
Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
89

Refactoring for software maintenance: A Review of the literature

Rasha Gh. Alsarraj *1, Atica M. Altaie 2

1, 2 Department of Software, College of Computer Science and Mathematics, University of Mosul, Iraq

E-mail: 1* rasha.alsarraj@uomosul.edu.iq, 2 atica_altaie@uomosul.edu.iq

(Received June 26, 2020; Accepted September 05, 2020; Available online March 01, 2021)

DOI: 10.33899/edusj.2020.127426.1085, © 2020, College of Education for Pure Science, University of Mosul.
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

Abstract

One of the techniques to increase the value of the software quality is refactoring - the set of activities

for code enhancement through altering inner structure and not altering outer behavior of code. It is a

technique to clean-up the source code that decreasing the opportunities of code faults. Refactoring can

be defined as one of the most significant practices for maintaining the advanced software systems. It

has been indicated by the empirical studies that refactoring has positive effect on maintainability and

understandability of the software systems. This study introduces a literature review of 22 researches

that study and summarize the influence of refactoring and their effect on the attributes of software

quality specially maintainability. Through the review, the study sums the following points: (1)

applying refactoring activities will increase the values of some attributes of quality like

Understandability and maintainability. (2) There are several factors that affect reconstruction activities,

including cohesion, coupling, hiding of information and encapsulation, (3) Refactoring helps to
improve the source code without changing the behavior of the program, (4) refactoring activates can

be applied many times to the source code.

Keywords: Refactoring approaches, Refactoring tools, Refactoring challenges, Refactoring risks,

Refactoring advantages, Maintainability.

 مراجعة أدبية :إعادة البناء لصيانة البرامجيات

 عاتكة محمد الطائي 2و جار سرشا غانم ال *1

 العراق , موصل, جامعة الموصل, قسم البرمجيات, كلية علوم الحاسوب والرياضيات

 خلاصة ال
مجموعة من الأنشطة لتحسين الشفرة المصدرية من خلال تغيير - احدى تقنيات زيادة قيمة جودة البرمجيات وهياعادة البناء هي

ويمكن .داخلهاإنها تقنية لتنظيف الشفرة المصدرية والتقليل من فرص حدوث الأخطاء و .الهيكل الداخلي وعدم تغيير السلوك الخارجي
أنها واحدة من أهم الممارسات لصيانة أنظمة البرمجيات المتقدمة. وقد أشارت الدراسات التجريبية إلى أن على تعريف اعادة البناء

تأثير إيجابي على قابلية الصيانة وقابلية ال ن ثنيمراجعة أدبية لا تقديم تم في هذه الدراسةفهم لأنظمة البرمجيات. إعادة البناء لها
لبحوث دراسة ا من خلالالبرمجيات ومنها قابلية الصيانة. ن بحثًا من دراسة وتلخيص تأثير إعادة البناء على خصائص جودةيعشر و

(تطبيق أنشطة إعادة البناء سيزيد من قيم بعض خصائص الجودة مثل قابلية الفهم وقابلية الصيانة 1أن) المتعلقة باعادة البناء تبين
(3(هناك العديد من العوامل التي تؤثر على أنشطة إعادة البناء ، بما في ذلك التماسك والاقتران وإخفاء المعلومات والتغليف ،)2،)

https://edusj.mosuljournals.com/
mailto:rasha.alsarraj@uomosul.edu.iq
mailto:atica_altaie@uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0/

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
90

(يمكن تطبيق أنشطة إعادة البناء عدة مرات على 4المصدرية دون تغيير سلوك البرنامج) إعادة البناء تساعد على تحسين الشفرة
 .المصدرية الشفرة

 الصيانة. ادوات اعادة البناء, تحديات اعادة البناء, مخاطر اعادة البناء, فوائد اعادة البناء, قابلية: نماذج اعادة البناء, الكلمات المفتاحية

Introduction

Smart development and regular maintenance are required to achieve good quality. A lot of activities

related to quality assurance might be used such as refactoring, code walks, review, and testing. They

might be utilized in the case when the software is produced for the first time or in the case when

previously present resources were utilized such as design templates or source codes. Based on Fowler

[1], the refactoring can be defined as the process used to alter software’s internal layout without making

alterations in external behavior. Also, the process might be utilized via software engineers by means

of patterns of code time and again [2].

Throughout years, empirical studies indicate positive relations between code quality metrics and

refactoring operations (e.g., [3], [4],[5]), such evidences indicating that the refactoring might be

specified as first-class concern with regard to software developers. Yet, to decide what and when (in

addition to knowing why) to refactor, was a challenge to developers. The teams of software

development must not be simply refactoring their software systems on demand, or deciding not to

refactor a code which results in technical debt, since any activity of refactoring comes with certain cost

[6]. In addition to all efforts made by the community to provide the tools which will refactor the source

code automatically, identifying the refactoring opportunities (for instance, identify the methods or

classes which must be refactored) is a stage of high importance that comes before the process of

refactoring. The aim to identify related to refactoring opportunities, which is presently based on

intuition and expertise of developer, must be supported through advanced recommendation algorithms.

Modeling the entire context which is faced via the developed in the case when deciding what to

refactor, has been difficult problem. Studies were experimenting with various methods to recommend

refactoring, for instance, code smells detection strategies [2], invariant mining, logic meta

programming, search-based, and pattern mining.

