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Abstract:

This is research is basically deals with the representation theory
that is specifically on Hecke algebra and g-Schur algebra, where [-
numbers of a partition # has sufficient effect in both types of algebra.

The objective of this work is to expand the results of Fayers that is
by adding new runners to B-numbers, to represent a "tree", and by other
hand, we decide to reduce the runners reaching another new definition
"radical" by using both mathematically and computer programming ways.
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1. Introduction:
Let F be a field, q an invertible element of F, r a non-negative
integer and G, a symmetric group. We define e > 1 to be minimal such
that 1+q+....+q"" = 0, with e = oo if no such integer exists, then we shall
assume that e is finite.
A compositionzof r is a sequence (u,u,

......

u,) of non-negative

integers such that |,|= Zn: u, =r.A composition x is a partition if
i=1
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u; > u,,, for all i>1. The diagram of Young of a composition x is the
subset :

[1]= {(x,y) |1<y<u, and x>1} of NxN,
it 1s useful to represent the diagram of w as an array of boxes in the plane,
for example, if 12=(2,3) then [x] |

We denote the u-composition of r as u |=rand denote the u -
partition of r as u |—r. The best introduction to the representation theory

of Iwahori- Hecke algebra and g-Schur algebra can be found in Mathas's
book [9], as the following: Let 1, =H,_(r) be the Iwahori-Hecke algebra of

G; and let s (n,r) be the corresponding g-Schur algebra. H; is the
associative F-algebra with basis ¢ |w.<g !} and multiplication
determined by:

o -] T it i <(i+1)"
SoW qTs +(q-1)T,, otherwise ’

where w e G, and si= (i,i+1), for i= 1,2,3,.....,r-1. The q-Schur algebra is
the endomorphism algebra

S,(n,r)= End Hr(ﬁ)r xyHrj,

where x, = ' T, and a Young subgroup

weG,

Gﬂ:Gyle#zx ........ ><Gﬂn Of Gr

Dipper and James in [1] defined the Specht modules~; for each
partition x of r there is a right H, -modules~. A partition x is e-regular
if it does not have e non-zero equal parts. If x is e- regular then s~ has
an irreducible cosocle p+. Also, a Weyl modulew~ is defined as, for any
partition u ofr, there is a right S (n,r)-modulew~. The cosocleL”of w~ is
irreducible.

Given partitions # and 4 of r, with e-regular, let [s«.p*| be the
multiplicity of p‘as a composition factor of s#. Similarly, let [w«..*] be
the multiplicity of L*as a composition factor of w». With x is e-regular,
(s*:0? uartr 18 the decomposition matrix of Hy and  ([w »: L* ])uafr 18 the
decomposition matrix of Sy(n,r), see [8].

2. p-numbers and e-Core :
Choose an integer b greater than the number of parts of a partition
4, and define

Bj = + b-j, for j=1,2,....,b.
The set {Bi,....,.p»} 1s said to be a set of beta-number for x. For example,
if ,u=(5,32,2,1), then the number of parts of x is 5. Let b=7, then -

numbers are (11,8,7,5,3,1,0).
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We consider an abacus with e vertical runners, labeled 0,1,....,e-1
from left to right. And label the partition on runner j as j, jte, j+2e, ....
from the top downwards. We call the bead position me, me+1,..., me+e-1
row m of the abacus configuration forux with b beads is the abacus

configuration obtained by placing a bead at position B; for j=1,2,....,b.

0 1 2 . e-1
e etl et+2 ... 2e-1
2¢  2etl  2et2 ... 3e-1

From the above example,

ife =2,
0 1 o« o
2 3 - e
4 5 2> - e,
6 7 - e
] 9 . -
10 11 - e
e =3,
0o 1 2 o o
3 4 5 ° - e
6 7 8 2> - e e
9 10 11 - - e
and 1f e =4, then
01 2 3 L
45 6 7 2> - e - e
8 9 10 11 ° - - e

Given an abacus configuration for z we can create a new abacus
configuration by moving all beads as high as possible on each runner.
The partition; denoted by p, corresponding to this new abacus
configuration is called the e-core of y,

_ 2-core 3-core 4-core
p=(3,2,1) p=(2) p=(5.2,1°)
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Rule (2.1): We can find an easy rule for finding any partition of any e-
core and as follows:

"first we count the spaces in all runners before the last bead, which
is equal to p;. Then we subtract the spaces from p; for the last bead with
the one before the last, the result would be denoted as p,. This procedure
will be repeated on p,, that is to subtract the spaces from p, for the bead
before the last with the one before it, and denoted by p3;, and so on ....".

