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ABSTRACT

The following open problem stated that, if T: A—B is a dense range
homomorphism between Banach algebras A and B such that B is semi-
simple. Is T automatically continuous? (see [1]).

In [3] given a partial solution of the above problem as follows:

Let A and B be Fréchet algebras such that B is semi simple, the
spectral radius rg is continuous on B and the spectral radius rp is
continuous at zero. If T : A — B is a dense range homomorphism, then
T is automatically continuous.

In this paper, we prove the following result :

If T: A* — B" is a dense range homomorphism between Jordan —
Banach algebras A™ and B™ such that B™ is semi simple, the spectral
radius rg+ is continuous on B¥ and the spectral ra+ is continuous
at zero, then T is automatically continuous.

1. Introduction :

If A and B are Banach algebras, B is semi simple and
T: A — B is a dense range homomorphism, then the continuity of T is a
long — standing open problem.

This is perhaps the most interesting open problem remains in
automatic continuity theory for Banach algebras. (see [1]).

We recall that from [2], the radical of an algebra A, denoted by
rad A, is the intersection of all maximal left (right) ideals in A. The
algebra A is called semi simple if rad A= {0}. In [3], for the algebra A
the spectrum of an element x € A is the set of all A € C such that
Al- x is not invertible in A and is denoted by Sp (x) (or by SpA (x) ).
Thus

Sp(x)={ A€eC:A21-x¢&lInv(A)}.

Also let A be Banach algebra, then the spectral radius of x (with
respect to A ) is denoted by r (X) (or ra (x) ) and is defined by the
formula

r(x)=Sup{|1]: 1€ Sp(x) }.
It is known that for any algebra A we have
rad A={xeA:rn(xy)=0 foreveryyeA }

From [6], for X, Y normed spaces and T a linear mapping from X
into Y, then the separating subspace S (T) of T is defined as follows :

SM={yeY: 3K} X, % —0, TX,—Yy,VNEN}

We recall that a complex Jordan algebra A is a non — associative and
the product satisfies the identities a b = b a and (a b) a*> = a(b a%), for
all a, b in A. A unital Jordan — Banach algebra is a Jordan algebra with
a complete norm satisfying |x y|| < |X|| |lyl, for x, y € A, and
II1| = 1. (see [4] ). The well — known example of Jordan — Banach
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algebra is that if we take any Banach algebra A, then A" is a Jordan —
Banach algebra with a product defined as follows :

ab=-(ab+tha)  vabeA

So (A*,.) is Jordan — Banach algebra over a field F of characteri -
stic # 2. (see [5]).

In this paper, we prove that :

Let A" and B* be Jordan — Banach algebras such that B™ is semi-
simple, the spectral radius rg+ is continuous on B™ and the spectral
radius ra+ is continuous at zero. If T: A* — B™ is a dense range
homomorphism, then T is automatically continuous.

This is in fact an extension of the open problem from the associative
case to the more general situation of Jordan — Banach algebras.

2. Fundamental Results :
In this section we prove our fundamental following results

Theorem 2.1 :

Let A* and B* be Jordan — Banach algebras and T: A"— B" a
dense range homomorphism. Then the separating subspace S (T) is a
closed ideal of B”.

Proof :

Clearly S (T) is a closed linear subspace of B+. Lety € S (T) and
z € B™ There exists a sequence {x,} in A" such that x, — 0 and
Tx, — VY. Moreover, z = Tx for some x € A", Hence if x X, = X, X then

X. X, — 0 imply that % (X Xy + Xp X) — 0 and this imply that x x, — 0

and T (X. Xp) :% T (X Xy + Xq X).
= % (T Txy + Txn TX).

=TxTx, —zyandsozy €S (T).
Similarly yz € S (T). Therefore, S (T) is an ideal in B”.

Now, B* = T (A"), fory € S (T) and z € B+ = T (A"), there exist
sequences {x,} in A" and {z.} in T (A") such that x, — 0 in A",
z, — z and TX, — y in B". Since y z,, z, y € S (T) and
Yz, = yz,2,y —zyitfollowsthatyz,zy €S (T) =S (T). B

Theorem 2.2 :
Let A" and B" be Jordan — Banach algebras such that B* is semi-
simple, the spectral radius rg+ is continuous on B+ and the spectral
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radius ra+ is continuous at zero. If T : A* — B is a dense range
homomorphism, then T is automatically continuous.

Proof :
If xy =yx forall xandy in A" then

TXY)=TE.X) =2 T(xy+yx)
=% (Tx Ty + Ty Tx)

=Tx Ty
=Ty Tx

If x is an arbitrary quasi — Invertible element of A", then there exists
an element y in A" such that xy = yx = x+y. It follows that

TXTy = TyTx = Tx+Ty

That is Ty is Quasi — invertible element of Tx. Hence, T reduces the

spectrum of elements. so,
rg+ (TX) ra+ (x)

For every y € S ( T ) there exists a sequence { x, } in A" such that
X, — 0in A" and Tx, —y in B". Since rg+ (TX) < ra+ (x) for every x € A"
and rp+ is continuous by assumption, we have rp+ (x,) — 0, then
re+ (Tx,) — 0. On the other hand, again by continuity of rg+ we
have rg+ (Tx,) — rg+ (y). Hence

rg+ (y) =0....... (1)

Since T : A* — B is a dense range homomorphism, by Theorem
(2.1) S (T) is an ideal in B+. Thus for every z € B", y z € S (T). By (1)
we get rg+ (y z) = 0.

Sincerad B = {y € B : rg+ (y z) = 0 for every z € B*}, therefore
y € rad B" So S (T) € rad B" Since B* is semi-simple, we have
S (T) = {0} and so T is continuous by the closed graph theorem.
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