
EDUSJ, Vol, 32, No: 2, 2023 (30-44)

30

Journal of Education and Science (ISSN 1812-125X)

www.edusj.mosuljournals.com

Software Testing Techniques and Tools: A Review

S. K. Izzat*1 N. N. Saleem2

Department of Software, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq

Article information Abstract

Article history:

Received: December 31, 2022

Accepted: March 06, 2023

Available online: June 01, 2023

 The software development process is closely related to the creation and evaluation

processes. The problem with this software development is that it often lacks testing which

leads to software failures. In order to maintain a high-quality product in excellent

performance condition, testing becomes critical. The software can be tested by using White

Box, Black-Box, or gray testing techniques. In this investigation, the types of tests were

reviewed. Performing Testing with White Box Testing uses a number of testing

methodologies based on path testing, including the production of flowcharts, cyclomatic

complexity assessment, and independent path testing. As a result, it is possible to implement

a foundation path testing technique and white box approach to testing. This review included

several axes, namely the definition of white box testing tools, then the testing techniques in

general, the benefits and gains of each of these technologies, the levels of testing, and finally

the steps of conducting the test. This review then came to several conclusions that are

mentioned at the end of this paper.

Keywords:

White Box Testing

Path Testing

Control Flow Graph.

Correspondence:

S. K. Izzat

sakina.21csp13@student.uomosul.e

du.iq

DOI:10.33899/edusj.2023.137480.1305, ©Authors, 2023, College of Education for Pure Sciences, University of Mosul.

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The two areas of software engineering are: A software as a tool and product. Designing, analyzing systems, coding, testing,

and performance are some of the stages that must occur within the Systems Development Life Cycle (SDLC). With a strong

planning phase, aspects of systems development, coding, and testing that ensure the analysis and coding phases are consistent

with one another to produce correctly built and used software, the total SDLC process has significant and interconnected

processes from one to another [1].

Some currently available methods can be used in the testing process when using the SDLC, and they can be used to test

both formation and object-oriented programing (OOP) software. In application testing, some potential methodologies that

might be employed include White, Black, and Grey-Box testing. System analysis examination known as "White Box testing"

is used to spot discrepancies between system requirements and built or existing systems [2].

The examining process should be based on user needs in order to run properly and efficiently, among other things. There is

a certain amount of examining time and resources; Additionally, resources for examining must be spent wisely, and should

begin with basic terms and move to much more complex ones; A different panel of investigators or an outside panel must

administer the examination. Additionally, the needs of the client should inform all examining; The procedure for examining

software must be implemented as soon as possible in the software construction procedure as is practical, with a focus on object

identification and regular updates to the original examining strategy [3].

The quality of the test itself should not be undervalued; there are a number of requirements for putting effective examining

into operation, such as covering all conceivable uses of the software in the scope of examining, developing the scope of the

pathways in accordance with the program framework, and not being unnecessarily simple or complex [4].

Control-flow, branch, base-path, data-flow, and-loop are all significant steps or methods in the testing process when

employing the White Box approach. Meanwhile, Pressman asserts that the White_Box methodology includes a number of

examining approaches, including base-path- and control-structure-, which also include examining methodologies like

condition, data-flow, and-loop-testing [5].

http://www.edusj.mosuljournals.com/
mailto:sakina.21csp13@student.uomosul.edu.iq
mailto:sakina.21csp13@student.uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0224-3500

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

31

Numerous publications on software testing methodologies have been provided in the literature over the years. The important

works among them are reviewed in this area, with a concentration on those that chronologically explain all three of the main

software testing approaches or just one of them in great depth. Their common weaknesses are recognized. and Table (1) below

compares the evaluated literature.

Table 1. Related works Summary

Reference Dynamic

Static

Testing

Level

White

box

Black

box

Grey

box

Experienced-

base

Contrastings

[6] No No Yes Yes No No No

[7] No No Yes Yes Yes No Yes

[4] No Yes Yes Yes No No No

[8] No No Yes Yes No No Yes

[9] No No Yes Yes Yes No No

[10] No Yes Yes Yes Yes No No

[1] No No Yes No No No No

[11] Yes Yes Yes Yes Yes No Yes

The fact that no papers addressed the experienced-based testing approach might be considered as a fault in the literature

review of all the publications that were looked into. The majority of the literature that is currently available focuses primarily

on white-box and black-box dynamic techniques; none of them examined all dynamic testing techniques or provided a clear

classification order of the various testing types under each technique with a thorough explanation of some of the testing types

that are most frequently used in each technique. This research aims to meet that requirement.

2. White Box Testing Tools

Given the aspects to consider before choosing a tool, choosing the perfect tool for software testing can sometimes be difficult.

One of the key elements in successful test automation is the choice of test tool. This calls for research within the scope of

examining and examining methodology and then selecting the appropriate examining instrument that conflicts with the

requirements of an automated test suite for a particular product and version [12].

A testing tool may be used to test desktop applications, mobile applications, web applications, combinations of two applications,

regression tests, integration tests, and other testing features. The tools presented below were chosen using inclusion and

exclusion criteria that took into account both the frequently used by business experts and the most often discussed tools from

the literature. This article includes a brief overview of these instruments as well as a tabular contrast of their pros and cons

based on standards from the literature, such as cost, reliability and reusability.

A. Selenium.

Selenium is a free open-source-testing tool used for web application examination. It works equally well in all popular browsers

and operating systems, including Windows, Mac, and Linux. Selenium encourages in a variety of programming languages,

including Java, PHP, C#, Python, Groovy, Ruby, and Perl. Selenium IDE, Selenium RC, Web Driver, and Selenium Grid are

the four essential parts of the Selenium suite. It is made to encourage and promote automated of the functional parts of online

applications. It can also be used for the web application's black box.

Selenium is portable with all platforms and doesn’t require learning new languages. it’s easy to integrate with various platforms.

