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1. Introduction

In 1988, Stefan Hilger has been started the time scales calculus. He fills the gap between continuous and discrete analysis and
extends both theories. [1], [2], [3]. This field was interesting to many authors for investigating the solving of integral and
integro-differential equations on time scales. [4], [5], [6]. In this article, we develop the findings which were obtained from
[71, [8], [9]- Assuming that T,, T, and T are arbitrary time scales such that A = T, x T, X T5. The partial delta derivative
of D(m,i,1) for m, i, r, and m, i, 1 respectively are denoted by D*t(m,i,1), D*2(m,i, 1), D?3(m,i,r) and D?3%2%1(m, j, 1),
for(m,i,1) € A. The set of right-dense continuous functions is denoted by C,.;. In this paper, we investigate the non-linear
partial integro-differential equation on time scales of the form

DAs428 (my 1) =
F(m, i, 1, D(m, i, 1), D*42%1(m, §, 1), (HD) (m, i, 1), (D) (m, §, 1)), )]
with the given initial-boundary conditions
D(m, i, zo) = p(m, 1), D(m, yo,1) = 6(m, 1), D(xo,i, 1) = a(i,5), D(m, yo,20) = f(m),

D(xo,1,20) = (i), D(x0,¥0,1) = §(1), D(x0,¥0,20) = 0 2
where .

HD)(m, 1) = [ [ [} A(m i G AT D@ A, 1), DA (3 0, ) ) ATANAG, ©)
@D i D) = [ [7 77 g(min, AT D@ A, ), DAt (g 4, 1) ) ATanAg, ()

FEC AXR"XR"X R" X R",R"), h,g € C,;,(AX AXR" X R",R"), p,8,a € Cry(T X T,R"), B,0,¢ € (T,R™)
and

HO)(m,iyr) = [ [ [} h(my ;1,327 0,0)ATANAY, (5)
GO)(myiyr) = [ 7 1 9(my i, 1,30, 7,0,0)ATANAG, (6)
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The approximate solution of problems (1) and (2) for F, h, and g are given functions and D is the unknown function, R™ is n-
dimensional real Euclidean space with norm |-].
2. Preliminaries
The time scale is defined to be an arbitrary closed subset of real numbers, and it is denoted by T. The forward jump operator
0: T — T is defined by
o(t):=inf (£ €T: £ >t}fort €T,
the backward jump operator p: T — T is defined by
p(t):=sup {eT:¢ <t}fort €T,
and the empty set is denoted by @ such that
inf® = supT and sup® = infT.
We defined a function n as n: T — [0, ), which is called the graininess function
n(t) =y(t)—t, forteT.
A function F: T - R is said to be an antiderivative of S: T — R provided then F2(t) = S(t) fort € T, we determine the
(Hilger) delta integral in this instance by

I s(®)At =F(c) = F(a), fora,c € T.[10], [11], [12]

Definition 2.1: A point ¢ is said to be left-scattered if p(t) < t, left-denes if t > infT and p(t) = t, right-scattered if o (t) >
t, right-dense if ¢t < sup T and o(t) = t, we defined T = T — M if T has a Left-scattered maximum M, otherwise T* = T.
If a function F: T — R is continuous at every right-dense point and has a finite left-sided limit at every left-dense point, it is
said to be right-dense continuous (rd-continuous). The letter C,, stands for the set of all rd-continuous functions C,.,(T). [11],
[13].