Section two of this study provides the definitions of refactoring. Section three provides the refactoring

challenges. Section four will provide the refactoring decision. Section five is providing explanation

related to the risks and benefits of refactoring. Section six will provide the literature review, while

section seven will provide the main conclusions.

2. Refactoring Definition in Practice

Refactoring can be defined as one of the software maintenance activities to improve the code internal

structures, whereas maintaining its external behavior [7]. In the past 10 years, a lot of studies were

indicating that the refactoring might be reducing the software complexity, improving the developer

comprehensibility as well as improving the start-up time and memory efficiency [8]. Therefore, the

developers were encouraged for performing the operations of refactoring regularly [1]. Based on a

study by Mens et al. [9], one might divide the process of refactoring as follows [8]:

 1. Identifying the code entities which require refactoring, the term code entities indicates the classes

on the object-oriented systems. Also, the major utilized method for detecting code entities which

require refactoring is anti-patterns’ detection and/or code smells [9]. In addition, the anti-patterns are

bad design choices for recurring the design problems. Generally, they are provided through inexpert

developers, also representing major pitfalls in the software development. In a previous study, Coplien

https://edusj.mosuljournals.com/
file:///C:/Users/HP/Downloads/1-s2.0-S2090447917300412-main.docx%23_bookmark42

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
91

and Harrison [10] provide something with might be excellent approach, yet might be badly backfiring

when utilized. The difference between code smells and anti-patterns is that the first ones are local

problems indicating the existence of general design problems (i.e., anti-patterns). For instance, the low

cohesions, large class, and long methods, are symptoms regarding Blob Class anti-pattern [1]. It must

be indicated that using anti-patterns for identifying the code entities which must be refactored vary

based on the applications’ domain. For instance, in the case of focusing on mobile and/or embedded

systems, one may consider that the anti-patterns are associated to energy efficiency along with

conventional design anti-patterns, for providing complete design solution.

2. Determining the major adequate refactoring that must be utilized. A study by Fowler suggests a

catalog of 22 refactoring as well as informally associated the anti-patterns to refactoring [1] The

informal guidelines were used in the past studies for generating refactoring opportunities for removing

the anti-patterns [11] in a semi-automated fashion.

 3. Ensuring that the utilized refactoring is preserving behavior. Generally, current approaches of

refactoring adopt the refactoring post- and pre- conditions suggested via Opdyke [8] for preserving the

refactored system’s behavior.

4. Measuring the impact of refactoring used on the required quality attributes (for instance, complexity,

flexibility, and understandability.). “You can’t control what you can’t measure”. As soon as applying

set of refactoring, one must have the ability for assessing its effect on the design quality. Mainly,

studies are using code and object-oriented metric suites, in addition to the anti-pattern’s/design patterns

occurrences for evaluating the design improvements.

5. Maintaining the consistency between the software design as well as the other software artifacts (for

instance, tests, documentation, and so on.). Following using and estimating set of refactoring, the risks

of impacting the consistency between the source codes as well as the other software artifacts involving

the documentation, design models, and test suite is high. Therefore, it has been suggested for counting

the approaches for maintaining the consistency [8].

3. Refactoring Challenges

There are various challenges related to adopting refactoring [12,13], 28% of the developers indicated

certain inherent challenges including the work on large code bases, large amounts of the inter-

component dependencies, the requirements of coordination with the other teams and developers, also

the difficulties to ensure program’s correctness following refactoring. 29% of the developers indicate

the absence of tool support for refactoring change integration, code review tool targeting refactoring

edits, as well as advanced refactoring engines where the user may simply define the new refactoring

types. In addition, the difficulties to merge and integrate following refactoring sometimes encourage

the individuals from doing refactoring [14]. The version control systems which they utilize have been

sensitive to move and rename refactoring, also making it difficult for developers to understand the

code change history following refactoring.

The next quotes describe the difficulties of refactoring change integrations in addition to code reviews

following refactoring: “Cross-branch integration has been the major issue [15]. Also, developers have

such issue each time they are fixing the bugs or when refactoring anything, even though that in such

case it has been especially difficult, since the refactoring moved files, that prevents cross-branch

integration patches from being used.” “Typically, refactoring increases the number of lines/files

included in the check-in, which burdens the reviewers of code. It also increases the odds in which the

changes are going to collide with the changes of someone else.” A lot of participants indicate that in

https://edusj.mosuljournals.com/

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
92

the case when the regression test suite has been insufficient, there will be no safety nests to check

refactoring’s correctness. Therefore, this prevents developers from initiating refactoring efforts [16].

If there are extensive unit tests, the (it’s) great, (one) must be refactoring unit tests as well as run them,

and doing certain sanity testing on the scenarios. In the case when there are no tests, then (one) must

go from the known scenarios and ensuring all works. Furthermore, in the case when there are no

sufficient documentations for the scenarios, refactoring must be achieved. The inherent in addition to

technical challenges regarding refactoring indicated via participants, maintain backward compatibility

sometimes discouraging them from starting refactoring efforts [13].