Parallel testing with Selenium and through the cloud allow testers to receive feedback much faster and work on the changes

instead of waiting overnight for a test pass. Selenium also Supports mobile testing or web mobile applications [13][14].

B. Test Complete.

Smart Bear Software developed the automated functional testing solution called Test Complete. It supports a variety of

examining techniques, including GUI examining, functional examining, and unit testing. Making catchphrases that are used in

testing is visual, easy, and doesn't require programming knowledge. Although scripting necessitates the understanding of the

scripting instructions, it allows the tester to create more powerful and flexible tests [15]. In contrast to Selenium, Test Complete

is not open source; after a free 30-day trial, it requires a license to be used.

C. Ranorex.

Renorax is an inspecting device for programmed testing that is straightforward, exhaustive, and efficient. It inspects

applications according to the viewpoint of a client, making it a better option than existing instruments[20, 22]: reusable test

programs, mix with various instruments, GUI acknowledgment, record and playback, bug distinguishing proof, and so forth. It

https://www.altexsoft.com/blog/mobile/key-approaches-to-mobile-development-explained/

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

32

gives an additional ability to perform relapse and guarantees that test exercises might be reused. It likewise does stage similarity

testing to guarantee excellent programming. Any testing group or association can use Ranorex in light of the fact that it is easy

to utilize, reasonable, and accessible.

Ranorex is a white box testing automation tool, such that is used for everyone to record automation tests step-by-step for

desktop, web and mobile applications. The main component of this tool includes the Ranorex Recorder, object repository,

Ranorex Spy, code editor, and debugger in a single environment. Its framework is built in a manner that supports standard

programming languages that help in editing recordings or creating custom tests. that help you understand the process of creating,

recording, and analyzing your automated test series with ease. Ranorex also provides a detailed test summary report at the end

of each and every test runs on its platform. It even provides screenshots for validation. Their reports are comprehensive, and

they collaborate previous test runs with current ones. The reports can produce in PDF format[14].

D.Appium.

With its promise of efficient, bug-free, and high-quality apps, Appium delivers a completely new revolution in automation

testing. This approach helps projects save time, money, and labor. Developers can create tests for many platforms, including

Ios and Android, using the open source, cross-platform Appium tool. The three primary parts of it are the Appium server,

Inspector, and Doctor. Since Appium supports a wide range of languages, including Java, Python, Ruby, JavaScript, and others,

developers of all skill levels may utilize the tool to its full potential. Appium is mostly used to assess how well users interact

with the content of mobile web applications. Test results are used to assess the accuracy, user engagement, usability, and feature

availability of the mobile application [10].

E.Quick Test Professional.

Hewlett Packard created QTP (Quick Test Professional), a Windows-based programming tool for testing desktop and web

applications. It supports automation for regression and functional testing (HP). To execute scripts and fill out test forms, QTP

uses Visual Basic Script. It can also operate with a variety of objects and manage application testing [14]. Regression and

functional testing can be automated with QTP, which takes into account every key software implementation and environment.

Although Quick Test Professional is typically used for UI-based test case automation, other types of test cases, like database

testing and file system operations, can also be automated [13][12].

F.Open Script.

Open Script may be used to write test scripts for a number of reasons. Numerous browsers, including Google Chrome, Mozilla

Firefox, and Internet Explorer, may have their functionality recorded by the program. There are no capacity limitations because

the open script was built on top of the Eclipse platform and uses Java as its scripting language. High states can also be achieved

via it. It includes extremely user-friendly UI features that make it simple for those who aren't software engineers to use.

Applications created with VB, Dot Net, VC++, etc. cannot be automated using Open script. [16].

G.Janova.

An automated software testing system that runs safely on the cloud is called Janova. This tool does not involve the writing of

any scripts; instead, it makes use of straightforward English-based tools to streamline the process of implementing software.

Because of this, both programmers and non-programmers can use it with ease. No such program is available for download;

hence no infrastructure project is necessary. Its pace of execution is also faster than the conventional web testing tools because

it uses the cloud and has a quick and easy setup that requires no installation. Although it is not open source, the fee for the

license is reasonable [17].

H.Rational Functional Tester.

IBM developed (RFT), an automated tool based on object-oriented programming that does regression, functional, GUI, and

data-driven testing. It supports Web-based Java and.NET applications created using Microsoft Visual Studio. RFT detects areas

of application that were and were not performed during the examination, as well as ensuring that test plans and cases are

maintained and carried out correctly by the Quality Assurance departments of businesses [17].

The type of application that needs to be tested, the project's complexity, the cost of the tool to be used, and the organization's

budget for the stage all go into the decision of which automated testing tools to utilize.

Table 2. provides a full description of each tool based on a number of factors. Practitioners in the field can use this description

to choose the testing instrument with confidence. The tools discussed and the requirements each tool satisfies are listed in the

table. Whether it's a huge or little project, this research will assist industry professionals in choosing the most necessary

equipment for software testing. Table 3. provides a thorough breakdown of these tools along with the testing types that each

one offers.

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

33

Table 2. Software testing Tools factors descriptor

Table 3. Tools Testing Type

3. Techniques of Software Testing

To allow for sufficient testing, there are many different technologies, each with specific capabilities. Functional specifications

that promote the production of high-quality, error-free software are what determine whether two or more of these technologies

should be combined. Fundamentally, there are-three categories of dynamic testing-techniques: Black-Box, White Box, and

Gray-Box [18] see Figure 1.