Definition 2.2: Assume that the function F:T — R and lett € T, the delta derivative F2(t) to be the number (provide if
exist) with the condition that for any € > 0, there is a neighborhood U of t i.e., U = (t — &,t + &) n T for some § > 0, s.t
|F(a(t)) = F(£) = FA(®)|[o(t) — €] < ela(t) — €], for ¢ € U.
So, we say F2(t) is the delta derivative of F at ¢.
If T = R then the usual derivative F2(t) = F'(t) whereas If T = Z then the forward difference operator
FA() = AF(t) = F(t + 1) — F(t). [14]

3. Main Results

Let D(m,i,1) € C.4(A, R™), DA34221(m, j, 1) exist and the following inequality is satisfied:
|DAs4281 (m, j, 1) — F (m, i, 1, D(m, j, 1), D*342%1 (m, §, 1), (HD) (m, i, 1), (GD)(m, i, 1)) | < ¢, ™
a given constant € = 0, then the function D(m, i, 1) that achieves relation (7) is called the -approximate solution of the initial-
boundary values problem (1), (2).

We present our main results in the following Lemma.
Lemma 3.1: Let D(m, i, 1), Q(m,i, 1) € C,.4(A R,) and p;,p, € Cq(A X A, R,), non-decreasing functions concerning m, i, 1
where x4, 1, Yo, €2, Zg, £3, and C = 0 are constants such that x, < €4, yg < £, 2o < 43, if

D(m,i,r) < C+ [ [} [} {Q(w,p,e) D(v,p,e) +
Lo 15 I p1(w,p,€,3,3,0) DG A DATANG + py (m, i, 1, v, P, €)D(v, p, ©) +

£ by f £y by (€ .
Jeo Ve Loy p2(v,p, 6,44, 1) D(G A, DATAMAeApAY + [ * [ * [ ° p,(m,i;1,3, A, 1) D(T, 4, 1)ATANAL, ®)
(m,i, 1) € A, then
. 9 C Ga(miyf1,£2.43)
<
D(m, i,p) < 1-G1(myip) + (=61 (M) (1=G1 (€1,£2,£3) =Gz (£1,£2,63,1,02,43)) ©
Where _
G = [ [, [ Qwp.e) + [ [} [ i (v,p,e,33,1) ATAMT +py (m,i,1, v, p, €,)}AeApAv, (10)

. i 1 l2 ot 1 (2 (ot .
Go(my iy 81,80, 43) = [ [ [ [0 )2 L, p2(v,p, e, T A ©) AtArATAedpAY + [ 1 [ 2 [ % py (my i1, 3 A DATANAT,  (11)
Assume that
1-6(mip>0,x<Sm<4y,y <1<z ST <73,
1- Gl ('gli €25 £3) - GZ (€1’€21 €3l €1l 'BZJ €3) > 01

Proof: Since the function D is a non-decreasing function concerning the first, second, and third variables, let
Xo <m <4,y <1< ¥,,2z0 <1 <3, and from equation (8) we get
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D(m,i, ) <C+ [ [} [ [Qw,p,e) D(m,iyr) + Dy iy1) 7[5 [ py(v,p,,5,,7) ATAAAT +
P1(M,i,5,v,p, D, 1) + D8y, €2, 85) [ [ [ (v, p, €,4,1,7) ATAAAT|AeApAv +
D8y, €2,25) [, 17 [ p2(my iy, A, ) ATAAY,
= C+Dm, i, S, [l [Qw,p.e)+ [ [0 [7 py (v,p,e,3 2 DATAN + py(m, i, 1, v, p, )] AedpAv} +

Dy, 20, U [ I [ 032 [0 pa (0,1, €,0, A, DATANALAAVAD + [ [17 [ p, (my, 1,32, TATARAT),
by equations (10) and (11), we can write

D(m, i, 1) < C+D(m,i,1)G(m,i,1) + D(€y, €2, £3)Go(m, i, 1,41, €2, £3),

D(m, i, 1) (1 — G1(m,§,1)) < C+ D(#y, 5, £3)Go(m, i, 1, €1, €5, €3),

or

. C D(£1,£2,43)G2(mif,f1.£2,£3)
<
D(m,ip) < (1-G1(mip) + (1-G1 (mip) ' 12
and in particular, m = £,,i=4,, 1 =¥3
D('gli '321 ‘83) S C + D(‘gll £21 ‘83)61 (‘gli fZI ‘€3) + D('gli gZi £3)GZ (£1I €2I £3i £1, €2i £3)1
or
(1 - Gl (1/01' €21 1/03) - GZ (fl, £2E€3! ‘gly fz; ‘83)) D(fl, fz, ‘g3) < C,