Theorem (2.2) : [7]
Each partition has a uniquely e-core.

If p is the e-core of u then e-weight of u is: y _l“-IAl, for the above
€

example,

H= (5’32 ’2’1) = |/li = 14’ |p|e:2 = 6’ |p|e:3 =2 and |p|e:4 =10.

Then WE:Z:#:& weﬁ:#ﬂ and W, =4710_

For more application with e-weight, see [2], [5] and [6].
The definition of e-weight is equivalent exactly to e-quotient; see [7]:

"We write 4 for the number of unoccupied positions above the bth
lowest bead on runner a", then u(a)=(u?,42....) is a partition, and we refer
to the sequence (x(0)......., u(e —1)) as the e-quotient of .

Then we have ((3), (1)), ((0), (1), (1*)) and ((1), (0), (0), (0)) if we
use e =2, e =3 and e =4 respectively.

According to the beads, we can find many different cases having
the same weight for x but also having the same core. These cases can be
shown from the last example and achieve the aim:

(32,2°,1%) (3°2,1°) (5.4,1°) (4°2)
(3°,2°,1) (5,4,3,2) (5.4°,1) (5°,2)
(5,2%1) (4,3,2°,1) (4,3°,2,1%) (5°,1%
- - [ ] and - [ ] [ ]
(5%,4) (5,3%,2,1)
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Theorem (2.3) ""Nakayama conjecture': [9]

The two modules of Weyl w+ and w* belong to the same block if
and only if ¢ and 1 have the same weight and the same core, similarly,
for two modules of Specht s~ and s-.

Rule (2.4): The maximum weight (max,,) can be calculated and found for
any core which is equal to the sum of all products the number of beads by
the number of spaces of the same runner.

As a result, the max, for the case ,=(53°21) and e =3 is
(2x2)+(2x2)+(3%1)=11, where max,, =4 when e =4.

3. Trees and Radicals :

According to Fayers in [4], who was able to make an easy way to
insert one runner to the B-numbers by putting number of beads under
consideration that the last bead location in this runner does not exceed the
location of B; but left with a space, otherwise, if this bead exceeds [,
without making a space, this case will be calculated by using Fayers
research of this insertion as follows:

"Given a partition x and a non-negative K, we constrict a new
partition ,* as follows. Take b>, and constrict the abacus display for u

with b beads. Write b+K = ce + d with 0 < d < e-1, and add a runner to
the abacus display immediately to the left of runner d; now put ¢ beads on
this new runner in the top ¢ position. The partition whose abacus display
is obtained, is x*".

By the pervious example, when ,=(532,1), if we picked e =2 then
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Therefore, we'll have the following cases for ,:

0 1 0 1

[0= - e e =84%251%) ., 4= e - e =(143221Y)
0 1 0 1

,U+2 — _ e e = (7,33,22,12) . /U+3 = d - ° = (6,33322912) s
0o 1 0 1

ph= - e e =(63°201Y) , pf= e - e =(543°201)
0 1 0 1

/U%: - :(52934722912) D ,U+7: ¢ - * :(5234732922312)

In this study we are able to insert many runners to an -numbers

+K,+K 4K

and get u which will from a " Tree " or " group of trees ".

Rule (3.1):

1) For choosing +K, we follow the previous steps offered by Fayers in

[4].

2) For choosing +K', we'll depend on the value of
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b'=b+c¢

:b+b+K-d

under condition that d is fit to the value of b+K-d is divisible by e.
Obviously, e' = e+1, and the solution is continued using the same
technique of Fayers.