Tool

O
p

en
-S

o
u

rc
e

L
ic

en
se

A
p

p
ro

v
in

g
-P

la
tf

o
rm

(M
o
b

il
e)

A
p

p
ro

v
in

g
-P

la
tf

o
rm

(w
eb

)

A
p

p
ro

v
in

g
-P

la
tf

o
rm

(D
es

k
to

p
)

L
ea

rn
in

g
 E

a
se

/
E

a
se

o
f

u
se

C
o
d

in
g
/

P
ro

g
ra

m
in

g
-

sk
il

ls

C
o
d

e
R

eu
sa

b
il

it
y

T
es

t
R

es
u

lt
 r

ep
o
rt

R
ec

o
rd

 &
 P

la
y
b

o
o
k

Selenium Yes Yes Yes Yes Yes
Plug

in
Yes

Test_Complete Yes Yes Yes Yes Yes No Yes Yes

Ranorex Yes Yes Yes Yes Yes Yes

Appium Yes Yes Yes Yes

QTP Yes Yes Yes No Yes Yes

OpenScript Yes Yes Yes No Yes Yes Yes

Janova Yes
Cloud

base
 No Yes Yes

RFT Yes Yes Yes

Tool Testing Type

Selenium Functional testing

TestComplete
Functional testing, Graphical User Interface testing, Unit

testing

Ranorex Graphical User Interface testing, Compatibility testing

Appium Graphical User Interface testing, Functional testing

Quick Test Professional Functional testing, Regression testing

OpenScript Functional testing, Load testing, Database testing

Janova Functional testing

Rational Functional

Tester

Functional testing, Regression testing, Graphical User Interface

testing

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

34

Figure 1. Dynamic Testing Techniques

The complete testing process may be divided into two categories: static and dynamic testing. Both categories are

complementary to one another since they both have the propensity to identify errors and flaws quickly and effectively. Static

is referred to as "verification activities," whereas dynamic is referred to as "testing." A contrast of the testing methods is shown

in Table 4. [52]

Table 4. Static VS Dynamic Testing

• Testing levels.

Some researchers [19][20] have suggested the following levels of testing.

1. Unit testing: It falls under the category of White box, often known as component/module. The smallest testable

component of a larger program confirms the functionality of a specific piece of code and satisfies the needs of the

business.

2. Integration testing: It follows a top-to-bottom methodology, with each piece of the code being evaluated separately.

Analysis of characteristics like functional, performance, and reliability requirements that are imposed on significant

design elements is the primary duty.

Criteria Static Testing Dynamic Testing

Execution No execution required Required code execution

Test case No test case is used Performed using test cases

Nature Often implicit, like proofreading Very explicit

Test Stub/driver None is required May required either or both

Verification/validatio

n

Involves verification process Involves validation process

Active/passive A form of Passive testing Active testing

Manual/automated Usually performed manually Performed mostly using

automation tools

Main goal Seeks to find defects in software Aimed at finding software

failures

Cost Low cost of finding and fixing defects High cost of finding and fixing

failures

Execution time Can be performed before the compilation Begin before completion of the

software, usually on the smallest

executable code section of a

software

Target component Can be performed on software source code,

design documents and models, functional

and requirement pacifications, and any

other documents

Only performable on software

source code.

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

35

3. Functional testing: It is also known as "Black-Box." is done by providing trustworthy input, and findings are then

evaluated. Functioning ensures that the system is fully functional by comparing expected output with actual output.

4. Formation testing (White_Box): It focuses mostly on the-internal architecture of the program, such as path coverage,

statement coverage, control structure and program complexity, etc., enhancing both its appearance and usefulness.

5. System-testing: It is regarded as a more specialized sort of testing that looks for flaws in the software components that

are linked together. Additionally, it is a black box test that assesses the system's compliance with a predetermined

criterion.

6. Acceptance Testing: It is a form of Black-Box that the user performs to verify that a product, service, or system is

ready and complies with business requirements as part of quality assessment processes. [1]. Because the user is unaware

of the internal workings of the system, it is done after projects are finished by the developers before they pass them off

to clients or users. The purpose is to provide the highest level of assurance for the operation of an error-free system with

maximum reliability and efficiency [22].

The testing level evaluation is summarized in Table 5.

Table 5. Techniques for Testing Evaluation

Contrasting between the main testing levels shown in Table 6. [53]

Table 6. The Software Testing Levels compared

• Procedure for manual testing.

Testing Level Techniques Tester Scope
Time

Consumption
Specification

Unit White_box Developer Classes High Low level

Integration

White_box,

Black box,

Grey box

Developer
Multiple

classes

High,

Average, Low

Low level and

High level

Functional Black box Independent Entire product Average High level

Structural White box Developer Entire product High Low level

System Black box Independent Entire product Average
Requirement

Analysis

Acceptance Black box User
Entire

product
Average

Business

Requirement

Criteria Unit Integration System Acceptance

Purpose The correct working of

the unit/module

The correct working of

integrated units

The whole system

works well when

integrated

Customer’s expectations

are met

Focus Smallest testable part Interface and

interaction of modules

Interaction and

working of all

modules as one

Software working in

accordance with given

specifications

Testing time Once a new code is

written

Once new components

are added

Once the software

is complete

Once the software is

operationally ready

Performed by Developer Development team Testing team The development team and

End-users

Testing

technique

Usually Whitebox, and

Greybox

Whitebox, and

Blackbox

Usually Blackbox,

and Greybox

Black-box testing

Automation Automatable using

JUnit, PHPUnit, TestNG

etc.

Automatable using

Soap UI, Rest Client

etc.

Automatable

using Webdriver

Automatable using

Cucumber

Scaffolding Complex (require

drivers and/or stubs)

Moderate (may require

drivers and/or stubs)

No

drivers/stubs

required

No drivers/stubs are

required

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

36

The process flow diagram for manual software/application checking is shown in Figure (2) The foundation of the manual is

the software testing life cycle (STLC). STLC is followed by all software testing processes. To make the process easier to

understand, it has been further broken down into 5 parts [21].

A. Analysis of the Bug or Flaw.

When a software tester receives a report of a bug or flaw, they analyze it and attempt to reproduce it in the software or

application. A manual software tester estimates the number of hours needed to test a particular bug based on the analysis. A

quality engineer reproduces the bug in many settings where it can be recreated during analysis, noting each one [22].