<
D(£1, £2,25) < (1-G1(£1,82,3) G2 (£1.£2,£3,61,£2.£3))
now from equation (12), we get

D(m,i,1) <

+ C Goa(myiyf1,22,43)
1-Gi(mip)  (A=G1(Mi))(1-G1(£1,62,03) G2 (£1,£2,£3,£1,£2,63))

The following theorem deals with estimating the difference between the two approximate solutions of equation (1) with the
initial-boundary condition (2).
Theorem 3.2: Assume the functions F, h, and g in equation (1) satisfy the following hypotheses

|F(m,i1.q,5,b,d) — F(m,i,1,4,5,b,d)| < Lllg — gl + s — 5|1+ [b—b| + |[d — d|, (13)
|h(m, i1, ®,00,q,5) — h(m,i,},® 0,335 <J;(mir®evllg—gl+I|s—5ll, (14)
lgm, i1 ®,0v,q,5) —gm,i, 10,35 <J,(mir®evlqg—ql+|s—35l, (15)

where L is a non-negative constant such that L. < 1 and

Ji(m,i, 1, @, 0,0),],(m,i,1,®,0,v) € C.q(AXA,R,), and D;(m,i,1) (i = 1,2) are g;-approximate solutions of equation (1)
with the following initial-boundary conditions

D;(m, i, 20) = pi(m, 1), D;(m, yo,1) = §i(m, 1), D;(x0,4, 1) = ; (&, 1), Di(m, yo, 29) = Bi(m),

D; (x, 1, 20) = 0;(), D;(x0, Y0, 1) = & (1), D;(x0, Yo, 20) = 0, (16)
where p;, 6;,a; € (T X T,R™), B;,0;, & € (T,R™) ,(i = 1,2) and that

lpr(m, D) — p,(m, D) + 6:(m, 1) — 6,(m, 1) + a1 (i 1) — a2 (i, 1) — Br(m) + B2 (m) — (D) + 0, (D - & (D + & @I <7,

7
Where 7 > 0 is a constant, then
ID1(m, §, 1) = Do(my i, )| + Dy #3428 (m, i, 1) — D% (m, i, 1) | <
g(1+(¢1-x0) (b2—y0) (£3—20))+T £(1+(f’1—xo)(f’z—YO)(%—zo))H'e( )
1-L + 1-L mAT . (18)
91 (mir) 91 (m,i,r)N(41,£2,83)
For every (m,i,1) € A, e = & + &,
. 1 i .
0 miD =1-S [, L0+ [0 [ (0pew, 00)A000Aw +];(m,i,1,v,p, €)}AeApAv] (19)
. 1 i t1 (2 (L 1 t1 2 ? .

emi) = [0 f, [, [.2 11 )2 (v.p,e, @, 0,0)0v000wAApAY + — [.* [ [ *], (m,i,1, @, 0, v)AvAAw, (20)
N(£y,£,,€3) = 9,(£1,€5,€3) — e(£1,€,,€3). (21)
Proof: Since D;(m, i, 1) (i = 1,2) are two &;-approximate solutions of equation (1) with (16), we set
|D;#342% (m, {, 1) — F(m, i, 5, Dy(m, i, 1), D;****1(m, i, 1), (HD) (m, i, 1), (6D (m, i, )| < &;. (22)
From (22) we puti = 1,2 and in the light of inequalities
|81] = [02] < |81 — 82],]01 — 02| < [04] + |02, (23)
we get

