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Abstract 
   In this paper, a new hybrid nonlinear conjugate gradient  method are 

presented, which produce sufficient descent search direction at every 

iteration. This methods showed globally convergent under some 

assumptions. The numerical results show that all this new hybrid method 

are efficient for the given test problems.  

 
 ملخص ال

الهجينيذة  ققذر بتبتذ   التذرر  التتراف   ة من خوارزميذا   خوارزميذ  اقتراح  حذ  ت في هذاا ال 
تقارب شامل   يقةققر بظهر  هاه الطر الطريقة إن لها اتجاه بح  ذق انحرار كافي عنر كل تكرار  

دقال قذلك بتطبيقها على   تهاكفاءلهاه الطريقة  النتائج العردية   قبظهر   تح  بعض الفرضذذذذذذذذذذذذيا  
 .اخت ار معطاة

Introduction 
Let us consider the unconstrained optimization problem 

                      nRxxf )(min  )1(..........  
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where RRf n →:  is a continuously differentiable function, bounded from 

below. For solving this problem, starting from an initial guess ,0

nRx   a 

nonlinear conjugate gradient method, generates a sequence  kx  as : 

                      kkkk dxx +=+1  )2(..........  

where k  is the step-size, and the direction kd   are generated as   

                     ,11 kkkk dgd +−= ++ 00 gd −=  )3(..........  

where k  is known as the conjugate gradient parameter, kkk xxv −= +1  and 

)( kk xfg = [1]. The  step size k  is chosen in such a way that 0k  and 

satisfies the strong Wolfe (SW ) conditions 
               

k

T

kkkkkk gdxfdxf  1)()( ++  )4(..........  

                  
k

T

kk

T

kkk gdddxg 2)(  −+  )5(..........  

with 10 21   , where )( kk xff =  , )( kk xgg = , kg  are the gradient of f  

evaluated at the current iterate kx [7]. Where kd  is a descent direction. 

Different conjugate gradient algorithms correspond to different choices for 

the parameter k . For example Fletcher and Reeves (FR) [6], Dai and Yuan 

(DY) [4] and Conjugate Descent (CD) [5] : 
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They have strong convergence properties, but they may have modest 

practical performance due to jamming. On the other hand, the methods of 

Polak and Ribiere (PR) [9], Hestenes and Stiefel (HS) [7], or Liu and 

Storey, (LS) [8] : 
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in general, may not be convergent, but they often have better computational 

performances. 

  

Also, under mild assumptions on the objective function, DY method 

is shown to be globally convergent under a variety of line search 

conditions. These advantages motivated us to study the hybridizations of 

HS and DY methods following the effective approach proposed in [2,3 and 

11].     The formula k  in [2,3], namely C

k , is obtained by a convex 

combination of HS

k and DY

k . That is,   
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where k , namely the hybridization parameter, is a scalar parameter 

satisfying  10  k . Therefore, Substituting )8(  into )3( , we get : 

       ,)1( 111
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Or equivalently,  
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As known, if the point 1+kx  is close enough to a local minimizer *x , then a 

good direction to follow is the Newton direction, that is,  
      .1

1

11 +

−

++ −= kkk gGd  )11(..........  

Motivated by this, Andrei [2,3] rewrite )10( as follows : 
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After some algebraic manipulations one obtains : 
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 In quasi-Newton methods, an approximation matrix kB  for the 

Hessian kG  is used and updated so that the new matrix 1+kB  satisfies a 

version of the secant equation. In [2], 1+kB  is determined to satisfy the 

standard secant equation, that is, kkk yvB =+1 . Therefore, k  is computed by 

: 

                        .
1

1
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k
gg

gv
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+=  )14(..........  

In [3], 1+kB  is determined to satisfy the modified secant equation 

proposed by Li et al. [10],  

                        ,/
2

1 kkkkkk vvyvB +=+  )15(..........  

 

 

where  
                        ,)()(2 11 k

T

kkkkk vggff ++−= ++  )16(..........  

and  so k  is computed by  
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Now, using )17(  in )10( we get : 
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However, using exact line searches ( 01 =+k

T

k gv ) in )18( , the direction 

1+kd  reduced to 
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It was shown in [3] that the hybrid CG method with k  as in )17(  

incorporated with an acceleration scheme is more efficient than the HS and 

DY method, and the hybrid CG methods proposed Andrei [2]. 