B. Writing cases for the defect in the unit test.

To help a developer understand where a bug might be replicated and provide a suitable repair, quality engineers prepare unit

test cases for all the circumstances in which they believe a bug could be reproduced. A developer evaluates the software's fix

according to the unit test cases provided by a quality engineer. The test cases that are written particularly for that flaw or

problem are known as unit test cases [23].

C. Developer consultation and code deployment.

It is usually vital for quality engineers and developers to communicate often. Each other's task planning is aided by this. Before

dumping the code into the software or application in this step, a quality engineer aids the developer in doing unit testing. The

code is deployed (dumped) inside the software/application/build after unit testing by the developer and is then available for

checking by the quality engineer [24].

D. White_Box testing to test for the defect.

This stage entails evaluating every possible situation that the bug could be replicated and determining whether the developer's

fix is effective across the board. Around the impact area, common sense is put to the test. To ensure that the program or

application is sane, the basic functioning of the page or area where the repair was applied must be tested. Test the forms,

modules, and other areas the developer identified as having a regression influence on that bug [25].

E. Reopen or close the defect

After checking, if a tester discovers no problems or discovers nothing else is broken as a result of the remedy applied, they

close the bug and provide a report stating that everything is operational and the problem has been fixed. The problem is

reopened by the tester with a report identifying what is broken and is given back to the developer to correct if, on the other

hand, the remedy does not function in some circumstances or something is broken as a result of the fix. If a tester is testing a

bug and discovers another bug that is unrelated to that bug, they report it as a new bug and the same processes apply to that

newly reported bug [26].

4. Automated testing.

Programming testing is the most widely recognized approach to making a program in any programming or coordinating

language that copies the standard examination stages with the help of an external motorization help gadget. Apparatus reserve

ought to be made to test the source code that has proactively been used. It endeavors to help the testing process computerization.

The creation of the program and the availability of test scripts are both seen as headway tasks; one interfaces with the real

application, and the second to the items that will be used to test the application. These tests can be modernized [20].

• Challenging aspects of the system include running in the background, file logging, and database entry.

• Features that are frequently used but have a significant chance of error include payment systems, registrations, and

others. Automation ensures quick faults because critical functioning tests typically take a few minutes.

• load tests, which check a system's performance under a heavy load of requests.

• Data requests, filling out multi-field forms, and verifying their preservation are a few instances of template actions.

• According to validation messages, incorrect data should be placed into the forms, and the validation should be

evaluated.

• long-lasting situations from beginning to end.

• Confirmation of data includes accurate math calculations used in analytical or accounting procedures.

• examining the data search's accuracy.

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

37

Figure 2. Manually executing tests

• Automation Testing Tools.

Software checking tools don't have any set standards. We must carefully select the testing automation tools that we use.

Functional, loading, and administrative testing tools for both open source and commercial software are subcategories of

software testing tools. Automated software testing solutions can be contrasted based on features like supported programming

languages, operating systems, license types, supported browsers, prices, and supported programming languages, among others.

By effectively using software testing tools, security, performance, correctness, and reliability testing may be carried out. The

software and technology stack that will be employed, the specific testing requirements, the skill sets already present in the

company, and the license cost of the tool all play a role in the tool selection process [27].

Different types of tools are employed for particular tasks. These are tailored to carry out the task assigned to them. A few

necessary toolkits for every automated testing process include unit testing tools, functional testing tools, code coverage tools,

test management tools, and performance testing tools. Unit testing tools like PHP Unit, N Unit, JMockit, and JUnit are

examples. Selenium, Test Studio, HP Quick Test Professional, Tricentis Tosca Test suite, Test Complete, Waiter, and other

functional testing tools are examples. Among the Code Coverage Tools are Clover, PITest, Code Cover, Atlassian, and

Cobertura. Test Link, Test Environment Toolkit, Test Manager, and TET ware are a few examples of test management tools.

The performance standard of the automated process is determined through performance testing tools such as HP Load Runner,

JMeter, Silk Performer, and Rational Performance Tester [28].

A portion of the techniques utilized in robotized programming testing incorporates the ones recorded beneath: devices for

dissecting experiments, inclusion analyzers to check the inclusion of testing, experiment generators that utilization item and

information models with prerequisites, sensible and intricacy analyzers, code control framework instruments for social event

data about the program while execution, imperfection following devices for following recognized mistakes and their status in

being fixed, and apparatuses.

• Contrasting between Manual and Automated testing.

Test code inclusion and shortcoming identification rates in manual testing are not affected by code perceivabiy. Then again,

with mechanized testing utilizing devices, restricted code deceivability regularly brings about low code inclusion and a low

shortcoming recognition rate. Robotized testing is more costly than manual testing, especially right off the bat in the

mechanization cycle. Hardware/programming testing instruments are both very costly. The profit from speculation will

ultimately be productive. Robotized testing has no expense as opposed to manual testing, which demonstrates an expense each

time a test is run in view of the length of the testing system [29].

The sum of the expenditures for both manual and automation testing is the overall cost of testing:

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

38

𝐶𝑇 = 𝐶𝑀 + 𝐶𝐴 + 𝑎, where ‘a’ denotes other costs.

Testing software can't be fully automated. By cutting down on the time needed to create and run test cases, automation of the

testing process can save testing costs. Table (7) summarized the contrast between Manual and Automated testing [30].

Table 7. Contrasting between Manual and Automated testing [30]

Manual Testing Automated Testing

A piece of software is put through use case execution

by a human tester.
use a variety of tools to carry out use cases

Allows for exploratory and random testing but is

time-consuming

Allows for exploratory and random testing but is time-

consuming

Relatively smaller investment Bigger invest men

Prone to errors because of human intervention Highly robust and reliable

Easily adaptable to changes When UI changes are made, scripts need to be updated.

the necessity of human resources
Requirement for testing tools and automation

engineers

Cost-effective for a smaller volume of testing Cost-effective for large volume testing

Does not offer feasibility for performance testing
Allows load testing, stress testing and other

performance tests

Suitable for AdHoc testing, exploratory testing, and

situations where past tests are frequently changed

Regression testing, load testing, and highly repeatable

functional test scenarios are all appropriate.

