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 الملخص

الاتصالات وتقنيات  ،الذكاء الاصطناعي ،شهد العقد الاخير تطور كبير في حقول الحاسبات
اهتمام المختصصين بضرورة الحاجة لتصميم أنظمة تشفير تعتمد  جذب هذا التطور. نقل المعمومات

تجعل من الصعب بل من المستحيل في بعض  في اداءها عمى سموك الشبكات العصبية والتي
 .الحالات كسر شفرة هذه الأنظمة

يتناول البحث استغلال الشبكات العصبية في بناء خوارزميات التشفير الكتمي اخذين بنظر 
بين استخدام اختبار التردد الكتمي نجاح النصوص  .الاعتبار حجوم مختمفة من النصوص الصريحة

. ممية التشفيرالمشفرة  مع صعوبة كسر ع
ان استخدام الشبكات العصبية في عمم التشفير توفر سرعة ومستوى امني عاليين في التشفير 

لبناء برامج الشبكات العصبية الخاصة  ++Cأستخدمت لغة  .الكتمي مقارنة مع الطرق التقميدية
. بخوارزميات التشفير وفك الشفرة

 
Abstract 
 The last decade witnessed a great evolution on the fields of computer 
science, artificial intelligence, communication and data transmission. This 
evolution draw the attention of specialists to design a modern cryptosystem 
for data encryption based on neural networks methodologies that are very 
hard, if not impossible, to be broken. 
 This paper employs cryptography scheme utilizes the neural networks 
in block cipher algorithms. Taking into consideration different plaintexts 
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block size. The block frequency test has been show the successful of 
ciphertexts with difficulty to break the cipher process. 
 The application of the neural network in cryptography provides fast 
and high security system in block ciphering in comparison with traditional 
methods. The C++ language is used for designing the programs of neural 
network to encryption and decryption algorithms. 
 

1.  Introduction 
A Block Cipher is a form of encryption algorithm that operates on the 

input data in blocks of a fixed size. A Block Cipher takes a plaintext block 
of a specified size and an encryption key, and then operates on this data to 
produce a ciphertext block of the same size. Similarly, the decryption 
algorithm takes as input the fixed size ciphertext block and the decryption 
key, identical to the encryption key. It then performs the function of 
retrieving the plaintext block of data. The nature of this description 
necessarily implies that a particular block of plaintext will always encrypt to 
the exact same ciphertext block given the same encryption key [1]. 

The main objectives of this work to design adaptive block cipher 
algorithms based on ANN techniques. The common issue between 
cryptography system and ANN techniques is to enhance secure for 
encrypting/decrypting data. Combine the two approaches or techniques will 
enrich the cryptography process.  

 

2.  Block Cipher 
In block cipher, also called secret-key or symmetric-key encryption, 

one key is used both for encryption and decryption. The Data Encryption 
Standard (DES) is an example of a conventional cryptosystem that is widely 
employed by the Federal Government. In 1997, the U.S. National Institute of 
Standards and Technology (NIST) announced the requirements for a new 
encryption standard called Advanced Encryption Standard (AES) [1], with 
the goal of creating a new national standard (Federal Information Processing 
Standard) (FIPS), for encryption with a symmetric algorithm. 

The general principles used in most block ciphers can be summed up 
using the terminology confusion and diffusion. Confusion, in relation to 
encryption, attempts to obscure any relationship between the plaintext and 
the ciphertext. This can usually be performed with simple substitution of bits 
within the plaintext message, in fact the one time pad cipher is a confusion 
based cipher where each bit in the plaintext is either inverted or left 
untouched depending on the random key used. Diffusion, in relation to 
encryption, tries to remove any redundancies and statistical relationships in 
the plaintext by spreading the effect of the plaintext over as much ciphertext 
as possible. In reference to an n-bit block cipher, diffusion would attempt to 
spread the effect of a single bit of plaintext over all n bits of the ciphertext 
block produced by the cipher. A strong cipher would succeed in this whilst 
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an insecure cipher would not be able to ensure that each plaintext bit 
affected all ciphertext bits in the block. Ciphers that employ diffusion 
techniques only are not particularly secure and can be easily cryptanalysis 
and broken. Most Block Ciphers use both confusion and diffusion 
techniques in their algorithmic designs [2]. The details of diffusion and 
confusion are shown in below section. 
 
