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ABSTRACT
In this paper we drive a new sixth-order Runge-Kutta method,
depending on the new fifth order Runge-Kutta method of David Goeken
and Olin Johnson, the property of this method is that it needs five function
evaluations only where the standard method needs six or seven function
evaluations, then this method is compared with the new fifth order Runge-
Kutta method.

1- Introduction:-

Given y' = f(y), standard Runge-Kutta methods perform multiple
evaluations of f(y) in each integration sub-interval as required for a given
accuracy. Evaluations of " =1y, (6 y)feey) OF higher derivatives are not

considered due to the assumption that the calculations involved in these
functions exceed those of f. However, y" can be approximated to sufficient
accuracy from past and current evaluations of f to achieve a higher order of
accuracy than is available through current functional evaluations alone.

In July of 1998 at the ANODE (Auckland Numerical Ordinary
Differential Equations) Workshop, the two scientists David Goeken and
Olin Johnson introduced a new class of Runge-Kutta methods based on this
observation [4],[11]. They presented a third order method which requires
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only two evaluations of f and a fourth-order method which requires three
and fifth order method which requires four. This paper reviews the fifth-
order methods and gives the general solution to the equations generated by
the sixth-order methods of this new class. Interestingly, these sixth-order
methods require only five functional evaluations per step whereas standard
Runge-Kutta methods require six or seven.

2- Third-order method:-
Goeken and Johnson consider initial value problems expressed in
autonomous form. Starting with the non-autonomous form, they assume

that f(x, y) is a continuous function with domain D in IR"" where X ¢ R, y
e IR" and (X, y) € D .They assume that:- [10], [12]
”f(X, y,) — (%, yz)”Z < L”yl_ y2||2
for all (xy,).(xy,) e D(where L is a Lipschitz constant); thus the
problem
y'=1(x, y)
y(X) =Y, with (X,,y,) €D
has a unique solution.

In autonomous form, y and f have n + 1 components with

y..=f .(xy)=x and f_,(y)=1. The initial value problem is then written:
y =f(y)
y(%) =Y, where (yo),..=F.:1(X0,¥o) =X,

Most efforts to increase the order of the Runge-Kutta methods have
been accomplished by increasing the number of Taylor's series terms used
and thus the number of functional evaluations required [10],[5],[12] and
[9]. The use of higher order derivative terms has been proposed for stiff
problems [16] and [7]. The method adds higher order derivative terms to
the Runge-Kutta k, terms (i > 1) to achieve a higher order of accuracy, For
more details see [3] [6]. For example, the new third-order method, GJ3, for
autonomous systems, is:- [10]

You =YatbiKi+Db,k,
and k, =hf(y ). However, they introduce additional terms by assigning:-
[4], [10],[12].
k, = hf(y, +a,k, +ha,f,(y,)k,)
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Using Taylor's series expansion techniques, the above is uniquely
satisfied to O(h®) as follows:

k, =hf(y,)
2 2
k2 = hf(yn+§kl+§hfy (yn)kl)

1 3
Yo = yn+zkl+zk2

3- Fourth-order method:-
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Similarly, the fourth-order method, GJ4, for autonomous systems, is:-
[10],[12]
Yoa =Yt b,k +b,k,+ bk,
and
k, =hf(y,)
kz = hf(yn+ a21k1+ haZny(yn)kl)
ky =hf(y,+ask; +ag,k,+ haa3fy (V.)ky+ has4fy (. ky)

The Taylor's series expansion of these higher order methods is tedious
and error prone. Goeken and Johnson used modern symbolic mathematical
packages to expand and then to solve the resulting systems of nonlinear
equations that were generated. In this work, they used the symbolic
mathematical packages [14],[10], [11], and [7].