4. Refactoring Decision

The developers perform refactoring based on the signs of code, helping to make a decision on the

refactoring (Fig. 1) [12,16]. 22% have stated insufficient readability; 11% have stated that it is difficult

to repurpose the available code for various cases and predicted features; 11% have stated insufficient

maintainability; 13% have stated a duplication in the code; 9% have stated that it is difficult to test the

code with no refactoring; 8% have stated that the performance is slow; 5% have stated that there are

dependencies to modules of other teams; and 9% have stated code of old legacy which they need to

operate on. 46% of the developers have stated that they perform the refactoring in the contexts of

feature additions and bug fixing, and 57% of them have indicated that the refactoring is regulated with

the immediate visible, concrete needs of the variations which they have to implement in a limited

period of time, instead of the possibly indefinite advantages of the long-term maintainability.

Additionally, over 95% of the developers perform the refactoring over all of the milestones and not

only in the MQ milestones—a period which has been specified for fixing the bugs and cleaning up the

code with no responsibility for the addition of new features which means the refactoring effort

pervasiveness [16]. Base on the self-reported data, the developers spend approximately 13h. each

month to work on the refactoring, and that is approximately 10% of their works, in the assumption that

the developers are working approximately 160 h. monthly [13,16].

Fig. 1. The symptoms of code that help developers initiate refactoring

5. Refactoring Risks and Advantages

Based on the developers’ experience, the related risks of the refactoring are, code churns, regression

bugs, time which is taken from the other tasks, merge conflicts, difficulty to do code reviews following

the refactoring, and over engineering risks [12]. Fig. 2 includes the rate of the developers that have

stated every one of the specific risk factors. It should be noted that total summation is up to 100% as

one of the developers would be mentioning several risk factors. 76% of participants have considered

https://edusj.mosuljournals.com/

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
93

that the refactoring is combined with risks of the introduction of functionality regressions and subtle

bugs; 11% state the fact that the code merging is difficult following the refactoring; while 24% have

mentioned the increase in the costs of testing. “The main risk is the regression, usually due to the

misunderstanding of the cases of the subtle corners in original code and not accounting for those

corners in refactored codes.” “The Over-engineering—developer can produce unnecessary

architectures which aren’t required by any one of the features; however, each chunk of code must adapt

to it.” “It is difficult to measure the refactoring value. How It is possible to measure a bug value which

has never existed, or time which is saved on a later unspecified feature? How can such value bubble

up to the management? Due to the fact that there are no ways for placing the exact value on refactoring

practice, it is hard to justify to the management [16].

Fig. 2. The risk factors associated with refactoring

The benefits observed by the developers from the refactoring are the enhanced readability, enhanced

maintainability, enhanced performance, fewer bugs, duplicate code reduction, code size reduction,

enhanced extensibility & higher simplicity for adding new features, enhanced testability, decreased

time to market, enhanced modularity, and so on, as shown in Fig. 3 [16,17].

Fig. 3. Various types of refactoring benefits that developers experienced

https://edusj.mosuljournals.com/

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
94

6. Literature Review of Refactoring

The life-cycle of software is highly dependent on maintenance. Throughout the maintenance, the code

might be altered many times, that might be deteriorating the quality of the code. Therefore, the

software’s maintainability is a main focus for software industries, one of the major approaches is

refactoring [18].In the present survey, the objective is the aggregation of the patterns and the

information on the researches which are carried out on the refactoring for the maintenance of software

and trends which are not discovered earlier.

In 2010, Hegedus et al examine how quality attributes including maintainability, testability and error

proneness can be predicted depending on metrics that can be measurable in the source code, like

cohesion , line of codes, and complexity and inspect their effect of each refactoring approach on the

computed metrics. Furthermore, Applying refactoring of code is definitely a reasonable and efficient

activity in facilitating maintenance, and it increases the value of quality attributes for the software, if

refactoring activates are used properly at a suitable time [19]. In the same year, Mubarak studies the

effect of coupling between classes on refactoring and maintainability and how the project manager can

estimate maintenance effort and/or refactoring effort needed to work the project correctly. The results

recommend that the maintenance changes can applying new method called "peak and trough‟ to

calculated effect and related of experimental data of refactoring for the software. The results also

recommend to applying the refactoring activities after a regular change of maintenance activities and

the advantages of removing coupling between classes on decreasing the refactoring effort precisely

with refactoring of package and giving warning data for potential of refactoring [20].

In 2011, Singh and Kahlon introduce a measure to classify faulty classes which are cohesion, hiding

of information and encapsulation. Then, the researchers propose a statistical method to examine the

correlation between these measures and source

 code smells. Firefox is considered as a case study to prove the approach and the results display high

precision in classifying the classes that are faulty and applying refactoring activates on the faulty

classes. These results of refactoring will assist the developer in testing and maintenance phases of

software life cycle [21]. Present’s sequential processes are future’s parallel processes. So in the same

year, Dig introduces a new method to applying refactoring techniques for analyzing and transforming

current processes. The method suggests to alter multiple lines of source code and eliminate error-prone

because programmers require ensuring parallel processes to increase software performance,

maintainability and portability. The research also presents a set of tools which supports many activities

of refactoring techniques including increasing scalability and maintainability of parallel processes,

making processes thread-harmless and increasing throughput of sequential processes [22].

