the variational iteration method and inverse scattering method [24]
[25].

In this paper, we obtained another type of nonlocal MCS which is also a member of the family of discrete MVNLS
(DMVNLYS).

The paper is arranged as follows: Section 2 includes an exposition of the Lax representations, compatibility condition, the
general class of the DMNKS type equations, and the nonlocal symmetry (involution) case. The direct scattering problem is
discussed in section 3, which covers the Jost solutions and the scattering matrix. We conclude in Section 3 with two examples,
corresponding to the nonlocal DMVNLS equation symmetrically and asymmetrically concerning the potential of barriers.

1. Preliminaries
a. Lax representation

It is possible to represent the DMVNLS as a compatibility condition for two linear operators known as the Lax pair L,, and
M,,, where the first operator L,,, which is also called the spectral problem:

Whi1 = LpWn, Ly =(Z + Qn), (6)

zl 0 0 0| Pipn P
Z=(0] 271 0 ) Qu=(Rin O 0, 7
o0 o 3zt R, 0 0

where P;,, and R; ,, i = 1,2 are complex value functions. The second operator is M,,, so the time evolution is the second
operator of ¥, ., where, ¥, is eigenfunctions of M,, and L,,:

2—3
M, = >

here,

1

‘oD 1
>D+E(Z Qn_ZQn—l)_EDQnQn—l' (8)

where,
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-1/ 0_0
D=0 1 0), €)
00 1

then, the compatibility condition between the two operators L,, and M,, is:
MyiqLly = Ln,t + L, M, (10)

2.2 The eigenvalue problem
The eigenfunctions are defined by the following boundary conditions, when —oo < n < oo, the functions ; ,, and R, ,,, tends to
zero, as a result, equation (6) satisfies:

z" 0 0

‘Pn(z)~<0 z™™ 0 |, as n- 4o (11)
0 0o z™
z" 0 0

(Dn(z)~<0 z7™ 0| as n-o - (12)
o 0 3z

The pairs @,,(z) = (¢;7, P) and ¥, (3) = (Y5, P;;) have linear combinations,

0, (2) = ¥ (2)T(2), T(z)=(‘;+((zz)) _ab__((zz))) when |z| =1 (13)

the coefficients of these linear combinations depend on z, with the relation holding on |z| =1, the coefficients
at(z),1x1,a (2),2%x2, b*(z),2 x1and b~(z),1 X 2 matrices. They called the scattering dates. The first component of
equation (13) is

(@1)n = a¥ (@) (W1)n + b* (2)(P2)n, (14)

here (®,),, is the first component of the &, matrix. Similarly, we can define (¥;), and (W), = 2 X 2 matrix. As we
mentioned before, ®,,~Z™ as n approches — o, then (®,),,~z™(1,0,0)", where T denotes the matrix transpose. For decay,
(®,),, approaches 0 when n approaches — oo, we require|z| > 1. Also, we can write equation (13) when n approches + oo.

W = (@0 )~ (5 %), (15)

where, 37" = 2 X 2 matrix. Hence, if |z] > 1 then (¥;),, approaches + o and (¥,),, approaches 0 ,as n — +oo. Now,
from equation (13), this leads to (®,),, approaches + oo as n approaches + o , with one condition, when a*(z) = 0.
Now, for N € N, let z,, 2,, ..., 3y be solutions of the following equation

at(z) =0, k=12,..,N (16)

such that |z,| > 1. Then, (©,),,(zx) = b*(3;) (W) (1), k = 1,2,...,N. From this, it follows that (®,),(z,) decays
((®1)n (k) approches 0 as n approches + o). Then, we can approve that (®,),(z;) is an eigenfunction with the
corresponding eigenvalue z,. Same discussion for a™ (z), but in this case, we can calculate it by taking the det (a™(z)) because
it is a matrix of 2 X 2.