3) Repeat the same way in c for the rest of steps by :

"...m-times ..." ".,.(m-l)—tin?.,." ".,.(m-l}tinm'
= b + c
— N
"...m-times ..." "..(m-1)-times. ."
and e = e +1.
We denote these cases by trees.
For example, the following tree: #™"""**is the extension to " where
p=53%21):
e o e - o =(11,632%1%

The following program is for finding this tree :

function
matrix=check acception matrix(may be matrix,accepted x position,acc
epted y position)
matrix=1;
mm=max(find(may be matrix(end,:)==1));
if mm>accepted y position
matrix=0;
end

function insertionl=ins_column(a,v,k);
% /a/ 1s the matrix that we must insert the first elements of vector/v/ in it
before the
% position /k/ here the value of /k/may be {0,1,2,3,...,size(a,2)-1}
[m n]=size(a);
mm=length(v);
if mm~=m
" The dimension of the vector is not correct to put it in the matrix'
%#0k<NOPRT>
return;
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end
if (k>=n)||(k<0)||(round(k)~=k)
" There is an error in the value of /k/ it is very large or minus'
%#ok<NOPRT>
elseif k==0
b=[v aJ;
elseif k==
b=[a(:,1) v a(:,2:end)];
else
b=[a(:,1:k) v a(:,k+1:end)];
end
insertion1=b;

clear
clc
%First Point Mu is the input series

%Type the value of /Mu/ here

Mu=[53321];

mu=Mu;

if any(mu~=fix(mu)) | any(mu<=0)
disp('Please check Mu ( the original series)')
disp('Mu must be a composition of positive integers')
break

end

%Second Point check for Partition
sort mu=fliplr(sort(mu));
if any(mu~=sort mu)
disp('Please check Mu ( the original series)')

disp('Mu must be of descending order")

break
end

%Third Point /b/

%Type the value of /b/ here
b=7;
if b<length(mu)
disp('Please check /b/ ")
disp('/b/ must be >= the number elements of /Mu /")

break
end
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%Forth Point Beta Numbers /b_num/

residuel=zeros(1,b-length(mu));
b_num=[mu residuel |+b-[1:b];
%+++++++++++++++++++++++++Begin to

Delete++++++++++++++++++++++++++++

%for example please, to delete the following b num
%b_num=[0 2 5];

%b num=[11 & 7 5 3 1]

Yo+++++++++++++++++++++++++End to

Delete++++++++++++++++++++++H++H++++

%Fifth Point /e/

%Type the value of /e/ here it must be >1
e=2;
if (e<=1)|(e~=fix(e))
disp('/e/ must be a positive integer number >=2 ")

break
end

%Step 5 to make the table called here /E_Pure /
%depending on the /b_num/ and the /e/.

%to put the numbers in the series /b _num into the matrix /E_Pure/
% [012...(e1);
% e etlet2... 2e-1;

% o ]
bmax=max(b_num);

%D is the length of the new matrix
d=fix((bmax)/e)+1;
% /Big_Value/ used to demonstrate the free positions from /m1/

Big Value=1000000;
Cl=ones(d,e)*Big_Value;

% %function
% %b_ num is the series (1*n)

% %Cl 1s the corresponding Matrix for it
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E Pure=C1(:);
b num=b num+l;
for i=1:length(E_Pure)
if any(b_num==1)
ml1=find(b_num==i);
E Pure(i)=b num(ml1(1));
end

end
E Pure=(reshape(E Pure,[size(C1")])-1),

%Step 6 to evaluate /E-Core /

%Now we must make the balls go up to fill each empty space
m2=E Pure;
for 1=1:size(m2,2)
ci=m2(:,1);
cO=find(ci~=(Big_Value-1));
cl=length(c0);

if c1==0
continue
else

for j=1:length(c0)
m2(j,i)=ci(c0());

end

m2(cl+1:end,1)=Big_Value-1;

end;

end
E Core=m?2

%disp('E_Core is : ")
%disp(E_Core)

%Step 7 Expansion Process

%disp(' ).

%disp(’ ).

%disp(' Here we will make EXPANSION to our Matrix /E_Pure/ ")

%function [Expansions]=expansion(E_Pure,Big Value,e)

%First we must check for the right positions technique
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%that is /accepted x position/ and /accepted y position/
papq=1;
ddd=size(E_Pure);
d1=ddd(1);d2=ddd(2);
great x_value=1;
great y value=1;
for i=1:d1
for j=1:d2
if E_Pure(i,j)~=(Big_Value-1)
great x_value=i;
great y value=j;
end
end

end
if great y value==d2

accepted x_ position=great x value+1;

accepted y position=1;
else

accepted x_position=great x_value;

accepted y position=great y value+1;
end
our_balls=length(find(E_Pure~=(Big_Value-1)));
b=our balls;