Sometimes the programmer needs to apply the refactoring multiple times to the source code. So in

2012, Meananeatra proposes a method to recognize a best sequence of refactoring that meets many

measures which are maintainability factor, the total number of faults eliminated, the dimension

sequence of refactoring, and the total number of changed program components. Furthermore, the

authors estimates that the results tend to decrease cost and time of maintainability, and improve the

quality of software. The method of research does not produce all refactoring sequence at one time but

regularly detect a graph for sequences and use refinement method to remove opposite sequence of

refactoring in order to find a best sequence to be implemented [23]. In the same year, Villavicencio

classifies the technique of refactoring into : understanding and efficiency, the first is useful in

maintenance and the second is for implementation. Understanding and efficiency , the former is

considered the opposite of the later. Therefore, refactoring techniques in forward and reverse can be

noticed as forms summarizing the information on how to arrange the source code for increase the

efficiency and easy maintenance [24].

https://edusj.mosuljournals.com/

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
95

In 2013, Fujiwara et al propose a methodology to evaluate refactoring processes from archives of

version which is improves the quality including ease of maintainability. The methodology is semi-

automatically implemented by inspecting in archives of software based on two algorithm which are

UMLDiff “UML difference” and SZZ “Sliwerski, Zimmermann, and Zeller”. The author adopts

Columba project as a case study and the result displays that the occurrence of defect is reduced after

many circles of refactoring and increases the factor of maintainability through three variables : frequent

of refactoring, frequent of fix and defect density [25]. code clone is a duplicated code and may be a

malicious code that require to be eliminated to improve maintainability. So in the same year, Zibran

and Roy introduced a model for predict the effort need to eliminate code clone through refactoring and

proposed an approach called CP “constraint programming” for best refactoring scheduling of code

clone elimination. Case studies are taken to examine the effort model and scheduler of clone code

refactoring, results compared with other scheduling approaches and CP-depended model shown

outperforms other models [26].

In 2014, Chaparro et al introduce a technique called Refactoring Impact Prediction (RIP) to study the

effect of refactoring processes on the quality metrics of source code. Using this technique , developers

can evaluate refactoring chances in the maintenance tasks of software, also it permits developers to

compare the value of metric deviations caused by the processes of refactoring, particularly when

refactoring contains many transformations and evaluates conflicting metrics of the source code [27].

In the same year, Steidl and Eder propose to eliminate maintainability defects, reuse of optimal code

and long functions, that require less effort to refactor. The research provides the developers a point to

enhance the quality of the software. With a case study for java software, the research calculates and

assesses the advantage of recommendation depending on feedback from developers and specifies effect

of external factors on the process of maintainability defect elimination in software development [28].

In 2015, Ah-Rim et al introduce term of MIS “maximal independent set” allows the developer to

recognize many processes of refactoring which can implemented at the same time and each MIS has a

collection of refactoring paths that calculates delta table which is the values of maintainability for

each primary path. In each circle of the process of refactoring, many operations can be applied to

increase maintainability value through sets of MISs. The proposed model is implemented on many of

case studies and the results display that the model can increase maintainability factor. Furthermore,

the developer can apply many circles of refactoring at the same time [29]. In the same year, Kannangara

and Wijayanayake study the effect of refactoring approaches based on multiple measures to increase

the quality of software. Ten approaches have been selected and assessed quality through five external

factors and five internal factors including index of maintainability. The results didn’t show any

enhancement on software quality after applying refactoring processes for external factors and show

good enhancement of maintainability index in the quality of source code that refactored for internal

factors and no enhancement for other internal factors [4].

In 2016, Mohan and et al, compare 4 distinct methods of refactoring with the use of automated tool

of software refactoring. The weighted summation values of the metrics have been utilized for forming

a variety of the fitness functions driving the process of the search in the direction of specific software

quality aspects. The measures are integrated for measuring the abstraction, inheritance, and coupling

and a 4th function of fitness has been suggested for measuring the technical debt reduction. Those four

functions have been compared to one another with the use of three distinct searches on six distinct

programs of open source; four out of the six of the programs have shown a higher enhancement in the

function of the technical debt following the process of the search based refactoring. The results have

shown that this function has been beneficial to assess quality enhancement [30]. In the same year,

Malhotra and Chug examine the refactoring impacts on the maintainability with the use of 5

proprietary software systems. The internal attributes of the quality have been evaluated with the use of

https://edusj.mosuljournals.com/

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
96

the design measures suite while the external attributes of the quality like the levels of the

understandability, abstraction, extensibility, modifiability, and reusability have been evaluated by

expert opinions. The original software versions have been compared to the versions that have been

refactored and quality attribute changes have been mapped to the maintainability. The results have

revealed that there has been a significant improvement of software quality refactoring and

enhancement in the life of the software. It has been discovered as well, that although the refactoring is

highly tedious and can be introducing errors in the case where they are not implemented with the

maximum care, it remains advisable for the frequent refactoring of code for increasing the

maintainability. The results of this study have been beneficial for the projection of the management to

identify the refactoring opportunities at the same time as keeping an ideal balance between the

reengineering and the over-engineering[31].