• Swarm Intelligence (SI) and Machine Learning (ML) for Automated Testing.

A variety of SI-based algorithms are introduced in this topic, with an emphasis on their notable variants, benefits and

drawbacks, and applications. Some of the algorithms in this category (CSA) are Artificial Bee Colony (ABC), Genetic

Algorithms (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Differential Evolution (DE),

Glowworm Swarm Optimization (GSO), and Cuckoo Search Algorithm [29].

A. Genetic Algorithm.

An inquiry streamlining procedure in view of the cycles of the regular choice interaction is known as the Hereditary Calculation

(GA), which was first evolved by John Holland in 1975[31]. This calculation's key thought is to copy the possibility of "natural

selection"; it mimics the cycles found in normal frameworks, where the solid will generally advance and get by while the frail

will more often than not die. GA is a populace based procedure in which changes are assembled by how well their answers fit

the issue. In order to focus their study on more exciting sections of the research universe, GA develops a starting set of potential

solutions and recombines them.

B. Ant Colony Optimization.

A metaheuristic method called Ant Colony Optimization (ACO) was developed as a result of Marco Dorigo's 1992 Ph.D. thesis

proposal of the Ant System (AS) [32][33]. In ACO, the amount of pheromones left behind by the ants as they go across the

search area reveals how intense the trail is. Based on the course indicated by the intense trail, the ants decide where to go. One

may think of the trail's intensity as the system's overall memory. Daemon actions are used to acquire comprehensive data that

is impossible for a single ant to collect and utilize that data to decide whether additional pheromones need to be added to aid

with convergence. The method is made resilient and flexible in a dynamic context using the decentralized control. Due to the

flexibility that such a system offers in the event that an ant is lost or fails, having a decentralized system in ACO is crucial.

These fundamental elements work in concert to produce shortest pathways through cooperative interaction [34].

C. Particle Swarm Optimization.

Kennedy and Eberhard first established the optimization method known as Particle Swarm Optimization (PSO) in 1995 [35].

It uses a straightforward mechanism to direct the particles as they look for worldwide best solutions, simulating swarm behavior

in fish schooling and birds flocking. The three straightforward behaviors of separation, alignment, and cohesion were used by

Del Valle and his co-authors [36][37] to characterize PSO. Alignment is the behavior of moving in the general direction of

local flock mates, whereas separation is the behavior of avoiding the congested local flock mates.

The activity of moving toward the typical posture of one's immediate flock mates is known as cohesion. The population is

initialized initially by the PSO method. The second stage involves determining each particle's fitness values, updating

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

39

individual and global bests, and then changing the particles' velocity and position. Up until the terminating condition is met,

steps two through four are repeated [37][38].

D. Differential Evolution.

This algorithm depends on the crossover operation, therefore it makes use of the mutation as a search mechanism and the

selection operation to focus the search on promising areas in the search space. DE employs three characteristics—Target

Vector, Mutant Vector, and Trail Vector—to iteratively create a new population. The vector containing the answer to the search

problem is known as the target vector, while its mutation is known as the mutant vector and its offspring, the trail vector, is the

result of the crossover operation between the target vector and the mutants vector.

E. Artificial Bee Colony.

This technique characterizes and separates fake specialists into three kinds: utilized honey bees, onlooker honey bees, and scout

honey bees. To complete the calculation's methodology, different assignments are given to every one of these honey bees. The

employed honey bees focus on a food source and recollect where that food supply is found. Since every working drone is

connected to one and only one food source, the extent of working honey bees approaches the number of food sources. The

working drone in the hive educates the observer honey bee regarding the area of the food supply. The nectar is then gotten

from one of the food sources. The utilized honey bee is responsible for finding new nectar and food sources [39] [40].

F. Glowworm Swarm Optimization.

Glowing worm mobilization optimization (GSO), a novel method based on the International System of Functionalities that was

introduced by Krishnanad and Goose in 2005 [41], aims to enhance multimodal functions. GSO uses what are known as

glowworms as physical beings (agents).

By taking into account the following changes, GSO can be made better overall. 1) Including all agents in the neighborhood

range expansion. All agents can travel in the direction of the agent with the best solution once the best solution has been found.

As more agents are in the optimal solution range as a result of this step, exploitation efficiency may increase. 2) As few

neighbors as feasible must be taken into account when calculating the neighborhood range in order to increase the GSO's

convergence rate. Since there are fewer calculations needed to estimate the likelihood and direction of the GSO's movement,

this action may shorten the GSO's processing time [42].

G. Cuckoo Search Algorithm.

Yang and Deb introduced the Cuckoo Search Algorithm (CSA) as one of the newest metaheuristic techniques in 2009 [43].

The behavior of cuckoo species, such as brood parasites, and Lévy flying characteristics, like those of some birds and fruit

flies, served as the basis for this algorithm. Three fundamental guidelines or procedures are used in the implementation of CSA.

First off, each cuckoo is only permitted to lay one egg per iteration, and the nest that the egg will be laid in is picked at random

by the cuckoo. Second, the best nests and eggs are passed on to the following generation. Third, the number of available host

nests is fixed, and a host bird uses probability pa [0, 1] to determine whether a cuckoo egg has been placed. In other words,

the host has a choice as to whether to discard the egg or give up on the nest and start over. The final presumption can be roughly

expressed as a percentage, pa, of the total n nests that are replaced by new nests using a new random solution. The algorithm

can also be developed to a more complex level where each nest contains a number of eggs [44]. The specifics of the actions

conducted in CSA are detailed based on these three main principles.

• Use of Machine Learning.

