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Abstract

In this paper, we investigate some properties of nonlinear
integral operators of mixed type of integral equations with kernels
depending on two variables. The results concerning the continuity and
compactness of these operators are obtained.
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1. Introduction

The theory of integral operators is an important part of nonlinear
analysis and their applications to real world problems [1,4,5].

The theory of integral equations in now well developed with the
help of various tools of functional analysis, topology and fixed point
theory.[ 6,7 ]

On the other hand many authors can meet several papers or
books devoted to the study of integral operators of Fredholm,
Volterra, Hammerstein and Urysohn type are used frequently when
describing real — world problems [ 4, 8]. It is interest to note that
the integral operators mentioned above can be treated as special
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cases of integral operators of Stieltjes type with kernels depending
on two variables [ 9,10].

In this paper we will study integral operators mixed type of
nonlinear of integral equations. These operators are defined with the
help of Riemann — Stieltjes integral with kernels depending on two
real variables.

We Dbegin by proving a few results concerning the continuity,
bounded variation, monotonicity and compactness of the mixed type
of integral operators in the space of continuous functions. The
results of such kind were obtained also in the papers [ 2, 3]. Here, we
generalize and improve these results.

2. Notations, Definitions And  Some Properties Of The
Stieltjes integral

In this section, we collect a few auxiliary facts which will be
needed in the sequel. At the beginning, we recall some basic
concepts and results concerning functions of bounded variation and
Stieltjes integral.
Definition (1) [7]: A real function x defined on the interval [a,b] the

symbol Vabx denotes the variation of x on [a,b], we say that x is

of  bounded  variation  whenever VX is  finite. If

q
u(t,s) =u:[a,b]x[c,d] > R, then, we denote by V u(t,s), the
t=p

variation of the function t—u(t,s) on the interval
[p.q]c[a,b], where s is arbitrarily fixed in [c, d]. Similarly, we

q
define the quantity V u(t,s). We refer to [ 7] for the properties of
s=p

functions of bounded variation.

Definition (2) [7]: If x and ¢ are two real bounded functions
defined on the interval [ a, b], then, under some additional conditions,
we can define the Stieltjes integral ( in the Riemann — Stieltjes
sense),

zx(t)dgp(t) ,

of the function x with respect to the function ¢. In this case, we
say that x is Stieltjes integrable on the interval [a, b] with respect to
Q.
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There are known several conditions guaranteeing the Stieltjes
integrablility [7]. One of the most frequently used requires that x is
continuous and ¢ is of bounded variation on the interval [a, b].

Lemmal[7]: If x is Stieltjes integrable on [a, b] with respect to
a function ¢ bounded variation, then,

b b t

I de(t) < IKOAV 9),

Moreover, the following inequality holds,
b t

IxOdg(t)

a

< sup|x()|(V ¢).
a<t<b a

Lemma 2[7]: Let X;,X, be Stieltjes integrable functions on the

interval [a, b] with respect to a nondecreasing function ¢ and such

that X (t) < x,(t) , for te[a,b]. Then,

! % ()do(t) <1 %, (t)de(t)In what follows, we

b : : o
i x(s)d.g(t, s) }/glrlrln also consider the Stieltjes integral of the

Where ¢ :[a,b]x[a,b] - R and the symbol d,
indicates the integrations with respect to s. The details concerning
the integral of this type will be given later.

Now, let us assume that f :[a,b]xR — R is a given function.
Then, to every real function x defined [a, b], we may assign the
function (Fx)(t) = f (t,x(t)) , te[a,b]. The operator F defined in
this way is called superposition operator generated by the function
f(t,X).

The properties of the superposition operator may be found

in[2]. For our further purposes, we shall need the following result
concerning the behavior of the superposition operator F on the
space C [a,b] consisting of all continuous functions acting from the
interval [a,b] into R and furnished with the standard maximum
norm x| = max{x(t)|:t e[a,b]} [2]
Lemma 3[7] :Let F be the superposition operator generated by the
function f :[a,b]x R — R. Then, F transforms the space C [a,b] into
itself and is continuous if and only if the function f is continuous
on the set [a,b]xR.