& + & > D% (m,i,1) — F(m,i,1, Dy (m, i, 1), D,*** (m, i, 1), (HD,) (m, i, 1), (GD,) (m, i, )| +
|D, 3428 (m, i, 1) — F (m, i, 1, D, (m, i, 1), D, 2% (m, §, 1), (HD) (m, §, 1), (6D2) (m, i, 1),

& > [{D,*"2*1(m,j,1) — F(m,i,1,D;(m, i, 1), D;****(m, i, 1), (HD,)(m, i, 1), (GD1) (m,i, 1))} —
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{D,"#%2%1 (m, i, 1) — F(m, i, 1, Do, (m, i, 1), D,***2*1 (m, i, 1), (HD2) (m, i, 1), (D) (m, i, D)},
or

€ > D, %% (m,j,1) — D,****1(m, |, )| — [F(m, i1, D1 (m, i, 1), D;**2*(m, i, 1), (HD,) (m, i, 1), (GD,)(m, i, 1)) —

F(m, i, 1, Dz (m, i, 1), D21 (m, i, 1), (HD,) (m, §, 1), (GD2) (m, i, 1),
by using hypotheses (13), (14), and (15), we get

e > [D;%%2% (m, i, 1) — D2 (m, i, )| — L[ID1 (m, 1, 1) — Do (m, i, )| + [Dy %25 (m, §, 1) — D% (m, i, )| +
L 15, 1 )15, @, ,0)[1D1 (@, 0,0) = Do (w, 0, V)| + D24 (w, 0, 1) — D,**24 (w, 0, V) || AvAedw +
L2 122 (i @, 0,0)[IDy (w, 0,0) — D(w, 0,0)] + D232 (w, 0,v) — D21 (w, g, v) || AvAeAw. (24)
By delta integrating both sides of (22) concerning (m, i, 1) we find that
eim—x0) (= y0)r = 20) = [ [}, [, 1D (v,p,e) —
F(v,p,e,D;(v,p, e),D;*3*2% (v, p, e), (HD;))(v,p, e), (GDy)(v, p, e))|AeApAv,
a(m = x) (i~ y) G —20) 21 [ [} [, (D" (v,p,e) -
F(v,p,e,D;(v,p,e),D;"*"1(v,p,e), (HD)) (v, p, €), (GD;) (v, p, €)) YaeApAv|,
, = |D;(m, i, 1) — py(m, ) — 8;(m, 1) — a; (i, 1) + B;(m) + 0, () + & (1) —
S I3, Iz, F(v.p,€,Di(v,p, @), D% (v, p, €), (HD) (v, p, €), (GD) (v, p, €)) AeApAv]. (25)
From (25) and we put i = 1,2 and according to the inequalities (23), we get
(e1+ &2)(M — x0) (= ¥0) T — 20) = [D1(m,i,1) — pr(m, ) — 6:(m, 1) — @1 (i 1) + f1(m) + 01(D) + & (1) —
Il 15 F(v,p,e.D1(v,p,€),D,** (v, p, ), (HD,)(v,p, ), (GD:) (v, p, €))AehpAv] +
ID2(m, i, 1) — po (M, ) — 82(m, 1) — @, (i, 1) + Bo(m) + 0, (D + & (1) —
Je by, I3 F (0,1, €,D2(v,p,€), D, %21 (v, p, ), (HD,) (v, p, €), (6D;) (v, p, €)) A eApAv],
(&1 + &2)(m - x0) (L= ¥0) (5 — zo) = [{D1(m, i, 1) — p1(m, 1) — 6:(m, 1) — @y (1) + Br(m) + 01 (D + &) —
fxn; f;o fzro F(v,p,e,D;(v,p,e),D;%3%2%1(v,p, e), (HD,) (v, p, ), (GD,) (v, p, €)) AeApAv} —
{D(m, ;1) — p2(m, ) — 82(m, 1) — (i, 1) + B2 (m) + 0, () + § (1) —
e by 15 F,p,e,D2(v,p,€), D, (v, p, ), (HD,) (v, p, €), (GD;) (v, p, €)) AedpAv}],
or we can write
(&1 + &) (m — x0) (L= ¥o)(r = 29) = |D1(m, i, 1) — Do (m, i, 1| — 1o (m, 1) — p(m, ) + 8:(m, 1) — 82(m, 1) + a1 (i ¥) —
az (1) — f1(m) + Bo(m) — 01() + 02() — & (1) + &) — f:; f;o fzro |F(v,p,e,D1(v,p,e), D1A3A2A1(V: p.e),
(HD,)(v,p,€), (GDy)(v,p, €)) AeApAv — F(v,p, e,D,(v,p, €),D,*****1 (v, p, ), (HD,) (v, p, €), (GD,) (v, p, €))| AeApAv,
by using hypotheses (13), (14), (15), and (17), we find
e(m —x0) (.= yo)(r — 20) = [D1(m, i, 1) — D (m, i, p)| — 7 —
| [ [5, [ (LLID1(v,p,€) = D, (v, p, )] + Dy ™24 (v, p, €) — D, "2 (v, p, )] +
Lo 5 1) (0.0, 6,0, V[ID1 (@, ,0) = Da(w, ,0)] + [Dy*#*2% (w, ,0) — D,**2%1(w, 0, V) ] AvAeAw +
[ 120,202 0,9, €, w,0,0)[ID; (@, ,v) = Dy (w, 0,0)] + D22 (w, 0, v) — D221 (w, g, v) | AvAQAW}AeApAv], (26)
Let