 

The structure of the paper is as follows. In section  2,  we present the 

new hybrid conjugate gradient algorithm. Section 3 presents a new 

Algorithm and Convergence analysis. Section 4 numerical results are 

presented and In section 5 discuss the we give brief conclusions and 

discussions. 

 

2. A new hybrid conjugate gradient algorithm  

 We develop the secant equation based on the modified BFGS 

method proposed by Li et al. [10]. For this purpose, in order to unify both 

approaches, we consider a slight modification of the modified secant 

condition )15(  as 

    kkk zvB =+1   where   ,/)1(
2

kkkkkkk vvuyuz −+=  )20(..........  

 This leads us to development a hybrid conjugate gradient algorithm )10(  

where  
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Now, using )21(  in )10( we get : 
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Using exact line searches ( 01 =+k

T

k gv ) in )22( , the direction 1+kd defined in 

)22(  reduced to 
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Where  1,0u  is a constant. Our motivation to get a good algorithm for 

solving )1(  is to choose the parameter u  in )12(  in such a way so that for 

every 1k  the direction 1+kd  given by )23(  is the Newton direction. This is 

motivated by the fact that when the initial point 0x  is near the solution of 

)1(  and the Hessian is a nonsingular matrix then the Newton direction is the 

best line search  direction. Therefore, from the equation  
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Multiplying )24(  by T
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from )26(  we get : 

k

T

k

k

T

kk

T

k

kkk

T

kk

k

T

k

vy

gygv

uvyu

yg 111

)1(

+++ +−
=

−+ 
  )27.....(  

))(())1)((())(())1)((()(

))1(()()(

11111

111

k

T

kkk

T

kkkk

T

kk

T

kkk

T

kkkk

T

k

T

kk

T

k

k

T

kkkkk

T

kk

T

kk

T

kk

T

k

vyugyugyvyugvugvvygy

vyuugygvvygy

+++++

+++

+−+−+−−=

+−+−=




    )28.(  

))(()()())((

)()()(

1111

111

k

T

kkk

T

kk

T

kkkk

T

kkk

T

kkk

T

k

k

T

kkkk

T

kk

T

kk

T

k

vyugygyugyvyugv

gvugvvygy

++++

+++

+−+−

+−−−=




   )29......(  

)])(()())(()([

)()()(

1111

111

k

T

kk

T

kk

T

kkk

T

kk

T

kk

T

kkk

k

T

kkk

T

kk

T

kk

T

k

vygygyvygvgvu

gygvvygy

++++

+++

+−−+−−

=−+




    )30......(  

and from )30(  we get : 
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3. New Algorithm and Convergence  

  We analyze the convergence property of the hybrid CG-method 

using our newly proposed formal as in )23( . Throughout this section, we 

assume 01 +kg , for 1k  , otherwise, a stationary point is at hand. We 

make the following basic assumptions on the objective function.  

 

 

 Assumptions  

      i- The level set  )()( 0xfxfRxl n =  is bounded, there exists a 

constant 0B  such that  

., lxBx     )32(..........  

      ii- In some neighborhood U  of )(, xfL  is continuously differentiable 

and its gradient is Lipschitz continuous, namely, there exists a constant 

0  such that 

.,,)()( 111 UxxxxLxgxg kkkkkk −− +++    )33(..........  

 

 3.1. The  Algorithm has the Following Steps : 

Step 0 :  Given parameters )2/1,0(,)1,0(,10*1 21

5 = −   

              choose initial point nRx 0 , kk gdk −== ,1  .    

Step 1 :  Computing kg  ; if  kg  then stop ; else continue . 

Step 2 :  Set kkkk dxx +=+1 , (Use strong Wolfe line search technique to  

               compute the parameter k ). 

Step 3 :  Compute ku  is defined by )31( . If 0ku  then 0=ku  

                  and  if 1ku   then 1=ku  

Step 4 :  Set 
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Step 5 :   Compute ,11 kkkk dgd +−= ++  

Step 6 :  If  nk =  go to  Step 1  with new values of 1+kx   and  1+kg . 

