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 الخلاصة

لذا نرى العديد من  الأنماطىم جدا  وضروري في مجال تمييز اليندسية فرع م الأشكال
. البحوث التي عممت في ىذا المجال

 ,المثمث ,المربع ,الدائرة)مثل  الأساسيةاليندسية  الأشكالفي ىذا البحث تم تمييز 
المتجو المميز والقيمة )بالاعتماد عمى  الأشكالوذلك ببناء قاعدة بيانات ليذه  (الخ ,...,المعين
 الأشكالفي ىذا البحث كمعامل لتمييز  (القيمة المميزة و المتجو المميز) تم دراسة .(المميزة
من  ((backprogationتم توظيف شبكة الانتشار العكسي  ,نسبة تمييز قوية أظيرتوالتي 

 .اجل تسريع عممية التمييز
 

Abstract 
Geometrical shapes are so important in pattern and image 

recognition So many research use proposed in this direction . 

In this paper study basic geometrical shapes [circle, triangle, 

rectangle,…,etc] are studied and small database was build for them based 

on their eigenvalue. Eigenvalues and eigenvectors studied in this paper as 

shape descriptor parameters, which found it can be strongly used due to 

the high difference shapes. 

backprogation neural network was achieved to a speed path 

recognition process.  

 

1.  Introduction 
"A picture is worth one thousand words". This proverb comes from 

Confucius-a Chinese philosopher about 2500 years ago. Now, the essence 
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of these words is universally understood. A picture can be magical in its 

ability to quickly communicate a complex story or a set of ideas that can 

be recalled by the viewer later in time. 
Visual information plays an important role in our society, it will 

play an increasingly pervasive role in our lives, and there will be a 

growing need to have these sources processed further. The pictures or 
images are used in many application areas like computer vision, 

architectural and engineering design, fashion, journalism, advertising, 

entertainment, etc. Thus it provides the necessary opportunity for us to 
use the abundance of images. However, the knowledge will be useless if 

one can't find it. Face to the substantive and increasing apace images, 

how to search and to retrieve the images that we are interested in facility 
is a fatal problem: it brings a necessity for image retrieval systems. As we 

know, visual features of the images provide a description of their content. 

Content-based image retrieval (CBIR), emerged as a promising mean for 
retrieving images and browsing large images databases. CBIR has been a 

topic of intensive research in recent years. It is the process of retrieving 

images from a collection based on automatically extracted features from 
those images.[1] 

shape (from Old English esceap, shap, etc., originally meaning 

created thing) of an object located in some space is the part of that space 
occupied by the object, as determined by its external boundary – 

abstracting from other properties such as colour, content, and material 

composition, as well as from the object's other spatial properties (position 

and orientation in space; size). 
Mathe matician and statistician David George Kendall defined 

shape this way: 

Shape is all the geometrical information that remains when 
location, scale and rotational effects are filtered out from an object. 

Simple two-dimensional shapes can be described by basic geometry such 

as points, line, curves, plane, and so on. (A shape whose points belong all 
to the same plane is called a plane figure.) Most shapes occurring in the 

physical world are complex. Some, such as plant structures and 

coastlines, may be so arbitrary as to defy traditional mathematical 
description – in which case they may be analysed by differential 

geometry, or as fractals.[2] 

Basically, shape-based image retrieval consists of measuring the 
similarity between shapes represented by their features. Some simple 

geometric features can be used to describe shapes. Usually, the simple 

geometric features can only discriminate shapes with large differences; 
therefore, they are usually used as filters to eliminate false hits or 

combined with other shape descriptors to discriminate shapes. They are 

not suitable to be stand alone shape descriptors. A shape can be described 
by different aspects.[1] 

http://en.wikipedia.org/wiki/Old_English
http://en.wikipedia.org/wiki/David_George_Kendall
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Point_(geometry)
http://en.wikipedia.org/wiki/Line_(mathematics)
http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Plane_(mathematics)
http://en.wikipedia.org/wiki/Differential_geometry
http://en.wikipedia.org/wiki/Differential_geometry
http://en.wikipedia.org/wiki/Fractals
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  we introduce eigenregions, which are geometrical features that 
encompass area, location and shape properties of a region. Eigenregions 
are obtained by analyzing segmented image regions with Principal 
Component Analysis (PCA).  