2. The multi-component discrete system

In this section, the MC discrete system was presented first for the continuous case (scalar) (17-18). Generalization of equations
(2-3) are the two-component vector NLS equation of the local and nonlocal scalar MVVNLS systems respectively [21], [26]-[28]
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1P (x, ) = =Py (x,t) — 20 (|P|? + |RIP)P(x, ), (17)
iR (x,8) = =Ry (x,8) — 20 (IP|? + |RIP)R(x, 1), (18)
1P (x, 1) = =P (x,0) — 20 (P(x, )P*(—x,t) + R(x, OR*(—x, 1)) P(x, 1), (19)
iR (x,t) = =Ry (x,8) — 20 (P(x, )P*(—x,t) + R(x, OR*(—x, 1) )R(x, 1), (20)

Following the generalization of the NLS equations (15-18), the generalization of the local DMVNLS system is represented in
[29] which has this formula

d 1 Ppy1+ Py

| P = =5 Puas = 2P+ Pa)) — 0 (B2 + R, ) (), 21)
d 1 Rpt1 + Ro

[ Ry = =2 Russ = 2R+ Rua) = 0 (Bl + Ry ) (FHE=2), (22)

while the form of the nonlocal generalization of the DMVNLS system (DMVNLS) as a coupled two-components equation is
[25]:

i %?n = —(Poy1 = 2P0 + Poy) — 0 (P (DP2 (1) + Ry(DR (D)) (Prys + P, (23)
i %:Rn = —(Ru41 — 2Ry + Ryq) — 0 (P (DP0 (D) + Ry (DR (D)) Rpgs + Rny)- (24)

The solution of the scalar NLS and DMVNLS is studied in [26] and [25] numerically and analytically.

3. The new reduction nonlocal discrete Manakov system (NE-NDMS)

We obtained another type of nonlocal two-component equation which is also a member of the family of DMVNLS, and we
estimate the type of solution based on the location of the discrete eigenvalues. The goal of this work is to apply nonlocal reduction
and to calculate the necessary condition for the creation of soliton solutions. This requires the evaluation of the discrete
eigenvalues which correspond to the integrable DMVNLS system. We have introduced different cases of the potential functions
of barriers concerning nonlocal DMVNLS.

The NE-NDMS comes from setting the relation as R,, = —p®;_,, and R, = —pP, _, on the (1-4), so the matrix Q,, in
equation (7) becomes

0 | fpl,n ?Z,n\
M, =\|~— PPz n 0 0
—pPiy O 0

Therefore, the NE-NDMS has the form

-d?l. 1 " « ?1, 1+?1J -1
(= = =2 (Punes = 2P+ Prac) = P(PiaPhon + PonPi ) (CRH ), (25)
'd.‘PZ’ 1 « M :Pz' 1+:P2' -1
i = =2 (Ponss = 2Pon + Pans) = P(Pani o + PonPi ) (FE ), (26)

Example 1
The initial condition for the system (6) corresponds to the two-components P, , and P, , of the NE-NDMS equations
(25-26) (single site) is
P :{UO, n=-1 P ={V°’ n=1
Ln 710, otherwise’ 2n 710, otherwise’
Solution: recall the spectral problem equation (6),
Wpi1 = (Z + M)Wy,
where,
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0 ?1,n PZn z 0 0
M,=|—-P;—, O 0 1, Z=<0 z7 1 0),
P . O 0 0 0 3zt
0 U, 0 0 00 0 0 V,
M_1=<—V0 0 0), M0=<0 0 o), M1=<0 0 o),
0 0 0 0 00 -U, 0 0
1 0 0 z 0 0
Lp_l=<0 1 0), Z=<0 z71 0>,
0 0 1 0 0 3zt

When n= _1, l'po = (Z + M_l)qj_l

z2 U 0\/1 0 0 z U O
-V, z7' 0 <o1o>= -V, z7t 0 |

0 0 z1/\N0 0 1

l'po =

When n= 0, l‘pl = (Z + Mo)l‘po

z 0 0 z Uy O 72 zU, O
LI’1=<0 z7t 0) Vo 278 0 |=|-3", z2 0 |,
0 0 gzt 0 0 szt 0 0 372
whenn =1, ¥, = (Z + M)V,
z 0 W 72 zU, O z3
Y,=| 0 z ' 0 —-z7W, z%2 0 |=|-37%,
U, 0 z7* 0 0 z2 —32U,

To find the a*(z), we need to compare it with equation (14), then

at(z) =1+#0.

22U, 272V,
373 0
—zU¢ 373

Similarly, when we need to calculate the a=(z) = 1 # 0. For both functions, there are no eigenvalues which mean there is no
soliton solution. Figure (1) shows that there are no discrete eigenvalues outside nor inside the unit circle |z| = 1, while Figure

(2) shows that there is no solitary wave solution (soliton solution).