=




Integral Operators of Mixed Type of Nonlinear Integral Equation

Further, let us assume that x is areal function defined on
[a,b]. Then, by W(X,&), we denote the modulus of continuity of the
function x, i.e.
w(x, &) =sup{x(t) — x(s) :t,s e[a,b] [t —s| < &}.
If p(t,s)=p:[a,b]x[c,d] > R, then, the modulus of continuity of
the function s— p(t,s) on the interval [c, d ] for a fixed
t €[a,b], is defined as

w(p(t,.),&) =sup{p(t,u) — p(t,v)|:u,velc,d],ju-v|< &}
In the similar way, we define the modulus w(p(.,s),&).

3. Properties of nonlinear integral operators of mixed type integral
equations
Let | be abounded and closed interval in R. For convenience,

we assume that | =[0,b]

In this section, we will investigate the nonlinear integral
operator of mixed type of integral equations having the form

(GX)(t) = zv(s, X(s))d.g(t,s) +Ek(t, s)h(s, x(s))d.g(t,s), tel

In our further considerations, we shall always assume that the
following conditions are satisfied.

1) g:1xI >R and for every t,,t,el , such that t, <t,, the
function s — g(t,,s)—g(t;,s) is non-decreasing on the interval I.
1) g(0,s)=0, for any sel.

1) v,h:1xR—>R are continuous functions such that there exist
a continuous functions a,c:l — 1 and a non-decreasing functions

o, v 'R, > R,, for which the following inequalities holds,

v(t,x)| <a(t)e(x), and |h(t,x) <c(t)y(|x]) for

tel and xeR.

And there exist continuous function k:R, xR, —> R, and the
following inequality is holds

k(t,s) <L ,where L=max{k(t,s):t,sel}<ox.

Remark 1 : observe that assumptions (I ) and (II) imply that the
function s — g(t,s) is nondecreasing on the interval I, for any
fixed tel [3]. Indeed, putting (1), t, =t,t; =0 and keeping in
mind (1), we obtain the desired conclusion.
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From this observation, it follows immediately, for every tel ,
the function s— g(t,s) is of bounded variation on I. such a
condition was assumed in [3], but we showed above that it is
superfluous.

Now, we prove a few results about the properties of the
integral operator G defined by (1). We start with the following
theorem.

Theorem 1 : Assume that assumptions (1)-(I11) are satisfied. Then, for
every function xeC(l) the function GX is of bounded variation
on I

Proof : observe that taking into account our assumptions, in view of
lemma ( 3) and Remark (1), we infer that the integral operators G
defined by (1) is well —defined on the space C(I).

Next, fix a partition 0=t, <t <....<t, = b of the interval I.
Then, in view of lemma (1) and Remark (1), we get
n n [t ti—1
__Zl(GX)(ti)—(GX)(ti_l)Sg(I) v(s, X(s))d,g(t;,s) - g v(s, x(8))d,g(t;,s) |+

ti—1

J v(s,x(S))dsg(ti,s)—t?/(s,x(s))dsg(ti_l,s) [+

b 3K NG X0 9) - [k 1, S(S X(5)d, 0 9) |+

+iEk(ti_l,s)h(s,x(s))dsg(ti,s)—ik(ti_l,s)h(s,x(s))dsg(ti_l,s) \

(s, x(9)d,9(t,8) [+ T V(s X(9)d [0 9) - 9(t0, 9] [+

t
i-1tj_1

+ BIIKG, 5) — Kt 1, 9)In(s, X(9))d, g (t;, 5) +

+
NN
o—T O

K (i1, )N(s, x(s))d[9 (L, 8) — 9(ti_y, S)] |
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S

v(ax(s»d{ v g(ti,u)j+

u=tj_

tj
<z |
i=1 ti—1

+ X tigl ‘V(S’ X(S))ds(u\;o(g(ti,U)— g(t_5,u)) )"‘

+ 3 z\k(ti ,s)—k(t_q,s)|h(s, x(s))\ds(u\;o g(t;, u)) +

i=1

+ 3 E\k(ti_l,s)uh(s,x(s»d{uvso(g(ti,u)—g(ti_l,u»j

Consequently, keeping in mind the above estimate, lemma (2), and
Remark (1) we obtain