Principal component analysis has already successfully been 
implemented in image classification for many tasks, but usually on the 
whole image. As opposed to other geometrical region features, 
eigenregions can be used and result in significant classification 
improvement even if the image regions are spatially incoherent. 

They are also visually significant and computationally efficient. 
Another key result obtained with eigenregions is that for a large dataset of 
natural images, the largest variance in region geometry is due to the area  
and not to shape or position.[3] 

 

2.  shape descriptor features 
Efficient shape features must present some essential properties 

such as:  

 identifiability: shapes which are found perceptually similar by human 
have the same features that are different from the others. 

 translation, rotation and scale invariance: the location, the rotation 
and the scaling changing of the shape must not affect the extracted 
features. 

 affine invariance: the affine transform performs a linear mapping 
from coordinates system to other coordinates system that preserves 
the "straightness" and "parallelism" of lines. Affine transform can be 
constructed using sequences of translations, scales, flips, rotations 
and shears. The extracted features must be as invariant as possible 
with affine transforms. 

 noise resistance: features must be as robust as possible against noise, 
i.e., they must be the same whichever be the strength of the noise in a 
given range that affects the Pattern Recognition Techniques, 
Technology and Applications. 

 occultation invariance: when some parts of a shape are occulted by 
other objects, the feature of the remaining part must not change 
compared to the original shape. 

 statistically independent: two features must be statistically 
independent. This represents compactness of the representation. 

 reliability: as long as one deals with the same pattern, the extracted 
features must remain the same. In general, shape descriptor is a set of 
numbers that are produced to represent a given shape feature. A 
descriptor attempts to quantify the shape in ways that agree with 
human intuition (or task-specific requirements). Good retrieval 
accuracy requires a shape descriptor to be able to effectively find 
perceptually similar shapes from a database. Usually, the descriptors 
are in the form of a vector. Shape descriptors should meet the 
following requirements: 
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 the descriptors should be as complete as possible to represent the 
content of the information items. 

 the descriptors should be represented and stored compactly. The size 
of a descriptor vector must not be too large. 

 the computation of the similarity or the distance between descriptors 
should be simple; otherwise the execution time would be too long. 

Shape feature extraction and representation plays an important role in the 
following categories of applications: 

 shape retrieval: searching for all shapes in a typically large database 
of shapes that are similar to a query shape. Usually all shapes within 
a given distance from the query are determined or the first few shapes 
that have the smallest distance. 

 shape recognition and classification: determining whether a given 
shape matches a model sufficiently, or which of representative class 
is the most similar. 

 shape alignment and registration: transforming or translating one 
shape so that it best matches another shape, in whole or in part. 

 shape approximation and simplification: constructing a shape with 
fewer elements (points, segments, triangles, etc.), so that it is still 
similar to the original. Many shape description and similarity 
measurement techniques have been developed in the past.

  
[1][4][5] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. An overview of shape description techniques[1] 
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3.  Aim of the research :-          
In this paper, Eigenvalues were proposed to be used for 

recognizing, the difference between geometrical shape. A data base was 

built for most known geometrical shapes, and to be  used later. The same 

parameters which were used in the database will be input to a neural 

network [backprogation neural network] for recognition. 

 

4.  The Eigenvalues :- 
In mathematics, eigenvalue, eigenvector, and eigenspace are related 

concepts in the field of linear algebra. Linear algebra studies linear 

transformations, which are represented by matrices acting on vectors. 

Eigenvalues, eigenvectors and eigenspaces are properties of a matrix. 

They are computed by a method described below, give important 

information about the matrix, and can be used in matrix factorization. 

