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Abstract

In this paper, a new hybrid nonlinear conjugate gradient method are
presented, which produce sufficient descent search direction at every
iteration. This methods showed globally convergent under some
assumptions. The numerical results show that all this new hybrid method
are efficient for the given test problems.
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Introduction
Let us consider the unconstrained optimization problem
min{f() | xeR" § L. @
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where f :R" — R is a continuously differentiable function, bounded from
below. For solving this problem, starting from an initial guess x, e R", a
nonlinear conjugate gradient method, generates a sequence {x,} as :

Xea =X T dy

where ¢, is the step-size, and the direction d, are generated as
dk+1 = =0k +:Bkdkv do =—0, . 3

where g, is known as the conjugate gradient parameter, v, =x,,, —x, and
g, = Vf(x)[1]. The step size «, is chosen in such a way that «, >0 and

satisfies the strong Wolfe (SW ) conditions
f(x +d)<f(x)+6adlg, e (4)

‘g(xk +akdk)Tdk‘ <=&degc e ®)

with 0< ¢, <5, <1, where f, = f(x.), 9, =9(x.), g, are the gradient of f
evaluated at the current iterate x, [7]. Where d, is a descent direction.
Different conjugate gradient algorithms correspond to different choices for
the parameter g, . For example Fletcher and Reeves (FR) [6], Dai and Yuan
(DY) [4] and Conjugate Descent (CD) [5] :

T T T
ﬂFR _ gk+lgk+l ﬂDY _ gk+1gk+1 ﬂCD _ gk+lgk+l
k= LV ad § - LV ad 3

9¢ 0 yid, ~ oid,

They have strong convergence properties, but they may have modest
practical performance due to jamming. On the other hand, the methods of
Polak and Ribiere (PR) [9], Hestenes and Stiefel (HS) [7], or Liu and
Storey, (LS) [8] :

BPR = ngYk lBHS
K = v Py
glgk

C (6)

_ g:+lyk ,Bkl‘s _ ngYk

yid, oo

in general, may not be convergent, but they often have better computational
performances.

Also, under mild assumptions on the objective function, DY method
iIs shown to be globally convergent under a variety of line search
conditions. These advantages motivated us to study the hybridizations of
HS and DY methods following the effective approach proposed in [2,3 and
11]. The formula g, in [2,3], namely ¢, is obtained by a convex

combination of g *and g°". That is,

T T
BE = Q-0 +0,8% = 1-0,) ey g Jeadea (8)

T

Yi dy yldk
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where ¢, , namely the hybridization parameter, is a scalar parameter

satisfying 0<¢, <1. Therefore, Substituting (8) into (3), we get :

T T
dk+l:_gk+l+(1_9k)Mdk +0k%dk! .......... (9)
kdk k ~k
Or equivalently,
T T
At = =0 +(1-6) gk;lyk v, +6, %vk. .......... (10)
Yi Vi k Vi

As known, if the point x,_, is close enough to a local minimizer x*, then a

good direction to follow is the Newton direction, that is,
di=GCaGea- e (1

Motivated by this, Andrei [2,3] rewrite (10)as follows :
g-kr+lyk +9 g-kr+lgk+l

=Gy Gia =~k A= 0) 5V + 6 TRy L 12)
Yi Vi Y Vi
After some algebraic manipulations one obtains :
Oy
V:—Gk+lgk+l _VII Oy — ;Tl k V-ker+le

0, = - k_k . (13)

gk}rlgk VIGkﬂvk

Yi Vi

In quasi-Newton methods, an approximation matrix B, for the
Hessian G, is used and updated so that the new matrix B, , satisfies a
version of the secant equation. In [2], B,., IS determined to satisfy the
standard secant equation, that is, B,,,v, =y, . Therefore, g, is computed by

T
_ Vk gk+l

6, = :
‘ g;(r+lgk

In [3], B,,, is determined to satisfy the modified secant equation
proposed by Li et al. [10],
BoaVi = Vi v Ve, e (15)

where
me=2(f = f )+ (G +9) Vi 16)

and so ¢, is computed by
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.
nik_l Vi Oyt — ngﬂyk un

0, = vl W -~ 17)

‘ r L Oia0,

Ol T yi P

k Tk

Now, using (17) in (10) we get :

Oy M | Ve
dk+l=_gk+l+ '|'kl < Vi — 1- k2 Tk = Ve (18)
||Vk|| Yi Vi + 77

However, using exact line searches (v, g,,, =0) in (18), the direction
d,,, reduced to

-
dk+l = _gk+l + ka o e, (19)

-
Y Vi 7

It was shown in [3] that the hybrid CG method with g, as in (17)

incorporated with an acceleration scheme is more efficient than the HS and
DY method, and the hybrid CG methods proposed Andrei [2].