In 2017, Mohan and Greer proposed a novel method for the automated software maintenance. This

tool is capable of performing 26 distinct refactoring processes. in addition to that, it contains a wide

range of selections of the measures for evaluating the refactoring impact on software and 6 distinct

search based methods of the optimization for enhancing software. Such tool includes mono-objective

as well as multi-objective methods of searching for the enhancement of the software and it has been

entirely automated. The researchers have explained the variety of the tool’s abilities, as well as its

unique aspects, in addition to presenting a number of the study results from the experiment. The distinct

metrics have been tested over 5 distinct code-bases for the deduction of the most efficient measures

for the general enhancement of the quality. It is found that metrics relating to higher specificity aspects

of code are of a higher usefulness to drive the changes of searching. Mono-objective genetic algorithm

has been tested as well against multi-objective approach, for observing the degree of the comparability

of results that have been obtained with 3 distinct aims. In the case of the comparison of the optimal

solutions of every one of the separate objectives the multi-objective method produces proper quality

enhancement in a shorter period, which allows a fast cycle of maintenance [5]. In the same year,

Alvarado enhances the automated refactoring by taking into consideration new dimensions: (a)

developer’s task contexts for prioritizing the related class refactoring; (b) test efforts for improving the

cost of the testing following the refactoring; (c) conflict awareness of the refactoring for the reduction

of the efforts of refactoring; (d) energy preservation for improving the consumption of the energy of

the mobile applications following the process of the refactoring. The author has suggested 4 methods,

namely: (i) ReCon, leveraging task context of the developer for the prioritization of the refactoring of

the classes which are associated with the activities of the developer. By the use of the ReCon, the

developer gains the ability of removing a median of 50% anti-patterns throughout the normal tasks of

coding, with no disruption to their work-flow. (ii) TARF controls for testing efforts while refactoring.

The Results have shown that the TARF is capable of reducing a median of 48% of testing efforts of a

system following the refactoring. (iii) RePOR, to efficiently refactor the scheduling, resulting in an

80% reducing of the efforts of refactoring and time of execution. (iv) EARMO, which is an automated

method to refactor the mobile applications, capable of the removal of 84% of the anti-patterns and

extending the battery life for the devices by about 29 min. (for a multi-media application which runs

continuously uncommon scenario). He applies and validates his suggested methods on a number of the

open-source systems for demonstrating their effect upon the quality of the design with the use of the

common models of the quality, and the feedback from a number of the authors of the researched

systems [8].

In 2018, Kula et al conduct an experiential research for exploring the correlation between the

Application Programming Interfaces (API) refactoring and breakage processes which have been based

upon the actual utilization of the API by the clients. They are capable of distinguishing between the

APIs of the library based upon their client-utilization (known as the client-used API) for the purpose

of getting a deeper knowledge about the level to which the breakages of the API may be associated

https://edusj.mosuljournals.com/
https://scholar.google.com/citations?user=0DWNagMAAAAJ&hl=ar&oi=sra

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
97

with the refactoring actions. This study covers more than 9700 of the breaking classes and

approximately 12900 of the refactoring processes from 8 common libraries of Java, with every one of

the libraries which have about 10∼38 of the successive releases. They have noticed the following

points: (a) the maintainers of the library have lower likelihood of breaking the client-used APIs in

comparison with other library classes, (b) the found refactoring processed breaks only < 37% of the

client-utilized APIs, (c) the remaining (63%) breakages of the API are triggered with the issues of the

maintenance which will be possibly involving more complicated refactoring processes. (d) Simple

refactoring processes (such as rename approach, move approach, and move field) have been applied

less often to the client-used classes of the APIs, in comparison with other class types [32]. In the same

year, Mohan explores a Search-based software maintenance (SBSM), develops and proposes a new

tool for fully automated Java software maintenance with the use of the multi-objective, mono-

objective, and many-objective methods of the searching. This tool has been supplied by several

refactoring processes and metrics and is entirely configurable. It can be found available on-line to be

used and may be utilized for the researching purposes or as one of the maintenance tools for assisting

with improving and maintaining Java software. The tool measures the priorities of classes which have

been refactored in refactored solution. It also measures the code coverage of the refactoring solutions

generated in refactoring tool. The author has presented a systematic current opportunities’ analysis

with the SBSM. The variety of the tools which are available presently have been analyzed and

examined. The variety of the search-based optimization methods have been examined as well and the

variety of the searches have been compared with one another for the analysis of the benefits and

drawbacks of the variety of methods. The disadvantages of the available methods have been analyzed

and either addressed or outlined [7].

In 2019, Fengrong and et al provide the mechanisms related to clone code as well as refactoring.

Firstly, the clone code can be defined as a fragment of code which is similar or identical in semantics

or syntax, that is affecting the maintenance and development of software. After that, the major

approaches for present clone code re-factoring will be put to comparison and analysation. In addition,

the majorly applied methods for clone refactoring might be categorized into the next categories:

evolutionary analysis-based method, program dependency graph-based method, abstract syntax tree-

based method, metric-based method, refactor-ability related to clone code evaluation, approach on the

basis of extracting the clone metric for re-factoring, an approach on the basis of revenue-cost

assessments, and an approach on the basis of evolutionary coupling and measuring. Therefore, the

associated tools regarding clone code re-factoring might be elaborated, also their benefits and

drawbacks will be indicated. There are majorly 4 tools for refactoring in the current time, Ref-Finder,