They have applications in areas of applied mathematics as diverse as 

finance and quantum mechanics. 

In general, a matrix acts on a vector by changing both its magnitude 

and its direction. However, a matrix may act on certain vectors by 

changing only their magnitude, and leaving their direction unchanged (or, 

possibly, reversing it). These vectors are the eigenvectors of the matrix. A 

matrix acts on an eigenvector by multiplying its magnitude by a factor, 

which is positive if its direction is unchanged and negative if its direction 

is reversed. This factor is the eigenvalue associated with that eigenvector. 

An eigenspace is the set of all eigenvectors that have the same 

eigenvalue. The concepts cannot be formally defined without 

prerequisites, including an understanding of matrices, vectors.[6]  

In linear algebra, there are two kinds of objects: scalars, which are 

just numbers; and vectors, which can be thought of as arrows, and which 

have both magnitude and direction (though more precisely a vector is a 

member of a vector space). In place of the ordinary functions of algebra, 

the most important functions in linear algebra are called "linear 

transformations", and a linear transformation is usually given by a 

"matrix", an array of numbers. Thus instead of writing f(x) we write M(v) 

where M is a matrix and v is a vector. The rules for using a matrix to 

transform a vector are given in the article linear algebra. 

If the action of a matrix on a (nonzero) vector changes its magnitude 

but not its direction, then the vector is called an eigenvector of that 

matrix. A vector which is "flipped" to point in the opposite direction is 

also considered an eigenvector. Each eigenvector is, in effect, multiplied 

by a scalar, called the eigenvalue corresponding to that eigenvector. The 

eigenspace corresponding to one eigenvalue of a given matrix is the set of 

all eigenvectors of the matrix with that eigenvalue. 

Many kinds of mathematical objects can be treated as vectors: 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Linear_transformations
http://en.wikipedia.org/wiki/Linear_transformations
http://en.wikipedia.org/wiki/Matrix
http://en.wikipedia.org/wiki/Vector
http://en.wikipedia.org/wiki/Matrix_factorization
http://en.wikipedia.org/wiki/Finance
http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Linear_algebra
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ordered pairs, functions, harmonic modes, quantum states, and 

frequencies are examples. In these cases, the concept of direction loses its 

ordinary meaning, and is given an abstract definition. Even so, if this 

abstract direction is unchanged by a given linear transformation, the 

prefix "eigen" is used, as in eigenfunction, eigenmode, eigenface, 

eigenstate, and eigenfrequency. 
When a transformation is represented by a square matrix A, the 

eigenvalue equation can be expressed as shown in eq.(1) 
…….(1) 

This can be rearranged to be shown in eq.(2) 

…….(2) 
If there exists an inverse to be shown in eq.(3) 

………...(3) 
then both sides can be left multiplied by the inverse to obtain the 

trivial solution: x = 0. Thus we require there to be no inverse by assuming 
from linear algebra that the determinant equals zero: 

det(A − λI) = 0.  
The determinant requirement is called the characteristic equation 

(less often, secular equation) of A, and the left-hand side is called the 
characteristic polynomial. When expanded, this gives a polynomial 
equation for λ. The eigenvector x or its components are not present in the 
characteristic equation.

   
[3][6] 

 

5.  Backpropagation network 
Backpropagation, or propagation of error, is a common method of 

teaching artificial neural networks how to perform a given task. It was 
first described by Arthur E. Bryson and Yu-Chi Ho in 1969, but it wasn't 
until 1986, through the work of David E. Rumelhart, Geoffrey E. Hinton 
and Ronald J. Williams, that it gained recognition, and it led to a 
“renaissance” in the field of artificial neural network research. 