The structure of the paper is as follows. In section 2, we present the
new hybrid conjugate gradient algorithm. Section 3 presents a new
Algorithm and Convergence analysis. Section 4 numerical results are
presented and In section 5 discuss the we give brief conclusions and
discussions.

2. A new hybrid conjugate gradient algorithm

We develop the secant equation based on the modified BFGS
method proposed by Li et al. [10]. For this purpose, in order to unify both
approaches, we consider a slight modification of the modified secant
condition (15) as

B..v, =z, Where z, =uy +@-u)nv /v, e (20)

This leads us to development a hybrid conjugate gradient algorithm (10)
where

|:|| ” jlvk gk+l gkﬂyk (1 u )77k
0. — k

Uy Yk Vi S (21)
Or.10s
T

kJk Tk

k

gk+1gk + L-u)n,

Now, using (21) in (10) we get :
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OV U Ve Gyt
d.,=-0.,+ v, —|1- Vo e (22)
T Uy -u)n, { szjlukygvk-l_(luk)nk k

Using exact line searches (v, g,,, =0) in (22), the direction d,., defined in
(22) reduced to

g;—+lyk
‘-
Uy yIVk +@-u)n,

dk+1 = _gk+1 +

Where u [0, 1] is a constant. Our motivation to get a good algorithm for
solving (1) is to choose the parameter u in (12) in such a way so that for
every k >1 the direction d,,, given by (23) is the Newton direction. This is
motivated by the fact that when the initial point x, is near the solution of
(1) and the Hessian is a nonsingular matrix then the Newton direction is the
best line search direction. Therefore, from the equation

Orer Vi

-Gt =—Q,.. + e . 24
gk+l gk+1 ukygvk +(1_uk)77k k ( )
Multiplying (24) by vy, , we have
T
_Gily;—gkﬂ :_y-krgkﬂ + T ngrlyk y:—Vk """"" (25)
U Y, Vi +@=u)n,
Since Gy, =v, then we have
T _ T g;—+l yk T 26
ViOa = Ye O +—— YeVi e (26)
U Yy Vi +(@=u)m,
from (26) we get :
g;+lyk — _Vl—gk+1+y;—gk+1 ..... (27)
uky;-vk +@-u)n, yIVk
(y;gkﬂ)ygvk = (‘Vggm* ylgm) (L-u)m +u, YIVK) (28)
(y;gkq)ygv = (‘Vlgkq)((l_ uk)ﬂk) + (_Vggkﬂ)(ukylvk) t (Yngq)((l-Uk)f?k) + (y;gkﬂ)(ukylvk)
(ylgm)y;v = T (_Vlgkﬂ)_uk’]k(_vlgkﬂ)-l' (29)
(_V;gkﬂ)(ukygvk)+nk(ylgk+1)_ukﬂk(y.krgkﬂ)+(ylgk+l)(ukygvk)
(y-krgk+1)y-krv+ﬂk(v.krgk+1)_nk(yggk+1) = (30)
u [, (_V;gk+1)+(_V;gkﬂ)(ygvk)‘Uk(YEgm)+(y;gk+1)(ygvk)]
and from (30) we get :
U = (yzgku)YIV“?k(Vngu)—Wk(ylgm) (31)

/) (_VI Oea) * (_VI gk+1)(y;Vk) /! (yl k) t (YI gm)(YIVK)
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3. New Algorithm and Convergence
We analyze the convergence property of the hybrid CG-method
using our newly proposed formal as in (23). Throughout this section, we

assume g,,, =0, for k>1 , otherwise, a stationary point is at hand. We
make the following basic assumptions on the objective function.

Assumptions
i- The level set 1={xeR"[f(x)< f(x,)} is bounded, there exists a
constant B >0 such that
IX|<B, vxel. L. (32
Ii- In some neighborhood U of L, f(x) is continuously differentiable

and its gradient is Lipschitz continuous, namely, there exists a constant

>0 such that

la(e) 9| S Lxea =%y VX X €U (33)

3.1. The Algorithm has the Following Steps :

Step 0 : Given parameters £ =1*10"°, 6, (0)) , 5, € (0,1/2)
choose initial point x, e R", k=1, d, =-g, .

Step 1: Computing g, ; if |g,[ <& then stop ; else continue .

Step 2: Set x., =x +a.d, , (Use strong Wolfe line search technique to
compute the parameter «, ).