As per surveys, the utilization of AI will essentially affect the field of computerization testing. Our frameworks will want to

evaluate current realities and information provided to them, make and run test situations on the said information, and afterward

gain from the aftereffects of the experiments assuming we use AI in testing to empower them to do as such. The whole

interaction would eventually further develop the testing cycle. The framework can make and convey more exact discoveries

quicker than expected with the utilization of AI. In this particular sort of regulated AI, the framework is taken care of a bunch

of information as preparing models. This information is incorporated by the framework, which utilizes it to figure or classes

new information.

Six standard credits — physical work, test execution, mistake error, test scope, time included, and required programming

abilities — are utilized to look at the customary and ML test computerization (Table 8).

Table 8. A contrast between traditional and ML-based automation [34]

Criterion Conventional Test Automation ML-Based Test Automation

Manual labor increased use of manual labor Less manual labor is required

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

40

Test performances Needs to be changed by changing the effort demonstrates the ability to heal itself

Error and inaccuracy Because so much human labor is required,

traditional test automation is prone to many

mistakes and erroneous results.

As ML-based automation replaces

the majority of human effort, it is less

likely to make mistakes or have

inaccurate results.

Test scope The software's requirements or features

need to be actively tested.

Unusual features of the software

being tested automatically might be

examined.

Time invested In traditional automation, even minor UI

changes necessitate script adjustments.

There is no need to spend a lot of

time scripting because ML adapts

scripts to the variety of applications.

required programming abilities

Prerequisite programming

skills

Traditional test automation requires the

necessary technological expertise.

Most ML-based tools can be utilized

with only little technical expertise.

• Impact of Artificial Intelligence (AI) on Software Testing

The software checking life cycle is a good way to identify the areas where AI approaches have shown to be helpful in software

testing research and practice (STLC). The STLC phases from planning to reporting have all been significantly impacted by AI

approaches. It is necessary to identify testing tasks for which extensive and important research has been conducted in order to

examine the influence of AI on software testing (10) [54]. The benefits of AI techniques use in the field of software test

automation are reported and grouped into larger categories and are shown in Table (9) together with their short description

[55]

Table 9. Benefits of using AI techniques with software testing [23]

Benefit Description

Manual effort reduction

While some of the testing procedures are fully automated, others are just semi-automatic

and involve more human interaction. By reducing the time and money needed for test

creation, execution, and maintenance, the use of AI techniques replaces manual labor.

Improved code coverage

The capacity to fully or substantially cover the assertions, branches, and transitions

might be considered one of the reported benefits of the coverage. The publications

compared the increased coverage to the methods that were previously in place.

Improved fault and

vulnerability detection

effectiveness

In comparison to current methods, generated test cases or oracles are, generally

speaking, more effective and efficient in finding software faults.

Reusability of created test cases

and test oracles

In the context of the publication, the reusability of test cases and oracles generated may

be interpreted as being independent of one or more conditions, such as a particular GUI

library, application, operating system, source code, or system model.

Test breakage repair
The ability of breakage repair capabilities to significantly reduce breakages and

outperform existing solutions was reported in papers.

Avoiding duplicate activities

while running the test

The use of AI approaches helps to reduce the number of unwanted activity transitions

and restarts of the system under test, which increases test execution speed and accuracy.

Improvement of existing

solutions

A portion of these are improvements that a man-made intelligence based approach can

make to current experiment age, determination, and information age procedures:

produced text inputs are subject to the setting of the framework being tried and are not

created haphazardly; combinatorial blast is stayed away from during age; and

experiments are picked in light of numerous targets as opposed to only one.

better assess the suitability of

the produced test cases

In contrasting to other non-AI approaches, generated test cases are better able to achieve

the necessary test adequacy.

The states covered, the viability, and the lack of duplication of the generated test cases

are the criteria for sufficiency.

• Software Reliability

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

41

Accurate testing methods produce reliable software, and a thorough examination of testing methods will have a significant

impact on the reliability and tolerability of the program. White box procedures give superior results for the reliability of the

program, according to a contrast of the three testing methodologies—White Box, Grey Box and Black Box (Table 10). [56]

Table 10. A contrast of reliability of the three testing techniques

Software Testing Techniques Defects

Detection

Effect on the overall failure Reliability

White Box 73% 22% 78%

Grey Box 63% 32% 56%

Black Box 42% 39% 32%

5. Conclusion

Software testing is obviously crucial to the software development process. Software testing is a process of continuous

improvement of software, applications, and products. Testing is a condition for the final delivery of the

software/application/product. Testing professionals can increase software quality by successfully conducting software testing

with the help of their familiarity with these dynamic software testing methodologies and how they are used in software

development. The research unequivocally shows that producing and deploying projects will be faster and more efficient with

AI because it will enable tests to be built more quickly and problems found earlier. AI/ML will be able to calculate the

probability of a build failure if and when the application code is modified. AI will improve and better predict troublesome areas

that need more attention from testers by learning from our processes and tests. To sum up, creating and implementing AI-

powered test automation is the best course of action for everyone.

6. Acknowledgments

The authors would like to thank the University of Mosul / College of Computer Science and Mathematics for their facilities,

which have helped to enhance the quality of this work.

7. References

[1] M. M. Syaikhuddin, C. Anam, A. R. Rinaldi, and M. E. B. Conoras, “Conventional Software Testing Using White Box

Method,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 3, no. 1, pp. 65–72, 2018,

doi: 10.22219/kinetik.v3i1.231.

[2] A. Verma, A. Khatana, and S. Chaudhary, “A Comparative Study of Black Box Testing and White Box Testing,” Int.

J. Comput. Sci. Eng., vol. 5, no. 12, pp. 301–304, 2017, doi: 10.26438/ijcse/v5i12.301304.

[3] J. Bendickson, E. Liguori, and C. Midgett, “Compiler Design: Theory, Tools, and Examples,” Rowan Univ.

bergmann@rowan.edu, vol. 27, 2017.

[4] S. Nidhra and J. Dondeti, “BLACK BOX AND WHITE BOX TESTING TECHNIQUES - A LITREATURE

REVIEW,” Int. J. Embed. Syst. Appl. Vol.2, No.2, vol. 2, no. 2, pp. 29–50, 2012.