2.1  Diffusion and Confusion 

The terms confusion and diffusion were introduced by Claude 
Shannon to capture the two basic building blocks for any cryptographic 
system. Shannon‟s concern was to thwart cryptanalysis based on statistical 
analysis. The reasoning is as follows: Assume the attacker has some 
knowledge of the statistical characteristics of the plaintext. For example, in a 
human-readable message in some language, the frequency distribution of the 
various letters may be known. Or there may be words or phrases likely to 
appear in the message. If these statistics are in any way reflected in the 
ciphertext, the cryptanalyst may be able to deduce the encryption key, or 
part of the key, or at least a set of keys likely to contain the exact key [2]. 

Shannon proposes two methods frustrating statistical cryptanalysis: 
diffusion and confusion. In diffusion, the statistical structure of the plaintext 
is dissipated into long-range statistics of the ciphertext. This is achieved by 
having each plaintext digit affect the value of many ciphertext digits, which 
is equivalent to saying that each ciphertext digit is affected by many 
plaintext digits. An example of diffusion is to encrypt a message                 
M = m 1 , m 2 , m 3 , …, mn 

Of characters with an averaging operation: 





k

n

in mY
1

1 )26(mod  (1) 

              Adding k successive letters to get a ciphertext letter nY . One can 

show that the statistical structure of the plaintext has been dissipated. Thus 
the letter frequencies in the ciphertext will more nearly equal than in the 
plaintext; the diagram frequencies will also be more nearly equal, and so on. 
On the other hand, confusion seeks to make the relationship between the 
statistics of the ciphertext and the value of the encryption key as complex as 
possible, again to thwart attempts to discover the key. Thus, even if the 
attacker can get some handle on the statistics of the ciphertext, the way in 
which the key was used to produce that ciphertext is so complex as to make 
it difficult to deduce the key. This is achieved by use of complex substitution 
algorithm. In contrast, a simple linear substitution function would add little 
confusion.  

So, successful are diffusion and confusion in capturing the essence of 
the desired attributes of a block cipher that they have become the 
cornerstone of modern block cipher design [2]. 
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3.  Artificial Neural Nework 
Artificial neural networks are parallel computing devices consisting of many 
interconnected simple processors. These processors are quite simplistic, 
especially when compared with the type of processor found in a computer. 
Each processor in a network is only aware of signals it periodically receives 
and the signal it periodically sends to other processors, and yet such simple 
local processors are capable of performing complex tasks when placed 
together in a large network of orchestrated cooperation. 
Artificial neural networks have their roots in work performed in the early 
part of the twentieth century, but only during the 1990s, after the breaking of 
some theoretical barriers and the growth in available computing power, have 
these networks been widely accepted as useful tools. The word “artificial” is 
sometimes used to make it clear that discussion is about an artificial device 
and not about the real biological neural networks found in humans. It is the 
human brain that has inspired the creation of artificial neural networks and 
no doubt will influence further development. However, in comparison to the 
human brain, artificial neural networks are at present highly simplistic 
abstractions. It is common to drop the prefix 'artificial' when it is clear in 
which context these networks are being discussed. Also, artificial neural 
networks are often referred to as connectionist networks when computing 
ability is emphasized rather than biological fidelity. In other words, 
connectionists aim to make neural networks solve a task rather than attempt 
to mirriic faithfully some part of a biological process[3]. 
Although neural networks can be implemented as fast hardware devices, 
much research is performed using a conventional computer running software 
simulations. Software simulation provides a somewhat cheap and flexible 
environment in which to research ideas and for many real-world applications 
simulation provides adequate performance. Although a neural network 
solution might have the look and feel of any conventional piece of software, 
there is a key difference in that most neural solutions are “learnt” and not 
programmed: the network learns to perform a task rather than being directly 
programmed. Indeed, many neural network solutions exist either because it 
is impossible to write a program or because the neura network “learnt 
solution” provides improved performance. The Backpropagation algorithm 
is type of neural networks uses gradient descent to tune network parameters 
to best fit a training set of input-output pairs in the least-squares sense. The 
method is quite robust to the errors in the training data, and hence, it is well 
suited for pattern recognition (PR) tasks with noisy, complex sensor data [4]. 