%Now we must evaluate the equation : b+k=c*e+d
%here we call the value of all possible solutions by /may be roots/
may be roots =[ [;
for k=0:accepted x_position*e+e-1-b
for d=0:e-1
for c=0:accepted x position
if (btk)==(c*e+d)
may be roots=[may be roots;[bk ced]];
end
end
end
end

disp(‘+++++H+++++H+HHHH )

disp(" We can insert /c/ points at the left of the column /d /")
disp("  All Solutions for our E Pure are : ')

disp( b+k=c¢c*e+d



Radical Young's Diagrams Core.

disp('-== -== == == -—— )
disp(may_be roots)
disp(‘+++++++++tt+ttttt bbbt t)

%insert_column as the rows of /may be roots/ for the matrix /E_Pure/

%function z=Check Insertion(E Pure,Big Value,may be roots)
ddd=size(E_Pure);
d1=ddd(1);d2=ddd(2 );
great x_value=1;
great y value=1;
for i=1:d1
for j=1:d2
if E_Pure(i,j)~=(Big_Value-1)
great x value=i;
great y value=j;
end
end
end
if great y value==d2
accepted x_position=great x value+1;
accepted y position=1;
else
accepted x_position=great x_value;
accepted y position=great y value+1;
end
Origion_E Pure=E Pure;
for i=1:d1
for j=1:d2
if E Pure(i,))~=(Big_Value-1)
% here /1/ means there is an origion ball in this position
Origion_E Pure(i,j)=1;
else
% here /0/ means that there is nothing ball in this position
Origion_E Pure(i,j)=0;
end
end
end
if great y value==d2
w=zeros(size(Origion_E Pure,2));
w=w(l,:);
Origion_E Pure=[Origion E Pure;w];
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end
Origion E Pure %#0ok<NOPTS>
solutions(pqpq).E_Pure=Origion_E Pure;

solutions(pgpq).equation=zeros(size(may be roots(1, :);

%Now we will simulate the case of all solutions
Oobat first we must evaluate the vector/c4/ that will insert it in the

%matrix Origion E_ Pure to make all solutions may be possible.

v4=zeros(size(Origion_E Pure,1));
v4=v4(:,1;(
tt=size(may be roots,1);
for pkpk=1:tt
c4=v4;
for popo=1:may be roots(pkpk,3)
c4(popo)=1;
end
may_be matrix=ins_column(Origion E Pure,c4,may be roots(pkpk,5));
s(pkpk).m=may be matrix;
new_matrix=check acception_matrix(may be matrix,accepted x_positi
on,accepted y position);
if new_matrix==
continue
else
papq=pqpq+1;
solutions(pgpq).E_Pure=may be matrix;
solutions(pgpq).equation=may_be_roots(pkpk,:)
end
end
clc
solutions(1:end).E_Pure
This research attempt to find "radical (s)" from a given tree. That is
to go back to this tree's base.

Rule (3.2):
To find the radical (s), we'll follow:

1) Count the beads from the given tree which we attempt to find its
radicals, and let it denote by b.
2) Sorting the runners in the form below:
runner 1 by -1
runner 2 by 0
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runner 3 by 1

runner ¢ by e-2

3) Letthe number of runner is €' = e-1.

4)  Obviously, the last runner and the runners which hold ;, they will not be
discarded.

5) We note the number of runners which are full up with beads without any
spaces by ty, and b' = b-t,.

6) Applying Fayers's rule: b'+u = tee'+d', 0 < d' < e'-1, if a value found that
carry out the above equation by deleting from the beads and then delete
the runner, our reduction is succeed. Otherwise, this is "sterile" or
"useless" and will be neglected. Then, we seek another runner having the
same beads feature t; and apply the same previous step: b+K =t,e'+d'.

7) repeat step (6) and neglect all sterile cases, and continue with the useful
one. Then apply all steps from (1) to (6) on it.

8) When there is no case can keep on with it, this means all cases are
steriles. This case considers the radical for the given tree.

For example :

=(4,3,2,1%

L DN

¥ N 4 R

S SE3D) e e e - =421 e e e - =BT s e e - =(3%200

4 ~ v N

: =3,2,17) .« : =4,1%) « : =(3,2,1%) : : : —(2,12)

N
/‘

: =G3,1) . =(2°,1)

Then the radicals of this example are (3,1) and (2%,1).

: (331
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