{1*(2) al}d a- (z)

«  continuous eigenvalues
lz|=1

= 4 A
S— ’V . . '.("\‘
| e %%
© # 2 "-3.
~ 0.5 .7’-". .}-n
= o -~
© 3 i
= 0 EH i
N a4 ok
+
S st ! P
& 5, 3 2:2“
S Ve, ot
R=I s TOPIRRRRPPL,

s o o5 1
real a¥(z) and a™(z)

Figure 1. The plot of the scattering data a*(z) and a™(z). This figure shows, the dots around the unit circle |z| = 1, which
are continuous eigenvalues. As a result, we cannot predict a soliton solution.
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The time evolution
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Figure 2. Figure (a) and Figure (b) represent the plot of the |P1,n(t)| and |P, ,,(t)], respectively. The vision of the figures (a)
and (b), from the front. While the vision in Figure (c) is from the top of Figure (a).

Example 2

The initial condition for the system (6) corresponds to the two-components P, ,, and P, of the NE-NDMS equations
(25-26) (two site excitations) is

k, n=-1 [, n=-1
Pl'"={l, n=1" ?2'"={k, n=1
Solution: Recall the scattering problem equation (6)
WYy = (Z+ Mn)kpn'
where,
0 Pin Pon z 0 0
My=(—-P;_n O (U Z=<0 77! 0),
-Pi, 0 0 0 0 sz
0 k I 0 0 0 0 I k 0 0 0
M_lz(_k 0 o), Moz(o 0 o), MF(_I 0 o), M2=(o 0 0>,
-l 0 0 0 0 0 -k 0 0 0 0 0
1 00
‘P_l=<0 1 0).
0 0 1

whenn = -1, ¥, = (Z + M_)¥_,,
z k l 1 00 3z k l
Y, = (—k z7t 0 )(0 1 O) = (—k z71 0 )
-1 0 z'\0 0 1 -1 0 gz

when,n =0, ¥, = (Z + M,)¥,,
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z 0 0 z k l 72
y, = (0 z7t 0 )(—k z7t 0 >= (—z‘lk
0 0 zY\-1 0 3z

-z
When, n= 1, lpz = (Z + Ml)l'pl,

z l k 32 zk  zl
Y,=(-l z7* 0 |[-z7% 372 0 )
-k 0 z Y \—z1 o0 -2

3z

—1z? —kz™? —lkz+373 -1z

<z3 —2lkz™' zZ*k+1z7% %+ kz‘2>
—kz?— 1372 —k?z —klz +z73

Whenn = 2, lp3 = (Z +M2)l‘pz,

zk
Z—Z
0

z

2l
0 )
-2

z 0 0 73 —2lkz™' ik +1z7%2 Z2l+kz?
y.=(0 z71 o0 —lz7?—kz? —lkz+33 —1%z ,

0 0 3zt

Lp3=

—kz — 1373 —k?

The transmission coefficient is a*(z) = z7*(z* — 2lk), for 27 # 0, such that a*(z) = 0 if z* — 21k = 0 by solving a* (z)

for z, we obtain four roots, z{, = £V +v2lk, 23, = £V —V2Ik, under the condition |z| > 1, verify 2lk > 0, from which
follows that z;, 5, are discrete eigenvalues, and the transmission coefficient is a™(z) = z278(1 — 2lkz*), such that a™ () =

0if 1 — 2lkz* = 0, then solving for z, we get four roots, z;, = + ’+ ﬁ Z34 =% ’— /ﬁ , from which follows that z{", 5 ,

are discrete eigenvalues. In this example, when both values of [ and k are < 1, then we do not have discrete eigenvalues as in
example 1. So, we do not have soliton solution. However, we have two soliton solutions when either the values of land k > 1

z*—2lk Zk+I1z7!
—lz—kz® —lk+z*

—kz72 - 1372 —k?z —klz + 573

73+ kz‘1>
—12 .