[5] D. Honfi and Z. Micskei, “Automated isolation for white-box test generation,” Inf. Softw. Technol., vol. 125, no.

February, 2020, doi: 10.1016/j.infsof.2020.106319.

[6] I. Jovanovic, “Software Testing Methods and Techniques,” IPSI BgD Trans. Internet Res., vol. 5, no. 1, pp. 30–41,

2009, [Online]. Available: http://www.internetjournals.net/journals/tir/2009/January/Full Journal.pdf#page=31

[7] K. Mohd. Ehmer and K. Farmeena, “A Comparative Study of White Box , Black Box and Grey Box Testing

Techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 3, no. 6, pp. 12–15, 2012.

[8] M. Kaur and R. Singh, “A Review of Software Testing Techniques,” Int. J. Electron. Electr. Eng., vol. 7, no. 5, pp.

463–474, 2014, [Online]. Available: http://www.irphouse.com

[9] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, “Software testing techniques: A literature review,” Proc. -

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

42

6th Int. Conf. Inf. Commun. Technol. Muslim World, ICT4M 2016, no. November 2017, pp. 177–182, 2017, doi:

10.1109/ICT4M.2016.40.

[10] C. Djaoui, E. Kerkouche, K. Khalfaoui, and A. Chaoui, “A graph transformation approach to generate analysable

maude specifications from UML interaction overview diagrams,” Proc. - 2018 IEEE 19th Int. Conf. Inf. Reuse Integr.

Data Sci. IRI 2018, pp. 511–517, 2018, doi: 10.1109/IRI.2018.00081.

[11] M. Albarka Umar, “Comprehensive study of software testing: Categories, levels, techniques, and types Software

Testing View project System Analysis View project Comprehensive Study of Software Testing: Categories, Levels,

Techniques, and Types,” ResearchGate, pp. 1–15, 2020, [Online]. Available:

https://www.researchgate.net/publication/342538504

[12] S. Jat and P. Sharma, “Analysis of Different Software Testing Techniques,” Int. J. Sci. Res. Res. Pap. Comput. Sci.

Eng., vol. 5, no. 2, pp. 77–80, 2017, [Online]. Available: www.isroset.org

[13] Meenu and Y. Kumar, “Comparative Study of Automated Testing Tools: Selenium , SoapUI, HP Unified Functional

Testing and Test Complete,” J. Emerg. Technol. Innov. Res., vol. 2, no. 9, pp. 42–48, 2015, [Online]. Available:

www.jetir.org

[14] F. Okezie, I. Odun-Ayo, and S. Bogle, “A Critical Analysis of Software Testing Tools,” J. Phys. Conf. Ser., vol. 1378,

no. 4, 2019, doi: 10.1088/1742-6596/1378/4/042030.

[15] H. Anjum et al., “A Comparative Analysis of Quality Assurance of Mobile Applications using Automated Testing

Tools,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 7, pp. 249–255, 2017, doi: 10.14569/ijacsa.2017.080733.

[16] T. Wala and A. Kumar Sharma, “International Journal of Computer Science and Mobile Computing Improvised

Software Testing Tool,” Int. J. Comput. Sci. Mob. Comput., vol. 3, no. 9, pp. 573–581, 2014, [Online]. Available:

http://www.w3.org/2001/12/soap-envelope

[17] T. T and M. Prasanna, “Research and Development on Software Testing Techniques and Tools,” Int. J. Curr. Eng.

Technol., vol. 4, no. 4, pp. 1479–1493, 2018, doi: 10.4018/978-1-5225-7598-6.ch109.

[18] S. Gojare, R. Joshi, and D. Gaigaware, “Analysis and design of selenium webdriver automation testing framework,”

Procedia Comput. Sci., vol. 50, pp. 341–346, 2015, doi: 10.1016/j.procs.2015.04.038.

[19] K. Latha, “An Evaluation and Comparative Analysis of Software Testing Techniques and Tools,” Int. J. Innov. Res.

Sci. Eng. Technol., vol. 9, no. 2, pp. 185–190, 2020.

[20] I. Shuaibu, M. Musa, and M. Ibrahim, “Investigation onto the Software Testing Techniques and Tools: An Evaluation

and Comparative Analysis,” Int. J. Comput. Appl., vol. 177, no. 23, pp. 24–30, 2019, doi: 10.5120/ijca2019919685.

[21] V. Garousi and M. V. Mäntylä, “A systematic literature review of literature reviews in software testing,” Inf. Softw.

Technol., vol. 80, pp. 195–216, 2016, doi: 10.1016/j.infsof.2016.09.002.

[22] M. Albarka Umar, “Comprehensive study of software testing: Categories, levels, techniques, and types Software

Testing View project System Analysis View project Comprehensive Study of Software Testing: Categories, Levels,

Techniques, and Types,” Int. J. Adv. Res. Ideas Innov. Technol., vol. 5, no. 6, pp. 32–40, 2020, [Online]. Available:

https://www.researchgate.net/publication/342538504

[23] A. Trudova, M. Dolezel, and A. Buchalcevova, “Artificial intelligence in software test automation: A systematic

literature review,” ENASE 2020 - Proc. 15th Int. Conf. Eval. Nov. Approaches to Softw. Eng., no. Enase, pp. 181–192,

2020, doi: 10.5220/0009417801810192.

[24] Z. Khaliq, S. U. Farooq, and D. A. Khan, “Artificial Intelligence in Software Testing : Impact, Problems, Challenges

and Prospect,” 2022, [Online]. Available: http://arxiv.org/abs/2201.05371

[25] T. Sheakh, “International Journal of Allied Practice , Research and A Comparative Study of Software Testing

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

43

Techniques Viz . White Box Testing Black Box Testing and Grey Box Testing,” Int. J. Allied Pract. Res. Rev. Website,

no. May, 2015.