FaultBuster, JDeodorant, and SPCPMine. Lastly, the drawbacks of clone code re-factoring will be

indicated [18]. In the same year, Mohan and et al , describe investigating a many-objective genetic

algorithm which has been utilized for the automation of the process of the software refactoring, which

have been implemented as a Java tool, Multi-Refactor. The method and the tool have been assessed

with the use of a group of the open source programs of Java. This tool contains 4 distinct Software

looking measures at the quality of the software in addition to the measurements of the priority of the

code, element recentness, and refactoring coverage. The algorithm of the many-objective is involved

with the combination of the 4 aims for improving software in a holistic way. An experimentation has

been created for the comparison of many-objective method with the mono-objective method which

utilizes only one objective for the measurement of the quality of the software. A variety of the objective

permutations have been tested as well, and compared for the purpose of seeing how efficiently the

variety of the aims may operate combined in a multi-objective method of refactorings. The 8 methods

have been experimented on 6 distinct open source programs of Java and results are as follows: The

method of the many-objective has been discovered to provide more sufficient objective score values

on average compared to mono-objective method and was faster. None-the-less, the element recentness

and priority aims have been discovered to have lower rate of success in many-objective/multi-objective

https://edusj.mosuljournals.com/

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
98

set-ups in the case where they have been utilized in combination. The researchers have reached a

conclusion that a many-objective method is proper and sufficient to optimize the automated refactoring

for the improvement of the quality. This means that other aims doesn’t excessively reduce the

enhancements’ quality, however, it is less efficient for these objectives compared to the case where

they are utilized in the mono-objective method [33].

In 2020, Morales and et al have carried out an empirical research for investigating it the structure of

the automated refactoring code has an impact on the system understandability throughout the tasks of

the comprehension. (a) they have conducted a survey of 80 developers, as they asked them to

recognized from a group of 20 changes of refactoring in the case where they have been produced by a

tool or by the developers, and also to provide the rating of the changes of refactoring based on their

quality of design; (b) they have requested 30 developers to carry out the tasks of the code

comprehension on 10 systems which have been refactored via a freelancer or through automated tools

of refactoring. They have performed a measuring of performance of the developers with the use of

NASA task load index for their efforts, the time which they have spent carrying tasks, and their

percentage values of the accurate answers. In spite of the current limitations if the technology, their

findings have shown that it’s reasonable expecting the refactoring tool to be matching the code of the

developer. In fact, the results have shown that for 3/5 of the studied types of the anti-patterns, the

developers have no ability for recognizing the refactoring origin (in other words, whether or not it has

been carried out via an automatic tool or a human). In addition to that, they have noticed that the

developers don’t have a preference for the human refactoring processes over the automated processes

of refactoring, except the case of refactoring classes of the Blob; and the fact that that there has not

been any statistically significant distinction between the impacts on code understandability of the

human and automated refactoring processes. They conclude that the automated processes of the

refactoring may be equally efficient to the manual refactoring processes. None-the-less, for the

complicated types of the anti-pattern, such as Blob, the perceived quality which has been accomplished

by the developers is a little better [34]. So in 2020, Aniche and et al investigate machine learning (ML)

approaches’ effectiveness in the prediction of the refactoring processes of the software. Particularly,

they have trained 6 distinct ML methods (such as the Naїve Bayesian, Logistic Regression, Decision

Trees, Support Vector Machine (SVMs), Neural Networks (NNs) and Random Forest) with a data-set

which comprises more than 2 million refactoring processes from 11149 of the real-world projects from

F-Droid, Git-Hub, and Apache, eco-systems. The resultant models have predicted 20 distinct

refactoring processes at method, class, and variable-levels with a precision which is usually over 90%.

The outcomes of this research have shown that (a) Random Forest is the optimal model for the

prediction of the software refactoring, (b) the metrics of the ownership and process appear to be playing

a vital part in creating more efficient models, (c) the models are well generalized in a variety of the

contexts [35]. Table 1 explains the summary of aforementioned.

 Table 1: Summary of the studies

Year authors Factor study Quality attributes effected
2010

Hegedus et al [19] cohesion , line of codes, and complexity Refactoring, maintainability,

testability and error proneness

Mubarak [20] Coupling Refactoring and maintainability

2011

Singh and Kahlon

[21]

Encapsulation, information hiding,

cohesion, and estimating faulty classes

Refactoring and maintainability

Dig [22] A multiple circles of refactoring Maintainability portability,

productivity, scalability and

performance.

2012 Meananeatra [23] A multiple circles of refactoring Maintainability, the total number of

faults eliminated, the dimension

sequence of refactoring, and the total

https://edusj.mosuljournals.com/

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
99

number of changed program

components

Villavicencio [24] selecting a best sequence of refactoring Maintainability, efficiency,

understandability and removing bad

smells

2013 Fujiwara et al [25] Version archives Refactoring and maintainability

Zibran and Roy [26] Eliminating code clone Refactoring and maintainability

efforts

2014 Chaparro et al[27] RIPE “Refactoring Impact PrEdiction” Code quality metrics ((RFC, CBO,

DAC, MPC, LOC, NOM, CYCLO,

LCOM2, LCOM5, NOC, DIT)

Steidl and Eder [28] Eliminating code defects, reuse of

optimal code and long functions

Refactoring and maintainability

2015 Ah-Rim et al [29] MIS “Maximal Independent Set”

applying multiple processes of

refactoring simultaneously.

Refactoring and maintainability

Kannangara and

Wijayanayake [4]

Assessing the effect of refactoring

approaches based on multiple measures

Refactoring and Maintainability

Index

2016 Mohan et al [30] Measure of coupling, abstraction,

inheritance

Refactoring and maintainability.

Malhotra and Chug

[31]

Abstraction level, understandability,

extensibility, modifiability, and re-

usability

Refactoring and maintainability

2017 Mohan and Greer

[5]

Assessing the impacts of the approaches

of refactoring based upon multiple

metrics like QMOOD, CK and

optimizing based on six different search

algorithms.