  
4.  The Proposed System 

The proposed neural network that is used for data encrypting in term 
of block cipher techniques consists of four layers, the first layer is the input 
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layer, the second and third represented the hidden layers while as the fourth 
is the output layer.  
 The file that contains the data to be encrypted divided into set of 
blocks; each block consists of set of bits. The number of neurons available in 
the input layer must be as the same size of block such that each neuron 
represents a bit in the specific block. 

 The secret key that used in encryption process is inserted to neural 
network instead of the bias so the inputs of the neural network will be a 
combination between plaintext and secret key. The weights of the proposed 
neural network is generate in random way. Figure (1) illustrates the 
proposed structure of the system for data encryption. 
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Figure(1): Proposed ANN for block cipher 
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The  procedure used in the proposed algorithm is as follow: 

1. Initiliazation network weight values randomly from 0 or 1. 

2. Exclusive_or weighted input and apply activition function to compute 

the output of the first hidden layer. 

))()(( ijiiji UkKUPTfhi                      (2) 

where 

i =1,2,…,n, j = 1,2,…,n, and  denote XOR(modulo 2 addition ). 
 

ih  is the the actual output of hidden neuron j. 

iPT  is the input signal of input neuron i. 

ijU  is the weight between input neuron i and hidden neuron j. 

iK  is the key of hidden neuron j. 

ijUk  is the key weight. 

f  is the the activition function. 

3. Exclusive_or weighted output of first hidden layer and apply ctivition 

function to compute the  output of  second layer neurons using: 

))()(( jkjjkjj VkKVhfhh           (3) 

where 

j =1,2,…,p, k = 1,2,…,p, and  denote XOR (modulo 2addition). 

khh  is the the actual output of second hidden layer neuron k.  

jkV   is the weight between hidden neuron j in second layer and hidden 

neuron k in third laye ijUk  is the key weight. 

jkVk  is the key weight. 

4. Exclusive_or weighted output of second hidden layer and apply the 

activition to  compute the  output of  the output layer neurons using: 

))()(( lkllkll WkKWhhfa   (4) 

k=1,2,…,m, l = 1,2,…,m, and  denote XOR(modulo 2 addition). 

la   is the the actual output of output neuron l.  

ljW  is the weight between hidden neuron j and output neuron k.  

5. Compute backpropagation error using: 





m

k

klk

m

k

klkll WkKWhhfa
11

(' )  (5)                

where  

'f  is the the derivative of the activation function.  

6. Calculate weight and key weight correction output layer using: 

klkl hhnW  )(  (6) 

klkl knWk  )(  (7) 
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where 
  is the learning rate. 

7. Add delta input for each hidden unit in third layer and calculate the  
error term using: 

 
 


e

j

e

j

jkjjkj

m

l

kllk VKKVhfW
1 11

)('  (8) 

8. Calculate the weight and the key weight correction for the second hidden 
layer. 

jkjk hnV  )(  (9) 

jkjk KnVK  )(  (10) 

9. Add delta input for each hidden unit in second  layer and calculate the 
error term using: 

 
 


p

i

p

i

jkiiji

e

k

jkkj UKKUPTfV
1 11

)('  (11) 

10. Calculate the weight and the key weight correction for the first hidden 
layer.  

ijij XnU  )(  (12) 

ijij KnUK  )(  (13) 

11. Update weights. 

)()1()( nUnUnU ijijij   (14) 

)()1()( nUKnUKnUK ijijij   (15) 

)()1()( nVnVnV jkjkjk   (16) 

)()1()( nVKnVKnVK jkjkjk     (17) 

)()1()( nWnWnW klklkl   (18) 

)()1()( nWKnWKnWK klklkl   (19) 

12. Repeat step 2  to 11 until ciphertext passed block frequence test.  
 

The process of the neural network passes through three phases, 
feedforward, and backpropagation and weight adjustment. 