—kl+3z74

or at least one of them. The following figures display all these cases.

at(z) and a=(z)

1.5
discrete eigenvalues
1z[=1
/E U e }.._,A_‘.".*:‘:*‘:‘;".*;\—_\;\ o~
S—r ,‘.‘ ki DY
| o M
« 2 .
— 05T < %
o J- o
=) 7 M
L] ‘._' \"
R - .
5 I :
R Y ol
- oo
s % #+
-05 | £ o
& P
® - o
E """"ﬂ oy o ) o 3,-'/"'('
= -1r e
A5 | ) 1 |
-1.5 -1 -0.5 0 0.5 1 1.5

real a™(z) and a™(z)
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(@)
at(z) and a=(z)
2 T T T
discrete eigenvalues

151 lz]=1
~—~
.,
| 1t AR,
©
-] L
b 0.5
<
E % w/‘f
3 -05 '&,‘Km
80
© ettt
E

16

2 | | | | | | |

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

real a™ (2) and a™(z)

(b)

Figure 3. Figure (a) and figure (b) shows the discrete eigenvalues outside and inside the unit circle.

: ’ The time evolution
The time evolution

|P2:u (t) |

(a) (b)
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The time evolution
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Figure 4. Figures (a) and (b) represent the plot of the |?1‘n(t)| and |P,,(t)|. These figures show equations (25-26) have
breather soliton solutions. Figures (a) and (b), are the vision from the front but Figure (c) is from the top.

4. Discussion

The discrete eigenvalues of equation (4) are {+3z, i%}, this was set in Ablowitz and Musslimani’s book [20]. The local MS
equation (21-22) in [29], shows also some symmetry, but this depends on the number of site excitation in each component. In
this paper, we present the new nonlocal MS equation (25-26), we obtained 4V eigenvalues: {z, —z,2", —2"}.

In example 1, the excitation of a single site in each component is given as an initial condition. After the calculation, the scattering
data a*(z) = 1and a”(z) = 1, in this case, we cannot find a z which makes the a*(z) and a™(z), equals zero. On figure 1
the plot of the scattering data a* (z) and a™(z). This figure shows, for both cases, when U, and V, > 1 or < 1, the a* (%) and
a” (z) have no zeroes outside or inside the unit circle. The dots around the unit circle |z| = 1 are continuous eigenvalues. As a
result, we cannot predict a soliton solution. Figures (2) (a) and (b) represent the plot of the |?1‘n (t)| and |P,, (t)], respectively.
These figures show that the integrable discrete lattice has no solitary wave when the values for both U, = 1.5 and V; = 2 are
>1orU, =05andV, = 0.2are < 1 and even when one of the U,, V, is > 1.

In example 2, The discrete eigenvalues are clear in Figure (a). When one of the valuesof k =2 > 1and[ = 0.5 < 1, we have
4 discrete eigenvalues for a*(z):1.189207 ,—1.189207 ,1.1892071,—1.1892071 and 4 discrete eigenvalues for
a (z):0.84089,—0.84089, 0.840891, —0.840891. Therefore, two soliton solutions have been found. Figure (b) shows, when
both of the values of k =2and [ =2 > 1, we have also 4 discrete eigenvalues but different than in Figure (a) where, the
discrete eigenvalues for a*(z) are: 1.681793,—1.681793 ,1.6817931,—1.6817931 and 4 discrete eigenvalues for
a (z):0.594603,—-0.594603,0.5946031,—0.5946031 . Figures (4) (a) and (b) represent the plot of the
|fPLn(t)| and |P,,(t)|. These figures show that the integrable discrete lattices (25-26) have two solitary waves, that is mean
two soliton solutions (breath soliton).

5. Conclusion

In this paper, it is worth saying that the new nonlocal MS which corresponds to the eigenvalue problem (6), show a symmetry
case in the potential functions. In the examples, the results indicate that if z is the eigenvalue of (6), then —z is also the
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eigenvalue of (6). In addition, z* is also eigenvalue because of a*" (z*) = a*(z) = 0. Taking into account that the symmetry
case allows the system to have -z* as an eigenvalue too. So, we have 4N eigenvalues for both outside and inside the unit circle:
{z,—2,3",—2"}, which gives us N soliton-type solutions. It is shown that the type of symmetry in the examples allows us to
study the roots of the equations (25-26).

The conditions on a special type of initial condition represented in the form of a square-barrier to obtain the soliton type of the
DMVNLS have been studied. In other words, the scattering matrix calculated the roots for each of a*(z) and a™(z) when |z| >
1and |z| < 1, respectively, to find the condition which generates the soliton-type solution. This work used the iteration method
on the equation ¥,,,; = (Z + M,,)¥,, to calculate the zeros for the scattering data a*(z) and a™(3) with |z| # 1.
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