B(m,i,r) = [ID:(m,i,r) = D,(m, i, )| + [D;**%1(m, j, 1) — D,**2* (m, i, 1) ],
from (24), (26), we get

Bm,i,p) < &(1+ m—x)G—y) G —20)) +7+ [ [} [ {LB(v,p,e) +

f:o fypo f;; J: (v,p, e,®,0,0)B(w, g, v)AvApAw + f;ol fiz f;: J, (v,p, e,®,0,V)B(w, g, v)AvApAw}AeApAv +
LB(m,i,1) + fxn; f;o fzro J1(m, i, 1, ®, 0, V) B(w, 0, V) AvApA® + fx{)ol f::z f;:f J» (m, i, 1, @, 0,v)B(w, 0, V) AvAQAw,

B(m, i, (1~ L) < e(1+ m—x)( - y) G —20)) +7+ [ [ [} (LB, p,e) +

f:o fio f;; J: (v, p, e,®,0,0)B(w, g, v)AvApAw + f;ol f;z fz? J, (v,p, e,®,0,V)B(w, 0, v)AvApAw}AeApAv +

i . t1 (f2 ot .
e £ 1 (i, ®,0,0)B(@, 0 v)AvAedw + [ [.2 [ *), (m,i,1,@, 0, )B(w, 0, v)AvAeAw, (27)
from relation (27) we get
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. 1+(£1—x0)(£2—y0)(£3—20))+ 1 i v o p e
B(m,iy) < 0+t~ 12—Ly0 3=Z0)4T E[fxn; f;o erO{L B(v,p,e) + fxO fyo fZO J1 (v, p, e,®,0,0)B(w, 0, v)AvApAw +

. 1 (2 (f
Jimy i, nv,p,e)Bw,pe) + [ [ ° [, *)2 (v,p,e,, 0 0)B(w, 0, v)AvAeAw}AeApAv] +

2207 )2 (yir, @, 0,0)B(w, 0, V) AvAeAw. (28)
Appropriately applying the Lemma 3.1 over (28) yields (18). m

Remark 3.3: If D; (m,, 1) is a solution (1) with (2) then £; = 0, we note that D, (m, i,) = D;(m,i,r) whent - 0and ¢, —
07 and If we pUt 81 = 82 = 0, and P1(m'l) = Pz(m' i)! 61(“3! !’) = 52(“!4‘): al(i} !f) = az(iu 3’),

Bi(m) = B,(m), 0,()) = g, (1), & (1) = &(1), inequation (18) then we get the unique solution of equation (1) with the initial-
boundary conditions (2).