HE00) - @060 <E | MExE) Aot s)+

ti\V(S,X(S» d(9(t;,5) - 9(ti_1,9)) +

() k(2,5 XN, 0.5) +

[HEN

_|_
I ™M=

=

+
e

+
L1415

Ik(t1,S)lh(s, X()) [d,(9(t,9) = 9(t1,5))

= HaH§0(HXH){I§ _tfil d.g(t;,s) "‘él tids[g (t,8)—9(t 1, 9)1}+

=1 tj_

+z(él\k(ti ,5) —K(ti_y, S)[n(s, x(s)))d g (b, s) +

Ll (XD S, [d.[96,9) -9t 5, S)]
=|ae(|x[){g(b,b) - g(b,0)}+
+[cfw (X LLLa (b, b) - g(0,b)] - [9(b,0) - g(0,0)]} < o .

This complete the proof.
For our further purpose, we will need the following lemma.

Lemma 4 : Assume that the functiong(t,s)=g:1x1 —> R satisfies
assumption  (i).Then, for every S;,S, €l, such that S, <S,, the

function t > g(t,s,) — g(t,s;) is nondecreasing on the interval I [3].

Now, we prove a generalization of the result contained in
theorem (1).
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Theorem 2: Suppose assumptions of  theorem 1 are satisfied.
Moreover, assume that the values of the functions v,h:1 xR —>R,.
Then, for every function XxeC(l), the function Gx is non-
decreasing on the interval I.

Proof: Fix arbitrarily t;,t,el ,t, <t, . Next, let us take an arbitrary

0=s,<S, <...<n,=b of the on the interval I = [a, b] and choose
arbitrarily points ¢, €[S;_4,S;] ,(i1=12,....,n). Then, keeping in
mind lemma (4), we deduced the following inequalities,

S v(e X9t 5) - 9 )]+

# 2K (X0, 5) - 90,5,

< 2v( (@0 5) -9t )]+

S LCHICHI{IENEICIE)

< 2v(C (6905 - g(tz,sil)]ﬁjv(s, X(5))d0(t;.8) +

+ Z:lk(tz’ci)h(ci X9, s) —9(ty,84)]
This yields the inequality,
since (s, X())d. g (t,,5)> 0

t

Tu(s, x())d, gt 5) + Tk (t, h(s, X(8))d, (1. 5)
< T(s, X(8))d,0(t,,8) + v(s, X(5))d, 0ty 5) +
+ 1K(t,, S)h(s, X(5))d; g (t,,5)

< Fu(s, X(8))d,0(t,, ) + 1K (t,, (S, X(8))d G (t,. 5) -

and the proof is complete.
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Our next result is connected with the continuity of the
operator G.
Theorem 3 : Suppose that there are satisfied the assumptions of

theorem 1. Moreover, assume that the function s— g(b,s) s
continuous on | and the function t — g(t,s) is continuous on I, for
any fixed Sel.Then, the operator G transforms continuously the
space C(l) into itself.

Proof : First of all let us notice that the operator G can be written
as the compositions G=ToF+MoN of the superposition
operators

(FX)(M) =v(s,x(s)) and (Nx)(t) =k(t,s)h(s, x(s))

and the linear Volterra- Stieltjes and Fredholm- Stieltjes operators T
and M, defined by the formula

MO =]x(s)d,g(t,s) and (M) =[x(8),9(1,5)

Further, let us notice that in view of lemma (3) and
assumptions (iii) the superposition operators F and N continuously
the space C(I) into itself.