In the first phase the neural network receiving the inputs block by 
block, each block is encrypted with the secret key, after that the output of the 
first layer passing to first hidden layer then the of  activation function of this 
layer pass to second hidden layer, where as the activation function of second 
layer send to the output layer. 

In the training phase, the output of the proposed neural network is 
tested using block frequency test as shown in Figure (2). If its passes then 
the output will be ciphertext, if not, extra weight adjustment is required. This 
will be considered in the third stage. The same technique is used for 
decrypting the ciphertext as shown by the flowchart in Figure (3). 
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Figure (2): Flowchart of the proposed system for block data encryption. 
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Figure (3): Flowchart of the proposed system block data decryption. 
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5.  Block Frequency Test  
The Definition of block frequency test show as below:  
 “The Hamming weight W(C) of a code word C is equal to the number 
of nonzero components in the codeword”. Let (Oi) denotes the number of n-
bit block vectors hamming weight is (i) from the set of (INDm) to be 

examined for randomness. There are altogether (
n
iC ) binary vectors of 

length (n) and weight ( i ). It should be noted that:  

                    ]i! * i)!-[(n / n!  Cn
i                                                                     (20) 

in the case where the ( m ) binary vectors are random. The expected number 
of binary vectors from this set of weight ( i ) is :  

                     Ei = n
iC  * m / 2

n
                                                                      (21) 

 

If the (m) binary vectors are random then the values of (Oi) (Ei) should 
be approximately the same. Furthermore the values of (Ei) and (Oi) may be 

compared using the Chi-squared 
2
 (Appendix A) [5]: 

                  




k

1i
i

22 E/)EiOi(χ
                                                                      (22) 

where (Oi) is the observed number of blocks whose weight (i),  denote the 
summation cover all possible runs (k) of length (i) such that (Ei5). That 

means the (n) should be taken large enough this is compared with a Chi-
squared distribution with k-1 degrees of freedom and significance region P, 
(0.01,0.05,0.001). If all the values of the Chi-squared calculated are greater 
than P, then there is indicated a possible weakness in the cipher.  

The results presented in Table (1) clearly show that the each 
ciphertext generate using proposed neural network passes the block 
frequency test. 
 

Table (1): Block frequency test results 

Block no. 

  

Bock size      
(64 bits) 

  

Bock size      
(128 bits) 

block0-block4 0.001 0.05 

block5-block9 0.05 0.01 

block10-block14 0.05 0.01 

block15-block19 0.01 0.05 

block20-block24 0.001 0.01 

block25-block29 0.01 0.01 

block30-block34 0.05 0.001 

block35-block39 0.001 0.05 

 

Here if all chi-square calculated greater than significance region 
P,(0.01,0.05,0.001), then is said to fail this test, otherwise it is pass.  
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6.  Avalanche Effect Criteria 
Extra property used to measure the strength of block ciphers is the 

avalanche effect. This can be applied by measuring the plaintext avalanche 

effect or the key avalanche effect. A block cipher satisfies the plaintext (key) 

avalanche effect if for a fixed key (plaintext) a small change in the plaintext 

(key) causes a large change in the resulting ciphertext block. A more 

specialized property is defined, namely the strict plaintext avalanche criteria, 

which will be denoted be (SPAC). A block cipher satisfies the SPAC if for a 

fixed key each bit of the ciphertext block changes whenever any bit of the 

plaintext block is complemented. This property can also be applied to key 

changes where a block cipher satisfies the strict key avalanche criteria 

(SKAC) if, for a fixed plaintext block, each bit of the ciphertext block 

changes whenever any bit of the key changes [6], A description of the 

method for analyzing the SPAC will be given below and the method for 

analyzing the SKAC is similar. 