MultiRefactoring and

maintainability

 Alvarado [8] prioritizing the refactoring of classes,

Refactoring method which has been

based upon task Context (ReCon),

Refactoring method which has been

based on Partial Order Reduction

(RePOR),

Testing-Aware ReFactoring method

(TARF),

Energy-Aware Refactoring method for

the MObile applications (EARMO)

Refactoring, Refactoring efforts and

maintainability

2018 Kula and et al [32] Exploring the correlation between the

Application Programming Interfaces

refactoring processes and breakages

based upon the actual utilization of the

API by the clients

Refactoring and Maintainability

Mohan [7] Tool equipped with numerous

refactoring activities and metrics based

on Search-based software maintenance

(SBSM)

Refactoring and Maintainability

2019 Fengrong et al [18] Clone code refactoring Refactoring and maintainability

Mohan and

Greer[33]

Measure of Code priority, refactoring

coverage and element recentness

,optimizing automated refactoring.

MultiRefactoring and

maintainability

2020 Morales et al [34] “Mimicking humans on refactoring

tasks” (RePOR), an automated

refactoring approach based on partial

order reduction techniques.

Refactoring, understandability and

maintainability

https://edusj.mosuljournals.com/
https://scholar.google.com/citations?user=0DWNagMAAAAJ&hl=ar&oi=sra

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
100

Aniche [35] Six different machine learning

algorithms which are

(Logistic Regression, Naive Bayes,

Support Vector Machine, Decision Trees,

Random Forest, and Neural Network)

Refactoring, understandability and

maintainability

7. Conclusion

Refactoring is an activities which increases the quality of software and permits software engineers to

repair code which is difficult to be maintained. There are many approaches and tools to apply

refactoring activities. The approach and the selected tool are based on the nature of software. This

study introduces a literature review of relevant researches identifying code refactoring activities and

their effect on software maintainability published from the year of 2010 to 2020. The paper discusses

and summarizes many researches in the domain of code refactoring depending on a set of criteria.

Among them are line of codes, cohesion , coupling, complexity, encapsulation, information hiding,

estimating faulty classes, a multiple circles of refactoring and so on. It also investigates their effect on

software quality attributes and states the important factors which must be occupied when building a

tool for refactoring.

The paper concludes with the following: (1) Applying refactoring activities will increase the values of

some attributes of quality like Understandability, maintainability and testability (2) There are several

factors that affect reconstruction activities. (3) Refactoring helps to optimize code without changing

software behavior. (4) Refactoring activates can be applied many times to the source code.

This survey is useful as an introduction to researchers who aim to work in the area of software

refactoring with regard to software maintenance and will allow them to gain an understanding of the

present landscape of research and the insights collected. This study is hoped to help and inspire

suggesting future improvements in the area of refactoring approaches.

Acknowledgments

The authors would like to express their thanks to University of Mosul/ College of Computer Sciences

and Mathematics for the facilities provided by them, which were very helpful in improving this

work’s quality.

References

1. Fowler M., Beck M., Brant K., Opdyke j., Roberts W., “Refactoring-improving the design of

existing code”. 1st ed. Addison-Wesley; 1999.

2. Singh, S. and Kaur S., “A systematic literature review: Refactoring for disclosing code smells

in object oriented software.” Ain Shams Engineering Journal 9 (2017): 2129-2151.

3. AlOmar E. A., Mkaouer M. W., Ouni A. and Kessentini M., “Do design metrics capture

developers perception of quality? an empirical study on self-affirmed refactoring activities,” in

Proceedings of the 13th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM 2019), 2019, pp. 300–311.

4. Kannangara S. H. and Wijayanayake W., “An Empirical Evaluation of Impact of Refactoring

on Internal and External Measures of Code Quality”, International Journal of Software

Engineering Applications, (IJSEA), Vol. 6, No. 1, 2015.

https://edusj.mosuljournals.com/

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
101

5. Mohan M., Greer D.,” MultiRefactor: Automated Refactoring to Improve Software Quality”,

International Conference on Product-Focused Software Process Improvement, pp 556-572 ,

2017, Springer

6. Kruchten P., Nord R. L. and Ozkaya I., “Technical debt: From metaphor to theory and

practice,” IEEE Software, vol. 29, no. 6, pp. 18–21, 2012.

7. Mohan M., “Automated Software Maintenance Using Search-Based Refactoring “, PHD.

Thesis, Queen’s University Belfast, 2018.

8. Alvarado R., “AUTOMATED IMPROVEMENT OF SOFTWARE DESIGN BY SEARCH-

BASED REFACTORING”, PhD thesis, UNIVERSITÉ DE MONTRÉAL, 2017.

9. Mens T. and Tourwé T., “A survey of software refactoring,” Software Engineering, IEEE

Transactions on, vol. 30, no. 2, pp. 126–139, 2004.

10. Coplien J. O. and Harrison N. B., “Organizational Patterns of Agile Software Development”,

1st ed. Prentice-Hall, Upper Saddle River, NJ (2005), 2005.

11. Ouni A., Kessentini M., Sahraoui H., and Boukadoum M., “Maintainability defects detection

and correction : a multi-objective approach,” Automated Software Engineering, vol. 20, no. 1,

pp. 47–79, 2013.

12. Sharma T., Suryanarayana G., and Samarthyam G., “ Challenges to and Solutions for

Refactoring Adoption: An Industrial Perspective”, IEEE Software, 2015.