It is a supervised learning method, and is an implementation of the 
Delta rule. It requires a teacher that knows, or can calculate, the desired 
output for any given input. It is most useful for feed-forward networks 
(networks that have no feedback, or simply, that have no connections that 
loop). The term is an abbreviation for "backwards propagation of errors". 
Backpropagation requires that the activation function used by the 
artificial neurons (or "nodes") is differentiable. [7] 
 

5.1  Complex Problems 
The field of neural networks can be thought of as being related to 

artificial intelligence, machine learning, parallel processing, statistics, and 
other fields. The attraction of neural networks is that they are best suited 
to solving the problems that are the most difficult to solve by traditional 
computational methods.  

http://en.wikipedia.org/wiki/Ordered_pair
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Harmonic
http://en.wikipedia.org/wiki/Quantum_states
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Eigenfunction
http://en.wikipedia.org/wiki/Eigenmode
http://en.wikipedia.org/wiki/Eigenface
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Arthur_E._Bryson
http://en.wikipedia.org/wiki/Yu-Chi_Ho
http://en.wikipedia.org/wiki/David_E._Rumelhart
http://en.wikipedia.org/wiki/Geoffrey_E._Hinton
http://en.wikipedia.org/w/index.php?title=Ronald_J._Williams&action=edit&redlink=1
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Delta_rule
http://en.wikipedia.org/wiki/Feed-forward
http://en.wikipedia.org/wiki/Activation_function
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Differentiable
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Consider an image processing task such as recognizing an 

everyday object projected against a background of other objects. This is a 

task that even a small child's brain can solve in a few tenths of a second. 

But building a conventional serial machine to perform as well is 

incredibly complex. However, that same child might NOT be capable of 

calculating 2+2=4, while the serial machine solves it in a few 

nanoseconds.  

A fundamental difference between the image recognition problem 

and the addition problem is that the former is best solved in a parallel 

fashion, while simple mathematics is best done serially. Neurobiologists 

believe that the brain is similar to a massively parallel analog computer, 

containing about 10^10 simple processors which each require a few 

milliseconds to respond to input. With neural network technology, we can 

use parallel processing methods to solve some real-world problems where 

it is very difficult to define a conventional algorithm.[8][9] 

 

5.2  The Feed-Forward Neural Network Model 

If we consider the human brain to be the 'ultimate' neural network, 

then ideally we would like to build a device which imitates the brain's 

functions. However, because of limits in our technology, we must settle 

for a much simpler design. The obvious approach is to design a small 

electronic device which has a transfer function similar to a biological 

neuron, and then connect each neuron to many other neurons, using RLC 

networks to imitate the dendrites, axons, and synapses. This type of 

electronic model is still rather complex to implement, and we may have 

difficulty 'teaching' the network to do anything useful. Further constraints 

are needed to make the design more manageable. First, we change the 

connectivity between the neurons so that they are in distinct layers, such 

that each neuron in one layer is connected to every neuron in the next 

layer. Further, we define that signals flow only in one direction across the 

network, and we simplify the neuron and  synapse design to behave as 

analog comparators being driven by the other neurons through simple 

resistors. We now have a feed-forward neural network model that may 

actually be practical to build and use.  

Referring to figures 2 and 3, the network functions as follows: 

Each neuron receives a signal from the neurons in the previous layer, and 

each of those signals is multiplied by a separate weight value. The 

weighted inputs are summed, and passed through a limiting function 

which scales the output to a fixed range of values. The output of the 

limiter is then broadcast to all of the neurons in the next layer. So, to use 

the network to solve a problem, we apply the input values to the inputs of 

the first layer, allow the signals to propagate through the network, and 

read the output values. 
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Figure 2: A Generalized Network 

 
A generalized network can be seen in figure(2), Stimulation is 

applied to the inputs of the first layer, and signals propagate through the 

middle (hidden) layer(s) to the output layer. Each link between neurons 

has a unique weighting value. 

 

 

 

 

 

 

 

 

 
Figure 3: The Structure of a Neuron 

 
The structure of the neuron can be seen in figure(3), Inputs from 

one or more previous neurons are individually weighted, then summed. 