Step 3: Compute u, is defined by (31). If u, <0 then u, =0

and ifu, >1 thenu, =1

. 9.1 Vi
Step 4 : Set g, = :
‘ Ukyzdk +@1-u)n,

Step5: Compute d, , =-g,,, + £.d,,
Step6: If k =n goto Step 1 with new values of x,,, and g,.,.

If not continue.
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Theorem (3.1)

Assume that f is a convex function and ¢, in algorithm (2) and
(23) , where ¢, is given by (31), is determined by the strong Wolfe
conditions (4)-(5). If 0<4, <1 then the direction d,., given by (23) is a
sufficient descent direction.

Proof.
Since d, =-g,, we have gJd, <g,|* <0. Assume by induction that

ord, <—c|g,|* <0 where 0<c<1 ... (33

which is a sufficient descent direction. To complete the proof, we have to
show that the theorem is true for k +1

Ol = ||gk+l|| + B UV

B , 9l V. S e (34)
B ”gk+1” ’ U YV + @=u)7, e

The second term in (34) can be written

OraYi (GeaVi)  _ (GeaY ) Uy + @-U)m)(9eavi)

U YeVy +@—u)m, U YV + @=u)n,)?
v+ a-u)n)ge ] lerv)y.
U YV +@-u)n,)’?
(ukykvk + W= )77 9] + (1) [y

2 (UkYka +@-u )77k)

(907 yi]”
2 (U Ye vy +@Q-u)m)?

..(35)

= ol +
2
Now, using (35) in (34) we get

PO P - PR 7 - @0
k+1* k+1 k+1 k+1 2(ukygvk+(1_uk)77k)2

Observe that the last term in (36) tends to zero very fast. Therefore, the

direction d, , satisfies the sufficient descent condition :

g Lrld k;rl < -
||gk+1

where c is a positive constant, and c~1/2.
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Dai et al. [4] proved that for any conjugate gradient method with

strong Wolfe line search the following general result holds :

Lemma (3.1)

Suppose that the assumptions (i) and (ii) hold and consider any

conjugate gradient method (2) and (3), where d, , is a descentdirectionand

a, 1s obtained by the strong Wolfe line search (3) and (4). If

1
> =00, (38)
k>0 ||dk+1||2
then
Iirp inf g ./=0. (39)

As we know, if f isa uniformly convex functions, then there exists
a constant x>0 such that

(VE)-VE(Y) (x—y) > gfx—y|" ,forany x,yes. - (40)
Equivalently, this can be expressed as
002 D+ VI -+ S lx-yf , for any (41

X,y eS.
From (40)and (42) it follows that

YeVie 2 v, ”2
fo = foo = =010V, +§||vk 7.
Obviously, from (38) we get :
wvi” < vive <Uv’s iems<i. e (43)
More details can be found in [2,3].

Using the above relations (42) and (43) we have
Ay yIVk +(1-4,)0, :ﬂ’kygvk +(1=4)QF — f0) + (94 + gk)TVk)
2 Ay Yi + 200+ )+ 00+ 907w)

= YIVk +(1_/1kk)(_291+1vk +2,U||Vk "2 + ngVk + glvk)
= (4 + 4 =D ypv, + (=2, )
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AV L2624 -Dylv, +(1—zk)fylvk

= (24, —1+(1—zk)%)y;vk ---------- (45)
= mygvk
Now, if L > », then the right hand side of (45) is positive, that

uy,v, +@-u)é, >my/v, where m=2u, —1+(1—uk)%

Theorem (3.2)
Suppose that the assumptions (i) and (ii) hold and descent condition
(37) hold. Consider the hybrid CG method in the form of (23) with u,
defined by (31), where «, is computed using the strong Wolfe line search
(3) and (4). If the objective function f is uniformly convex
IirkTLinf l9,..]=0
Proof :

Because the descent condition holds, we have d,., =0. So, using

Lemma 1, it is sufficient to prove that |d,,,| is bounded above. From (23),
we have

OraYi H
d al = 7 9%kat v
” ‘ l” H “ uky:dk +@=u, ), ‘

‘ng)/k‘

<llg,.|+
o ‘uky;dk +@A-u ),

‘ -

Now, from (43)and (46) we have :
LIV (|9
0| < Unllgsl

mL|v, [
eLfv
” k”2 ” ” .......... (49
"y,

e

||9|<+1

—

IA
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This relation implies

1 21
2 LHJ —zkz .......... (49)