The general solution to the system of equations (with a,, =0) has been
found with example solutions are shown in:

1 1 2
Yna :yn+6k1+€k2+§k3
and
k, =hf(y,)

1
k2 = hf(yn+ kl+5hfy(yn)k1)

3 1
k, = hf(yn+§k1+§k2)

4- Fifth order method:-

In July of 1998, Goeken and Johnson presented [11] this numerical
integration technique at a meeting attended by John Butcher. Using his
tree-based approach [5], Butcher suggested a fifth-order method. Since the
meeting, his technique has been verified using Taylor's series expansion
techniques to determine the general solution for the fifth-order methods.
The fifth-order method, GJ5, for autonomous systems, is:- [10],[12]

Yna = Yo+ bk +0,K+ bk +Db kK,
and
k, =hf(y,)
k, =hf(y,+a,k,+ ha‘22fy(yn)kl)
kg =hf(y,+ask, +ag,k,+ ha33fy(yn)k1)
k, =hf(y,+a,k,+a,K,+a,K;+ha,f (y,)k,)

The solution presented by Butcher and verified using the above system

of equations is:

k, =hf(y,)
k, = hf lk 1 hf k
2 = (Yn+§ 1+E y(yn) 1)

152 252 44
k, =hfly ——k,+—k,———hf k
3 (yn 125 l+ 125 2 125 y(yn) 1)
19 72 25 5
k, = hf(yn+?k1_7k2+ﬂk3+5hfy(yn)kl)
and
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yn+1 :yn+£kl+£k2+%k3+ 1

—k,
48 56 336 24

5- Sixth order method:-
We drive now the Sixth order, GJ6, for autonomous systems, lets:
You =Y, +bK+b,K,+bk,+b,k,+ bk,

and
k, =ht(y,)
kz = hf(yn + a21k1+ ha22fy(yn)k1)
ky =hf(y, +ask,+agkK,+ ha33fy(yn) k)
k, =hf(y,+a,k +a,k,+a,k;+ha,f (y,)k,)
ky =hf(y, +a5,K,+ag,k,+agK,+agk,+ ha55fy V. ky)

The sixth order Goeken-Johnson can be able to generate the Taylor's
series expansion of the above, and we get the following systems of
equations:- [10]

b,+b,+b,+b,+b, =1

1
b,a,,+b;(as+as,)+0b,(a,+a,+a,,)+bs(as,+as,+as+as,) = E

2 2 2 2 1
b,a,,"+b,(as+as,)" +b,(a,+a,+a,,)" +Dbs(@s;+as,+as+as,) :é
b,a,’+b *+b,(a,+a,+a,,)’ +b.(a a+a)3—1
28y +D5(@5+a5,)" +b,(@,+a,+8,3)" +D0s(a5,+a5,+ a5+, 7

b.a,.*+b “4+b 4 b (ac +a., +a.. +a.)t ==
28, +D3(a5 +ag,)" +b,(a,, +a,, +a,,)" +bs(as +ag, +ag; +asg,) ~5
b,a,’ +b 54 b 54 b A, +a,+a.) =2
28,1 thy(@s +a5,)” +b,(a, +a,, +a,3)° +bs(as; +as, +a5; +a5,) ~5
bja a5, + b, (285,85 + 858, +8558,3) +05(2,,85,8,585, + 85,85, + 33855 +2,485,) =
b,a,85,8,5 +Ds8,,85,8 585, = i
120

b.a,a.a,.a., =—
5821850845850 = 250

1
a21+a22:§

1

A3 +85 +853 = 5
2
Ay tag, A, ta, =1

g, +ag, +ag,+a, +a =1

Now we can form the sixth order formula (with a,, = %) we get:- [10]
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a,=~a.=e—ta 24 1. 1, 1,1, .1
227 891 T T 8e2 T 0453 T e T e T des T G T
a _—1 a Zl a :E a :l a zl
517 4 0952 T 5 053 T dee T s T
bsa,183,8 4585, = 72 =b (i)(;)(%)(i = 10:1;8135:7;0:[352%
1 1 8 1,,1..,1..1