Now we put the initial-boundary values Problem (1), (2) together with the following initial-boundary values Problem
DA3%281(m, i, 1) = F(m, i, 1, D(m, i, 1), D*2%2%1(m, §, 1), (HD) (m, §, 1), (GD) (m, §, 1)), (29)
with the following initial-boundary conditions
D(m, i, zo) = p(m, D), D(m, yo,1) = 6(m, 1), D(xo, i, 1) = @(i, 1), D(m, o, 20) = B(m),

D(xo‘L_Zo) = (1), D(x0,¥0,1) = £(1), D(x0,¥0,20) = 0, (30)
forall FECy(AXR* X R" X R" X R*,R"),A =T, X T, X Ts,

p,8,a,p,6,a€ (TxT,R"Y,B,a,¢B a6 ¢ € (T,RY) and (HD), (GD) as in (3), (4).

The following theorem is related to the conditions of the close of solutions for problems (1), (2) with problems (29), (30).

Theorem 3.4: If we assume that F, h, and g in egn. (1) satisfy the following condition (13), (14), (15) and &,7 = 0 are non-
negative constants, such that

|F(m,i,1,q,5,b) — F(m,i,1,q,5,b)| <& (31)

lp(m, ) — p(m, D) +8§(m,1) — §(m, 1) + () — a@ler) — Bm) + f(m) —o() + () — M + W < 7, (32)
if D;(m, i, 1), D,(m,j, 1) are any two solutions to problems (1), (2) and (29), (30), then

Dy (m, i, 1) = Do (m, i, DI + [Dy %3428 (my, , 1) — D424 (my, i, )| <
g(1+(81—x0)(2—y0)(#3—20))+T  E(1+(£1—x0)(l2—Y0)(¥3-2())+T
1-L 1-L
B B 51(“1:1,_!) + 91 (mDN(£1,£2,63) ' (33)
Where (m,Lg‘) EAFeCy(AXR"XR" x R* x R*, R"), 191(113,1,[), N({)l,fz,{)g) asin (19), (22).

Proof: Let

B(m,i,1) = [ID;(m,i, 1) = Do (m, i, I + [Dy %425 (m, i, 1) — D424 (m, i, 1],
for (m,i,1) € A, since D;(m, i, 1) and D,(m, i, 1) are solutions of the problems (1), (2) and (29), (30) respectively, then
B(m,i,1) < [p(m, D) — p(m, D) + 8(m,1) = §(m, 1) + (i) — &) = Bm) + f(m) —a (@) +3(D) — @) + Q)| +
Ity I IF(v,p,e,D,(v,p,€),D,"3**1(v,p, €), (HD)) (v, p, ), (GD) (v, p, ) —
F(v,p,e,D,(v,p,e),D,%3%2%1 (v, p, ), (HD,) (v, p, €), (GD,) (v, p, e))|AeApAv +
|F(m,i, 1, D; (m, i, 1), D, *#*2%1 (m, i, 1), (HD1) (m, i, 1), (6D,) (m, i, 1) —

F(my i, 1, D, (m, i, 1), D428 (m, i, 1), (HD,) (m, 1), (GD,) (m, i, 1)1, (34)
hence equation (34) can be written in the following form

B(m,i,1) < [p(m, D) — p(m, D) + 8(m, 1) = §(m, 1) + (i) — &) = Bm) + f(m) — o) +3(D) — @) + @) +
Ity I IF(v,p,e,D,(v,p,€),D,"**** (v,p,€), (HD) (v, p, ), (GD) (v, p, ) —