              If not continue. 
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Theorem  (3.1) 

Assume that f  is a convex function and k  in algorithm )2(  and  

)23( , where k  is given by )31( , is determined by the strong Wolfe 

conditions )5()4( − . If  10  k  then the direction 1+kd  given by )23(  is a 

sufficient descent direction. 
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which is a sufficient descent direction. To complete the proof, we have to 
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 Observe that the last term in )36(  tends to zero very fast. Therefore, the 

direction 1+kd  satisfies the sufficient descent condition :     

c
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where c  is a positive constant, and 2/1c . 
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Dai et al. [4] proved that for any conjugate gradient method with 

strong Wolfe line search the following general result holds : 

 

Lemma (3.1)  

  Suppose that the assumptions (i) and (ii) hold and consider any 

conjugate gradient method )2( and )3( , where 1+kd  is a descent direction and 

k  is obtained by the strong Wolfe line search )3(  and )4( . If 
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Theorem  (3.2) 

Suppose that the assumptions (i) and (ii) hold and descent condition 

)37(  hold. Consider  the hybrid CG  method in the form of )23(  with ku  

defined by )31( , where k  is computed using the strong Wolfe line search 

)3(  and )4( . If the objective function f  is uniformly convex 
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Proof : 

Because the descent condition holds, we have 01 +kd . So, using 

Lemma 1, it is sufficient to prove that 1+kd  is bounded above. From )23( , 

we have 

 

         k

kkk

T

kk

k

T

k

k

k

kkk

T

kk

k

T

k

kk

v
udyu

yg
g

v
udyu

yg
gd





)1(

)1(

1

1

1

11

−+
+

−+
+−=

+

+

+

++

    
)48(..........  

Now, from )43( and )46(  we have : 
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This relation implies 
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Therefore, from Lemma (3.1) we have ,0inflim 1 =+
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uniformly convex function is equivalent to 0lim 1 =+
→

k
k

g  .  

 

4. Numerical Results 

In this section, we reported some numerical results obtained with the 

implementation of the new algorithm on a set of unconstrained 

optimization test problems. We have selected (10) large scale 

unconstrained optimization problems in extended or generalized form, for 

each test function, we have considered numerical experiment with the 

number of variable n=100-1000. Using the standard Wolfe line search 

conditions )4(  and )5(  with 0001.01 =  and 1.02 =  In the all these cases, 

the stopping criteria is the 510−kg . The programs were written in Fortran 

90. The test functions were commonly used  for unconstrained test 

problems with standard starting points and a summary of the results of 

these test functions was given in Tables (3.1) and (3.2)  . We tabulate for  

comparison of  these  algorithms, the number of function evaluations 

(NOF) and  the number of iterations (NOI) .                     

 

Table (4.1) 

 

 

No. 

 

 

n 

DY-algorithm 

 

New-algorithm 

 

NOF   

(NOI) 

NOF  

 (NOI) 

1 100 252 

(33) 

160 

 (24) 

1000 336 

(39) 

199  

(26) 

2 100 299 

(121) 

263 

(110) 

1000 2492 

(1001) 

2250 

(1001) 

3 100 218 

(105) 

246  

(105) 

1000 2025 

(1005) 

278 

(120) 

4 100 277 

(94) 

60 

(21) 

1000 279 61 
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(95) (21) 

5 100 216 

(103) 

40 

(16) 

1000 554 

(73) 

39 

(16) 

6 100 209 

(102) 

22 

(8) 

1000 561 

(278) 

22 

(8) 

7 100 97 

(37) 

63 

(23) 

1000 116 

(47) 

72 

(27) 

8 100 115 

(57) 

101 

(50) 

1000 273 

(130) 

141 

(70) 

9 100 77 

(37) 

27 

(11) 

1000 85 

(41) 

27 

(11) 

10 100 79 

(14) 

84 

(14) 

1000 163 

(31) 

134 

(25) 

 Total 8723 (3443) 

 

4289 (1707) 

 

Conclusions and Discussions 

In this paper, we have proposed a new hybrid method for solving 

unconstrained minimization problems. The computational experiments 

show that the new approaches given in this paper are successful.  

 

Table (4.2) gives a comparison between the new hybrid -algorithm 

and the DY-algorithm for convex optimization , this table indicates that the 

new algorithm saves )%57.49(  NOI and )%16.49(  NOF, overall against the 

standard DY-algorithm, especially for our selected test problems. 

 

Relative Efficiency of the Different Methods Discussed in the Paper. 

 

Tools NOI NOF 

DY-CG       100   %    100  % 

New        50.43   %     50.84   % 
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Appendix 
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