Thus, itis sufficient to show that the operators T and M acts
continuously from C(lI) into C(I).

To prove this, let us fix XeC(l) and a number & > 0.Next,

take arbitrarily t;,t,el ,t, <t, such that ‘tz _t1‘ <e.Then, applying
lemma (1) and (2) we have

()~ (X < T(0),0E 9) X9 0(t19) +

t t
+ (jjx(s)dsg(tz,s)— ix(s)dsg(tl,s)

</ T x(9)d,0(t,.9)
1

+ IX(6)0.0(:8) - 94, 9)] |

< ‘XH {la(t,, 1) —g(t,, )]+ ‘g(t21t1) - g(tptl)‘ +
+|9(t,,0) - g(tl’o)‘}
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and on the same way, we get

(MX)(t) = (M) ()] <[x| {] 9(to,b)—g(t,,b) |+]a(t,,0)— 9 (t,0)}

Hence, in view of Remark (1) and lemma (4), we arrive to the
following estimate,

‘(l'X((tz) - (TX((tl)‘ < HXH {[9(b,t;)—g(b,t)]+ ‘g (t,4)—9 (t1’t1)‘ +
+‘g(t210) - g(tl’o)‘}

<|x| {w(g(b,.),&) + w(g(.,t;,), &) +w(g(.,0), &)}, (2)
and

(MX)(t,) = (MX)(t,)| < [x{w(g (., b), &) +W(g(..0), )}, 3)
Where the symbols

w(g(b,.), e),w(g(.,t), &) , w(g(.,0),e)and w(g(.,b),e) were
introduced in section 2.

From (2) and (3), we conclude that Tx,Mxe C(l).

In order toshow that T and M are continuous on the space
C(l) let us fix xeC(l).
Then, in view of lemma (1) and (2) we obtain

MO [< (), (V 9t )
=[] [9(t,b) - 9(t.0)]

and
| (M) [ < Tx()d. (V. gtw)
=[] [9(t,b)-g(t.0)]

Hence, keeping in mind lemma (4) we conclude that the following
estimate holds

MO <[x| [9(b,b)—g(b,0)]

Consequently

x| <|X| [g(b,b)-g(b,0)] (4)

and

(Mx)(t) [<[x| [g(b,b)-g(b,0)]

and Consequently
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M| <[x| Tg(b,b)-g(b,0)] ()

The inequalities (4), (5) shows that T and M transforms
continuously the space C(I) into itself. The proof is complete.

In what follows we show that the integral operators of mixed
type of nonlinear integral equation G is also compact under suitable
hypotheses.

Theorem 4 : Under the assumptions of theorem (3) the operator G is
continuous and completely continuous ( takes bounded sets into

relative compacts sets) on the space C(I).

Proof : Let us take a bounded subset X of the space C(l) and take
xe X . Next, fix £>0 and t;,t, 1 ,such that [t, —t,|<e.
Then, arguing similarly as in the proof of theorem (3), we obtain

(Gx)(t,) - (Gx)(ty)| < |ae(|x[{w(g (b..), &) +W(g (. 1), &) +
+w(g(.0), &)} + Lcfw (Ix[{w(g (., b). &) +
+w(g(.0),€)}.

Hence, we infer that the functions of the set GX are
equicontinuous on the interval I. On other hand, for an arbitrary
function X e X, we have

(@) < Jvls, (DALY, ot u) +

+ T Slh(s X6 (Vg0
~{al(x) Ll (x)Ha(tb)- 9000,

In view of lemma (4), the above inequality yields

(Gx)(t) <{[ale(|x]) + Liclw (D39 (b, b) — g (b,0)]

Consequently, we obtain

Gx| <{ae(| X ) + Lcly (|X[)}g(b.b) - g (b,0)],
Where we have denoted

X| =sup{|x|:x e X}.
This shows that the set GX is bounded in the space C(I).
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Finally, linking the equicontiuity and the boundness of the set
GX is relatively compact in this space. We complete the proof.
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