F(v,p, e,D,(v,p,e), D2A3A2A1(v, p,e), (HD,)(v,p, e), (GD,)(v,p, e))|AeApAv +

L L 13 IF(v,p,6,D,(v,p,€),D,°** (v, p, €), (HD) (v, p, €, (GD;) (v, p, ©)) —

F(v,p,e,D,(v,p,e), D2A3A2A1(v, p,e),(HD,)(v,p, e), (GD,)(v,p,e))|AeApAv +

|F(m,i,1, D, (m, i,1), D, %34* (m, i, 1), (HD,) (m, i, 1), (GD2) (m, §, 1)) —

F(m,i,1,D,(m, i, 1), D,°3*2* (m, i, 1), (HD,) (m, i, 1), (GD2) (m, i, )| +

|F(m,i, 1, Do (m, i, 1), D,*542%1 (m, i, 1), (HD,) (m, 1, 1), (6D,) (m, 1, 1)) —

F(m,i, 1, D;(m, i, 1), D, (m, i, 1), (HD,) (m, §, 1), (GD2) (m, i, 1)
Using hypotheses (13), (14), and (15), and through hypothesis (32), we have

Bm,iy1) <7+ [ [} [, (LIID1(v,p,€) = D,(v,p, €)] + D% (v, p, €) — D" (v, p, &)|] +
200 1 0,0, e, LA DD A D) — Do@A, D] + Dy 258281 (G 4,1) — D, 24281 (3,2, 1) | ATAAAL +

81



EDUSJ, Vol, 32, No: 2, 2023 (76-83)

fj: [ Z fzf I, W,p,e, LA DID; (LA, T) — Dy(G A )| + [D,252281(7, A, 1) — D,2#22%1 (7, A, 1) [JATANAY AeApAv +

[0 J; £8edpav + L[ID; (m, 1) — Dy (my i, )] + D248 (m, i, 1) — D, 9241 (m, i, P[] +

L L M n A D[P G AT = D@4 1) + D242 (G 4, 1) — D,9241(g, 2, )| |aTarag +

02 1, (i G D[IDL G AT = Dy @A D+ [D252291(Z, 2, 1) — D192 (2, 1) | ATarAT + £
=T+ + M- x) G- y)G—20) + [ [, [ (LBw,p,e) + [} [ [7 ), (v,p,€,4 1, DB(G A, DATAMAG +

[0 0202 (v,p, €, 4 L DB A DATAAAG AeApAy + LB(m, i, 1) + [ [} [7 J1(m, ;1,34 DB, DATAN +
L2032 0702 (i n A, DB A, DATANA,

B(m, i D1~ L) <7+ &(1+ m - x) (- y) ¢ = 20)) + [, [}, [} {LB(v,p, )+

L0 20 (0,p,e,4 A DBEA DATAML + [ [72 [ ], (v,p, €,3,1, DB(, A, D) ATANAAeApAv +

[0 0 1u(m 5 A DBEA DATAMT + [ [12 [ ], (m,,5,3, 0, DB, A, D)ATANAL,

B(m,i,1) < E(”“l_x")(iz_ly QIERD) = ;0 LLBw,p,)+ [, [} [ 11 (v,p,e,3,A DB(GA D)ATANAG +
L(m i 10,0, B, p,e) + [ [}2 7], (v,p,,4 L, DB A DATANAG AeApAY +

L0 0 (my 5, 2, DB, A DATARAY, (35)

A suitable application of Lemma 3.1 to equation (35) we get (33).m

Remark 3.5: The results given by theorem 3.4 are related to the solutions of two initial- boundary values problems (1), (2) and
(29), (30) in the meaning if F is close to F, and p, 8, a, 8, o, € are close to p, § @, 8,5, & respectively, then the solution to
problems (1), (2), and problems (29), and (30) are also close to each other.

4. Conclusions
In this work, we conclude the following points
1. The explicit estimation of integral inequality in three variables on time scales has been derived.
2. The estimating of the difference between two e-approximate solutions for the integro-differential equation is found.
3. We present the conditions that set the functions in the integro-differential equation leading to the closeness of the
solutions.
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