b4a21a‘32a43 + b5a21a32a43a54

o= bt (DRI =

1 11 4 4 4
bt = b, b=t b, =
32 ' 720 120 90 15 18

b3a22a32 + b4(a21a32a43 + a22a42 + a335’143) + bs(a21a32a4sas4 + azzasz + a33a53 + a44a54) =

e I e e
83 18'32 16 16° 45128 8 16 16 24
1

5331b5334b582b—28

3+ = 0;+—=+ = D5 + =0 =——
6 144 720 24 9 45 6 45 3 45

1
b2a21 + bS(aSl + a‘32) + b4(a4l + a42 + a43) + b5(a51 + a52 + a53 + a‘54) =5

2
1 1, 4,1 1 1 1 1 1 1
— - (— — —(— — — _(— —_—F —4—)=—
4 b, 45(4 2) 18(4 4 4) 45(4 2 4 4) 2
1 7.1 2 1 1 14 2 4 1 13 16
—b, ——+ Sttt o =l= 0 0= 2=
4 45 6 15 2 2 45 6 15 2 45 45
b,+b,+b,+b,+b, =1=b, +E—§+i+ 8 =1=D +2=1:>b1=7—8
45 45 18 45 90 90

By using the above systems of equations we get the following
systems of general solution:

78 16 28 4 8
=y +—K+—K,— ok, +—k,+—Kk
yn+1 yn 90 1 45 2 45 3 18 4 45 5

and
k, =hf(y,)
1 1
k, = hf(y, + M k, + M hf, (y,)K,)

1, 1, 1
kg =iy, — 7k, + 2k, + 0y, )k,)

1

1

1 1 1 1
k, = hf(y, +Zk +Zk2 +Zk3 +thy(yn)kl)

1 1 1 1 1
k. = hf(y, _Zk1+5k +Zk3+zk4+zhfy(yn)kl)

2

As we know that the standard sixth order method has 6 or 7
k,'sfunction evaluations but in this method the k_ 'sfunction evaluations are

5 only.
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6- Stability Region of Sixth order method:-

The stability properties of numerical methods of Ordinary Differential
equations determined by study the behavior of these methods, by using test
problem:- [1],[2],[13]

Y =AY, Y(%) =Y,
Where A is real, the real solution of the above problem when x = x, is:
Y (X,.1) =€y (X,)
This implies the use of the general formula of Runge-Kutta method:-

[1].[2].[13]

Where:

yn+l = yn + h¢(yn ! h) """"""" (1)

¢(yn,h)=Zbrkr

R
k, =f(y, +h> a k) ,r=12,....., R
s=1
R

b, =>a, ,r=12.c... R

' s=1
By using test problem we get the difference equation:- [1],[2],[13]
Yoa =E(h)y,, n=0,12,.......

Where E(2h) is the stability function and converges to e™and
E(ah) <1, by using equation (1) in the difference equation we get:-

[1].[2].[13]
y(xn+l) Yo = O(hp+l)

Now by using test problem we get:- [1],[2]
-2 =3 =p
= - h h h —pH
E(h):r:1+h+E+§+ ................. +a+0(h )

Where h =xh, by using Taylor series we get:- [1],[2],[13]
r=exp(h) +0(h"")

Where r is polynomial of R stage in h, if the method of stage R then it
Is of rank p, therefore, R >p. Then we get:- [1],[2],[13]

=2 =3 p

Then from Goeken-Johnson sixth order Runge-Kutta method r is:
-2 =3 —4 =5
r=1+ﬁ+—+—+h—+h—
2! 3! 41 5l
and the stability region of Goeken-Johnson sixth order Runge-Kutta

method is (-3.2,0), we got the region by plotting r in Figure(1).
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Figure(1): Stability region of Goeken-Johnson sixth order Runge-Kutta method