13. Khanam Z., “Barriers to Refactoring: Issues and Solutions”, International Journal on Future

Revolution in Computer Science & Communication Engineering, Volume: 4 Issue: 2, 2018.

14. Brun Y., Holmes R., Ernst M. D., and Notkin D., “Proactive detection of collaboration

conflicts,” in Proceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, ser. ESEC/FSE ’11. New York, NY, USA:

ACM, pp. 168–178, 2011.

15. Bird C. and Zimmermann T., “Assessing the value of branches with what-if analysis,” in

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of

Software Engineering, ser. FSE ’12. New York, NY, USA: ACM, pp. 45:1–45:11, 2012.

16. Kim M., Zimmermann T. and Nagappan N., “An Empirical Study of Refactoring Challenges

and Benefits at Microsoft,” IEEE Trans. Software Eng., vol. 40, no. 7, pp. 633–649, 2014.

17. Ouni A., Kessentini M., Sahraoui H., Inoue K., Deb K., “Multi-Criteria Code Refactoring

Using Search-Based Software Engineering: An Industrial Case Study”, ACM Transactions on

Software Engineering and Methodology, Volume 25, Issue 3, 2016.

18. Fengrong Z., Liping Z. and Junqi Z., “Research on the Tools of Clone Code Refactoring”,

ICMSS: Proceedings of the 3rd International Conference on Management Engineering,

Software Engineering and Service Sciences, Pages 27–31, 2019 .

19. Hegedus G., Hrabovszki G., Hegedus D. and Siket I., “Effect of object oriented refactorings

on testability, error proneness and other maintainability attributes”, In Proceedings of the 1st

Workshop on Testing Object-Oriented Systems, ACM, 2010.

20. Mubarak A., ”An Empirical Study of Package Coupling in Java Open-Source”, PhD thesis,

Brunel University, School of Information Systems, Computing and Mathematics, 2010.

21. Singh S. and Kahlon K.S.,” Effectiveness of Encapsulation and Object-oriented Metrics to

Refactor Code and Identify Error Prone Classes using Bad Smells”, ACM SIGSOFT Software

Engineering Notes, Vol. 36, No. 5,September 2011.

22. Dig D., “A refactoring approach to parallelism”, IEEE Software, Vol.28, No.1, 2011.

23. Meananeatra P., “Identifying refactoring sequences for improving software maintainability” In

Proceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering, ACM, New York, 2012.

24. Villavicencio G., “A new software maintenance scenario based on refactoring techniques” In

16th European Conference on Software Maintenance and Reengineering (CSMR), Hungary,

IEEE, 2012.

https://edusj.mosuljournals.com/
https://scholar.google.com/citations?user=TQSeb2cAAAAJ&hl=ar&oi=sra
https://scholar.google.com/citations?user=0DWNagMAAAAJ&hl=ar&oi=sra
https://link.springer.com/conference/profes
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://dl.acm.org/journal/tosem
https://dl.acm.org/journal/tosem
https://dl.acm.org/toc/tosem/2016/25/3
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/3312662
https://dl.acm.org/doi/proceedings/10.1145/3312662

Journal of Education and Science (ISSN 1812-125X), Vol: 30, No: 1, 2021 (89-102)

Downloaded from https://edusj.mosuljournals.com/
102

25. Fujiwara K., Fushida K., Yoshida N. and Iida H., “Assessing refactoring instances and the

maintainability benefits of them from version archives”, pages 313–323. Springer, 2013.

26. Zibran M. F. and Roy C. K., “Conflict-aware optimal scheduling of prioritized code clone

refactoring”, IET Software, 2013.

27. Chaparro O., Bavota G., Marcus A. and Di Penta M., “On the impact of refactoring operations

on code quality metrics,” in Proceedings of the 30th International Conference on Software

Maintenance and Evolution (ICSME 2014), 2014.

28. Steidl D. and Eder S., “Prioritizing Maintainability Defects by Refactoring

Recommendations,” in Int’l Conf. on Program Comprehension, 2014

29. Ah-Rim H., Doo-Hwan B., Sungdeok C.,”An efficient approach to identify multiple and

independent Move Method refactoring candidates”, Information and Software Technology,

vol. 59, pp. 53-66, 2015.

30. Mohan M., Greer D. and McMullan P., “Technical debt reduction using search based

automated refactoring”. Journal of Systems and Software, 120, 183–194, (2016).

31. Malhotra R., Chug A., “An Empirical Study to Assess the Effects of Refactoring on Software

Maintainability”, Intl. Conference on Advances in Computing, Communications and

Informatics (ICACCI), 2016.

32. Kula R. G., Ouni A., German D. M. and Inoue K., ”An empirical study on the impact of

refactoring activities on evolving client-used APIs”, Information and Software Technology,

93, 186–199, 2018.

33. Mohan M. and Greer D., “ Using a Many-Objective Approach to Investigate Automated

Refactoring”, Information and Software Technology, Technology, Vol 112, pp 83-101, 2019.

34. Morales R., Khomh F. and Antoniol G.,” RePOR: Mimicking Humans on Refactoring Tasks.

Are We There Yet?”, Journal of Empirical Software Engineering (EMSE), 2020, Springer.

35. Aniche M., Maziero E., Durelli R. and Durelli V., “The Effectiveness of Supervised Machine

Learning Algorithms in Predicting Software Refactoring”, computer science, ArXiv, 2020.

https://edusj.mosuljournals.com/