[26] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, “Impediments for software test automation: A systematic

literature review,” Softw. Test. Verif. Reliab., vol. 27, no. 8, pp. 1–20, 2017, doi: 10.1002/stvr.1639.

[27] D. S. N, S. D. S, D. Vijayasree, N. S. Roopa, and A. Arun, “A Review on the Process of Automated Software Testing,”

no. September, 2022, doi: 10.48550/arXiv.2209.03069.

[28] M. A. Umar and C. Zhanfang, “A Study of Automated Software Testing: Automation Tools and Frameworks,” Int. J.

Comput. Sci. Eng., vol. 8, no. 06, pp. 217–225, 2019, doi: 10.5281/zenodo.3924795.

[29] P. K. Bhatia, “Impact of Software Testing Metrics on Software Measurement,” Int. J. Comput. Eng. Technol., vol. 8,

no. 4, pp. 108–126, 2017,

[30] D. S. N;, S. D. S;, D. Vijayasree;, N. S. Roopa;, and A. Arun;, “A Review on the Process of Automated Software

Testing,” 2022.

[31] J. H. Holland, “Genetic Algorithms - Computer programs that ‘evolve’ in ways that resemble natural selection can

solve complex problems even their creators do not fully understand,” Scientific American. pp. 66–72, 1992.

[32] Y. R. Kaesmetan and M. V. Overbeek, “Ant Colony Optimization for Traveling Tourism Problem on Timor Island

East Nusa Tenggara,” Indones. J. Artif. Intell. Data Min., vol. 3, no. 1, p. 28, 2020, doi: 10.24014/ijaidm.v3i1.9274.

[33] C. Gil, R. Baños, J. Ortega, A. L. Márquez, A. Fernández, and M. G. Montoya, “Ant colony optimization for water

distribution network design: A comparative study,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 6692 LNCS, no. PART 2, pp. 300–307, 2011, doi: 10.1007/978-3-642-21498-1_38.

[34] M. A. Salam, M. Abdel-Fattah, and A. A. Moemen, “A Survey on Software Testing Automation using Machine

Learning Techniques,” Int. J. Comput. Appl., vol. 183, no. 51, pp. 12–19, 2022, doi: 10.5120/ijca2022921919.

[35] M. O. Okwu and L. K. Tartibu, “Particle Swarm Optimisation,” Stud. Comput. Intell., vol. 927, pp. 5–13, 2021, doi:

10.1007/978-3-030-61111-8_2.

[36] S. A. M. Al-bassam, “Learning the Neural Network using New Evolving Method to Solve Prediction Problems,” J.

Kerbala Univ. , Vol. 8 No.4 Sci. . 2010, vol. 8, no. 4, pp. 395–406, 2010.

[37] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft Comput., vol. 22, no. 2, pp.

387–408, 2018, doi: 10.1007/s00500-016-2474-6.

[38] M. N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi, “A comprehensive review of swarm optimization algorithms,”

PLoS One, vol. 10, no. 5, 2015, doi: 10.1371/journal.pone.0122827.

[39] Dervis KARABOGA, “AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION,” Tech.

REPORT-TR06, vol. 12 Suppl 1, no. 9, pp. 1–29, 2005

[40] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: Artificial bee

colony (ABC) algorithm,” J. Glob. Optim., vol. 39, no. 3, pp. 459–471, 2007, doi: 10.1007/s10898-007-9149-x.

[41] Y. Zhou, J. Liu, and G. Zhao, “Leader glowworm swarm optimization algorithm for solving nonlinear equations

systems,” Prz. Elektrotechniczny, vol. 88, no. 1 B, pp. 101–106, 2012.

[42] Z. Li and X. Huang, “Glowworm Swarm Optimization and Its Application to Blind Signal Separation,” Math. Probl.

Eng., vol. 2016, 2016, doi: 10.1155/2016/5481602.

[43] X. Yang, S. Deb, and A. C. B. Behaviour, “Cuckoo Search via L ´ evy Flights,” Ieee, pp. 210–214, 2009.

EDUSJ, Vol, 32, No: 2, 2023 (30-44)

44

[44] F. Zukhruf, R. B. Frazila, and W. Widhiarso, “A comparative study on swarm-based algorithms to solve the stochastic

optimization problem in container terminal design,” Int. J. Technol., vol. 11, no. 2, pp. 374–387, 2020, doi:

10.14716/ijtech.v11i2.2090.

 تقنيات وأدوات اختبار البرمجيات: مراجعة

 2نعمت سليم ندى، 1عزتسكينة خليل

 قسم البرمجيات، كلية علوم الحاسوب والرياضيات، جامعة الموصل، الموصل، العراق 1،2

 الخلاصة

 أجل من. البرامج فشل إلى يؤدي مما الاختبار إلى يفتقر ما غالبًا أنه في البرنامج تطوير مشكلة تكمن. التطوير بعمليات وثيقًا ارتباطًا البرمجيات تطوير عملية ترتبط

الصندوق أو الصندوق الاسود أو الصندوق الابيض اختبار تقنيات باستخدام البرنامج اختبار يمكن. الأهمية بالغ أمرًا الاختبار يكون الجودة عالي منتج على الحفاظ

 اختبار على بناءً الاختبار منهجيات من الصندوق الابيض عدداً اختبار باستخدام الاختبار إجراء يستخدم. الاختبار أنواع مراجعة تمت ، التحقيق هذا في الرمادي

 ونهج الأساس مسار اختبار تقنية تنفيذ الممكن من ، لذلك نتيجة. المستقل المسار واختبار الدوري التعقيد وتقييم الانسيابية المخططات إنتاج ذلك في بما ، المسار

 ومستويات التقنيات، هذه من كل وفوائد ، عام بشكل الاختبار تقنيات ثم الاختبار، أدوات تعريف وهي ، محاور عدة المراجعة هذه تضمنت. للاختبار الأبيض الصندوق

 .الاختبار إجراء خطوات وأخيراً الاختبار،