7- Comparison:-

In this section we compare with the fifth-order method, GJ5, and the
sixth-order method, GJ6, and we get the solutions of the two methods have
the same results, and the GJ6 is useful for solving any problems of
Ordinary Differential equations, In this comparison we use the example
y =-y,y(0)=1, See table(1) and Figure(2) (The Figure is plotted in
Matlab).
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0

1.0

1.0

1.0

0

0.002

0.998001998667333

0.998001998600667

0.998000799822222

1.198778444400084e-006

0.004

0.996007989343991

0.996007989210925

0.996005596445795

2.392765129810570e-006

0.006

0.994017964053935

0.994017963854734

0.994014381880313

3.581974421296152¢-006

0.008

0.992031914837061

0.992031914571990

0.992027148151344

4.766420645840874e-006

0.01

0.990049833749168

0.990049833418492

0.990043887300400

5.946118092237107e-006

0.012

0.988071712861931

0.988071712465912

0.988064591384901

7.121081011085551e-006

0.014

0.986097544262862

0.986097543801764

0.986089252478148

8.291323615128299-006

0.016

0.984127320055285

0.984127319529368

0.984117862669289

9.456860079026797e-006

0.018

0.982161032358301

0.982161031767827

0.982150414063287

1.061770453991695e-005

0.02

0.980198673306755

0.980198672651984

0.980186898780887

1.177387109696504e-005

0.022

0.978240235051210

0.978240234332400

0.978227308958589

1.292537381181180e-005

0.024

0.976285709757909

0.976285708975320

0.976271636748612

1.407222670857244e-005

0.026

0.974335089608749

0.974335088762638

0.974319874318864

1.521444377405867e-005

0.028

0.972388366801247

0.972388365891871

0.972372013852914

1.635203895744564e-005

0.03

0.970445533548508

0.970445532576124

0.970428047549953

1.748502617093806e-005

0.032

0.968506582079198

0.968506581044060

0.968487967624770

1.861341928943716e-005

0.034

0.966571504637507

0.966571503539870

0.966551766307719

1.973723215098477e-005

0.036

0.964640293483123

0.964640292323242

0.964619435844685

2.085647855643025e-005

0.038

0.962712940891200

0.962712939669327

0.962690968497057

2.197117226987455e-005

0.04

0.960789439152323

0.960789437868711

0.960766356541692

2.308132701867027e-005

0.042

0.958869780572485

0.958869779227385

0.958845592270891

2.418695649331060e-005

0.044

0.956953957473047

0.956953956066710

0.956928667992362

2.528807434798441e-005

0.046

0.955041962190715

0.955041960723391

0.955015576029191

2.638469420013223e-005

0.048

0.953133787077505

0.953133785549444

0.953106308719813

2.747682963089027e-005

0.05

0.951229424500714

0.951229422912164

0.951200858417979

2.856449418497942e-005

Table(1): Comparison between GJ5 and GJ6
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The solution of y'= -y ,y(0)=1

1 F L L L L L

real
0.995 - GJI5 I

GJ6

0.99 -

0.985 |- -

0.98 I~ -

> 0.975~ -

0.97 - -

0.965 -~ -

0.96 - -

0.955 - -

0. 95 C r r r r r [
0 5 10 15 20 25 30

X

Figure(2): the Solution of y'=-y,y(0) =1

8- Conclusions:-

New third-, fourth-, fifth-, and sixth-order numerical integration
techniques inspired by the Runge-Kutta method have been presented. The
new methods exploit the use of higher order derivatives, specifically f, . In

particular, a technique utilizing an approximation to y* has been presented

resulting in a multistep Runge-Kutta method. The proposed methods are

more efficient than the standard Runge-Kutta methods for cases:-

[4],[10],[12]

1. f, ory ischeaper to evaluate than f.

2. The use of historical values of f is cheaper than evaluating f ,because
the number of functional evaluations of standard Runge-Kutta
methods are from 4 to 6 or 7 while the number of functional
evaluations of new Runge-Kutta methods are from 2 to 5 only .
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