 

6.1  The Strict Plaintext Avalanche Criteria (SPAC) 

To measure the SPAC for a block cipher of length (n) we follow the 

steps: 

1- Generate a large number of random plaintext blocks P r ,                  For 

r = 1, 2,…, R. 

2- Let P rj  for j = 1, 2,… ,n be the plaintext vectors that differ in the j th  

position. 

3- Using the fixed key k, let C r and C rj  denote the ciphertext vectors that 

result from enciphering P r  and P rj  respectively. 

4- Define avalanche vectors such as: 

                                     AV rj  = C r    C rj                                       (23) 

Where j =1,2,…,n, r = 1,2,…,R, and  denote XOR(modulo 2 addition). 

The hamming weight of each vector indicates the number of bits that 

changed in the ciphertext vectors when one bit of plaintext vectors is 

changed. The number of changed bits in the output vector must be large and 

differ from vector to other and randomly distribution [7]. The distribution of 

the number changes in ciphertext bits may also be investigated, since for a 

given plaintext / ciphertext bit complemented, the number of ones in the 

avalanche vector represents the number of changes in ciphertext, then a 

frequency test may be applied to the number of ones in the avalanche vector. 

This test is applied separately for each plaintext / key bit complemented.  

If the block cipher algorithm passes the avalanche criteria test, the 

independence of the avalanche variable may also be investigated. The test of 
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independence of the avalanche variables determines whether a change in 

value in ciphertext position ( i ) is independent of a change in value in 

ciphertext position (j) for all ( n ) positions [7]. 

 

6.2  The Strict Key Avalanche Criteria (SKAC): 

 As we stated previously, the block cipher satisfies the strict key 

avalanche criterion (SKAC), if for a fixed plaintext block, each bit of the 

ciphertext block changes whenever any bit of the key changed. The same 

work in sec (6.1) can be applied to the SKAC by defining a fixed plaintext 

blocks and encrypt it using the key K and changing the key bit position K j  

and encrypt the same plaintext blocks by using the key changed. 

The following plaintext encrypted using the proposed neural network 

with a specific key, when the block size is 64 bits. 

 

Plaintext: 

Neural network consist of set of neurons (nodes), each node 

represents a bit in plaintext and key. These are modeled after neurons, with 

weighted links interconnecting the units together. The main difference 

between ANNs and together learning mechanism is that it is composed of 

these units they work together in a highly parallel manner. 

Key: 

p u t g k q l i 
 

The proposed neural network will generate the following ciphertext 

depended on specific key. 

 

Ciphertext: 

Û&iš.u@oð7k‡=r@bú-o•<m@nóco•;9_gµ-y�=vrµkr ‡ + | _ ( ¹ c y 

‰,q@oú'yÈ=|_sð0yý;j@`µ!uœop!å/}�!m_yác}ý+9dìm<œ'|_dµ"n�o9nð&p

•+9_gá&nÈ!|_sú-oÄon uýck�&~_uð'<„&wrµ*rœ*k_nû-y ‹ ; p 

fµ7t•olhá0<œ~_uý&nÆoM_dµ.}�!9_hñ%yš*w_dµ!yœ8|_oµ_R¦<9_oðch‡

(|_ið1<„*x_oü -{È"|_iô-u›"9 rµ7t‰;9u µ * o È , v q ú 0 y Œov_!á+y›*9 

oü7oÈ;q_xµ4 sš $ 9 _ n ò & h € * k @ h û c } È ' p _ i ù : < ˜. 

k_mù&pÈ"xoð12 

Figure (4a) illustrates the avalanche effect when one bit changes in 

plaintext and its effect on ciphertext. 

Figure (4b) illustrates the avalanche effect when one bit changes in 

key and its effect on ciphertext. 
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The following plaintext encrypted using the proposed neural network with 

a specific key, when the block size is 128 bits. 
 

Plaintext: 

Artificial neural networks (ANNs) are highly parallel interconnections 
of simple processing elements or neurons that function as a collective 

system. There exist various problems in pattern recognition that humans 

seem more efficient in solving as compared to computers. 
 