The result is non-linearly scaled between 0 and +1, and the output value 

is passed on to the neurons in the next layer.  

Since the real uniqueness or 'intelligence' of the network exists in 

the values of the weights between neurons, we need a method of 

adjusting the weights to solve a particular problem. For this type of 

network, the most common learning algorithm is called Back Propagation 

(BP). A BP network learns by example, that is, we must provide a 

learning set that consists of some input examples and the known-correct 

output for each case. So, we use these input-output examples to show the 

network what type of behavior is expected, and the BP algorithm allows 

the network to adapt.  

The BP learning process works in small iterative steps: one of the 

example cases is applied to the network, and the network produces some 

output based on the current state of it's synaptic weights (initially, the 



Ghada thanoon talee 

84 

output will be random). This output is compared to the known-good 

output, and a mean-squared error signal is calculated. The error value is 

then propagated backwards through the network, and small changes are 

made to the weights in each layer. The weight changes are calculated to 

reduce the error signal for the case in question. The whole process is 

repeated for each of the example cases, then back to the first case again, 

and so on. The cycle is repeated until the overall error value drops below 

some pre-determined threshold. At this point we say that the network has 

learned the problem "well enough" - the network will never exactly learn 

the ideal function, but rather it will asymptotically approach the ideal 

function.  

Summary of the backpropagation technique: 

1. Present a training sample to the neural network.  

2. Compare the network's output to the desired output from that 

sample. Calculate the error in each output neuron.  

3. For each neuron, calculate what the output should have been, and a 

scaling factor, how much lower or higher the output must be 

adjusted to match the desired output. This is the local error.  

4. Adjust the weights of each neuron to lower the local error.  

5. Assign "blame" for the local error to neurons at the previous level, 

giving greater responsibility to neurons connected by stronger 

weights.  

6. Repeat from step 3 on the neurons at the previous level, using each 

one's "blame" as its error. [8][9][10] 

 

5.3  Research  algorithm 

  Actual algrithm for a 3-layer network (only one hidden layer): 

  Initialize the weights in the network (often randomly)  

Do 

For each example e in the training set 

O = neural-net-output(network, e) ; forward pass 

T = teacher output for e 

Calculate error (T - O) at the output units 

Compute delta_wh for all weights from hidden layer to output layer ; 

backward pass 

Compute delta_wi for all weights from input layer to hidden layer ; 

backward pass continued 

Update the weights in the network 

Until all examples classified correctly or stopping criterion satisfied 

Return the network.[7] 

 
6.  PROPOSED PROCEDUR 

The proposed algorithm can be summarized by the following steps:- 
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Figure(4): original image 

Step-1 :  

Enter the image which contains the shapes that will be recognize (circle, 

rectangle, triangle, polygon, star,…,etc). 

Step-2 :  

Scanning  process to select the shape which will be entered to the system. 

Step -3: 

Size re-arrangement: in this task the size of the selected shape will be in 

different sizes, so to make a standardized size for the whole shapes used, 

the proposed technique 

Setp-4 : eigenvalue evaluation 

Compute the eigenvalues for the shape and eigenvectors  

Step 5: 

Make the eigenvector as inputs to a neural network(backpropgation) 

and this network will recognize the shape from other shapes 

 
7.  Results discussion (with sample example) 
1. The studied shapes shown in figure(4) adopted to be as input. Shown 

shapes was ploted using paint software then scanned to be stored. 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 

                                                                    
2. After scanning process will get a shape from original image.  

3. A polygon will be selected (as example).  

4. After resizing the image we will eliminate all the lines in horizontal 

and verticals, i.e. the polygon was truncated, the process can be seen 

very clear in figure(5), and figure(6) so the result image of truncated 

process is shown in figure(7).   
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5. Compute eigenvalue for the image whose value explain in table(1), 

the number of eigenvalue equal to size of the image (Row*Colum). 