A d,s| £

Therefore, from Lemma (3.1) we have liminf ||g,,[ =0, which for
k—o0

uniformly convex function is equivalent to lim |g,,,[=0
k—o0

4. Numerical Results

In this section, we reported some numerical results obtained with the
implementation of the new algorithm on a set of unconstrained
optimization test problems. We have selected (10) large scale
unconstrained optimization problems in extended or generalized form, for
each test function, we have considered numerical experiment with the
number of variable n=100-1000. Using the standard Wolfe line search
conditions (4) and (5) with &, =0.0001 and &, =0.1 In the all these cases,

the stopping criteria is the | g,|| <10°. The programs were written in Fortran

90. The test functions were commonly used for unconstrained test
problems with standard starting points and a summary of the results of
these test functions was given in Tables (3.1) and (3.2) . We tabulate for
comparison of these algorithms, the number of function evaluations
(NOF) and the number of iterations (NOI) .

Table (4.1)
DY-algorithm New-algorithm
No. n NOF NOF
(NOI) (NOI)
1 100 252 160
(33) (24)
1000 336 199
(39) (26)
2 100 299 263
(121) (110)
1000 2492 2250
(1001) (1001)
3 100 218 246
(105) (105)
1000 2025 278
(1005) (120)
4 100 277 60
(94) (21)
1000 279 61
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(95) (21)
5 100 216 40
(103) (16)
1000 554 39
(73) (16)
6 100 209 22
(102) (8)
1000 561 22
(278) (8)
7 100 97 63
(37) (23)
1000 116 72
(47) 27)
8 100 115 101
(57) (50)
1000 273 141
(130) (70)
9 100 77 27
(37) (11)
1000 85 27
(41) (11)
10 100 79 84
(14) (14)
1000 163 134
(31) (25)
Total 8723 (3443) 4289 (1707)

Conclusions and Discussions

In this paper, we have proposed a new hybrid method for solving
unconstrained minimization problems. The computational experiments
show that the new approaches given in this paper are successful.

Table (4.2) gives a comparison between the new hybrid -algorithm
and the DY -algorithm for convex optimization , this table indicates that the
new algorithm saves (49.57)% NOI and (49.16)% NOF, overall against the

standard DY -algorithm, especially for our selected test problems.

Relative Efficiency of the Different Methods Discussed in the Paper.

Tools NOI NOF
DY-CG 100 % 100 %
New 50.43 % 50.84 %
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Appendix
1.Cantrell function:

n/4
f (X) = Z[eXp(X4i—3) - X4i—2]4 +1OO(X4i—2 - x4i—1)6 + [tan 71(X4i—l — Xy )]4 + Xii—s

i=1
Startingpoint: (4, 2, 2, 2,.cccueuv e )’
2.Miele function:

n/a
f(x)= Z[EXP(XM—s) — X4 517 +100(Xy; 5 = X451)® +[tan(X, 4 — X4i)]* + X5 5 + (X, —1)*
i=1

Startingpoint: (1, 2, 2, 2,.cccevecuneee. )T

3.Generalizal powell function:

n/4
f(x)= Z (Xaiza _10X4i—2)2 +5(X4i0 — Xy )2+ (Xgica — 2Xy; )? +10(X4; 9 — X4 )t + (Xgio = 2%40 — Xy, )?)
i=1

Startingpoint: (3,=1,0,L..ccccs cevvvreree e )’

4.Rosenbrock function:
n/2

f(x)= Z(loO(XZi —X5i4)% + (A= Xy,)?)
i=1
Starting point:(-1.2,1,-1.2,1,.....) "
5.Cubic function:
n/2
f(x)= Z(lOO(XZi — X5 4)? + (@A —X34)?)
i=1
Startingpoint:(—1.2,1,—1.21,.....) "
6.Penalty2 function:
f(x) =e™OD" 4 (x(i)? - 0.25)?

Starting point: (L2, ..cccccoveceveveuene e )’
7.Non —diagonal function:
n/2
f () =X (@00(x; —x7)? + (L —X;)?)
i=1
Startingpoint:(—1,...ccccc. ceeeeeenn .. )T

8.Welfe function;

f(X) = (-x,(3- % /2) +2x, -1)’ +ni(xi_l—xi(3—xi (B3-%12)+2x.,

i=1

_1)2 + (Xn+l -X (3Xn /2 _1)2

Starting point: (=1, oo cevvvvveee s )
9.Shallow function:
n/2
f(x)= Z ((X22i—l — Xy Xgi—l)z +@1- X2i—l)2)
i=1
Starting point:(—2,.....ccc.cevvevne. .. )’
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10.Sum of Quartics function:
f00= 04"
i=1

Starting point: (2, v vevvveee )
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