 
Table(1): eigenvalue for polygon shape 

 

6. These value used as an input to backprogation neural network and the 

results describe in the figure (8). 

sequences 

Eigenvalue 

real Imaj real imaj Real imaj real Imaj real Imaj 

1 1.0e*+002 1.1423+0 -0.2225 +0 0.0686+0 
-0.0199 

+0.0147i 

 

2 

-0.0199 – 

0.0147i 
0.0253+0 

0.0086 + 

0.0186i 

0.0086 - 

0.0186i 

-0.0064 

+0.0163i 

3 
-0.0064 – 

0.0163i 
0.0174+0 

-0.0115 

+0.0088i 

-0.0115 -

0.0088i 

-0.0124 

+0.0016i 

4 
-0.0124 – 

0.0016i 

0.0075 + 

0.0095i 

0.0075 - 

0.0095i 

0.0015 + 

0.0117i 

0.0015 - 

0.0117i 

5 
0.0103 + 

0.0024i 

0.0103 - 

0.0024i 

-0.0077 

+0.0057i 

-0.0077 - 

0.0057i 

0.0003 - 

0.0085i 

. 

. 

. 

0.0067 + 

0.0035i 

0.0067 - 

0.0035i 

0.0040 + 

0.0062i 

-0.0022 

+0.0065i 
------- 

 

Figure(5): Truncated polygon 

 

Figure(7): Result of truncated process 

 

Figure(6): Truncated polygon 
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Table(2): results of applied shapes 

Shape Actual value Target Excution time Epoch Size Error 

Circle 0.906342 1 0.1090 11 1*128 0.0936578 

Circle 0.980561 1 0.1250 7 1*64 0.019439 

Circle 0.919055 1 0.1250 7 1*32 0.080945 

Circle 0.953084 1 0.1400 3 1*50 0.046916 

Trangle 1.91219 2 0.1250 1 1*128 0.08781 

Trangle 1.92867 2 0.1090 6 1*64 0.07133 

Trangle 1.92015 2 0.1250 2 1*32 0.07985 

Trangle 1.9529 2 0.0940 2 1*50 0.0471 

Polygon 2.96324 3 0.0780 2 1*128 0.03676 

Polygon 2.95198 3 0.1090 4 1*64 0.04802 

Polygon 2.91479 3 0.0940 4 1*32 0.08521 

Polygon 2.94658 3 0.0940 2 1*50 0.05342 

Rectangle 3.91088 4 0.0940 3 1*128 0.08912 

Rectangle 3.97946 4 0.0780 3 1*64 0.02054 

Rectangle 3.9587 4 0.0940 2 1*32 0.0413 

Rectangle 3.93627 4 0.0940 2 1*50 0.06373 

Cross 4.94287 5 0.1100 3 1*128 0.05713 

Cross 4.98591 5 0.0930 1 1*64 0.01409 

Cross 4.72595 5 0.1090 2 1*32 0.27405 

Cross 4.9719 5 0.1090 1 1*50 0.0281 

Star 5.95725 6 0.0907 1 1*128 0.04275 

Star 5.99071 6 0.1250 1 1*64 0.00929 

Star 5.81463 6 0.7080 3 1*32 0.18537 

Star 5.35593 6 0.1100 1 1*50 0.64407 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

0

10
1

2 Epochs
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lu

e 
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Performance is 2.96324, Goal is 3

Figure(8): explain result of training process 
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7. Table(2) show the output of the applied shapes on the network in 
addition to the error (which can be seen very low), also the applied 
algorithm was stable with different image size.  

 
7.  Conclusion:                                         
 using eigenvalues as a feature for geometric shapes in digital image 

gave high recognition even in image containes different geometrical 
shapes. 

 neural network (backpropagation net) will speed up the process 
specially when we adopt training types. 

 gemoetrical shapes recognition are so important to be recognized by 
using mathmatical models, using eigenvalues will be new 
scientifical approch. 

 big difference can be seen between different shapes even may they 
are littelbit closed to each others                               
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