Key: 

f y i s g h k w p d i h b z j v 
 

The proposed neural network will generate the following ciphertexts 

depended on a specific key. 
 

Ciphertext: 
UÊé»áÓ_ò]ÂðÈµ• P¥x˜ñ·ñÍ_éWÝðŽ„Dl‡=˜ü âš_ò[Æ¼ßðzCýuÒð·ëšõHË¢Å

¿dL„wÐó½éÉ@óZŽ£Ï½zN„4Èï½äß_èUÀ·ýµfG™qÖé¡¤Õ_»RË¥Ò¿dQÒ`Ðü¦

¤Ü_õ_Ú¹É¾*C‡4Ü½±èÖþ_Ú¹Ðµ*Q�gÐø¿©š4ñYÜµýµrK‡`˜ë³õÑ_îOŽ Ô¿

 

40

45

50

55

60

1 11 21 31 41 51 61

Bit position

n
o

. 
o

f 
b

it
s

 c
h

a
n

g
e

Figure (4b): Number of bits changed in Ci  for each bit change in Ki 
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Figure (4a): Number of bits changed in Ci for each bit change in PTi 
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hN„yË½»éš_úHÚµÒ¾*P„w×ú¼îÎóRŽ¤Î±~_œaÕü¼óš_þYÃðË¿xGÒqÞû»ä

Ñ_õHŽ¹ÈðyM˜bÑñµ¤Û_»_Á½Ö±xG•4ÌòòäÕëIÚµÔ 
Figure (5a) illustrates the avalanche effect when one bit changes in 

plaintext and its effect on ciphertext. 
Figure (5b) illustrates the avalanche effect when one bit changes in 

key and its effect on ciphertext. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
When compared the results of  proposed system explained in Figure 

(4a) to Figure (5b) with the results of the traditional methods, it show a great 
improvement have been happened because of the high diffusion that occurs 
on the results by changing specified bit either in plaintext or in key and its 
effects on the number of bits changed in ciphertext. 
 Table (2) illustrates the difference of diffusion between the Data 
Encryption Standard (DES) (see Appendix B)  traditional method and the 
Neuron-block ciphering. 

 

Table (2): The Difference of diffusion between DES and Neuron-Ciphering. 
 
 

 
 
 

                                                                 
DES [9] Neuron-block cipher  

Min bits 
change 

Max bits 
change 

Min bits 
change 

Max bits 
change 

Plaintext 1 32 50 61 
Key  0 35 45 55 
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Figure (5a): Number of bits changed in Ci for each bit change in PTi 

Figure (5b): Number of bits changed in Ci for each bit change in PTi 
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The min bits change and max bits change in plaintext and key of 

neuron-block cipher concluded from Figure (4a) and Figure (4b). 

 
7. Conclusions  

There are several conclusions gain from the research, that can be 

explain in the following point: 

1. Organization can gain competitive advantages through the proper use of 

neural network approaches; however neural networks are being 

increasingly used for problems involving function approximation. 

Many researchers believe that neural networks offer the most promising 

approach to building truly intelligent computer systems. As has been 

informed in the introduction, neural networks or artificial neural 

networks are algorithms that can be used to perform nonlinear statistical 

modeling and provide a new alternative to logistic regression of which 

is commonly used method for developing predictive models for any 

business application. 

2. The block cipher algorithms base on neural network techniques will 

process the plaintext from sources and learn from it to produce the 

ciphertext. This ability differs from traditional block cipher because it 

does not depend upon the prior knowledge of rules. Besides, ANNs can 

reduce the development time by learning the underlying relationships 

even when they are difficult to find and describe. The proposed 

cryptosystem itself will be able to solve the problems of the lack of 

traditional cryptosystem. 

3. There are many modern block cipher methods, but the present 

algorithms based on neural network techniques. These algorithms offer 

a high security system compared with traditional algorithms through a 

high diffusion resulted from using the new approach. The high diffusion 

comes from the strategy of neural network. Neural network consist of 

set of neurons (nodes), each node represents a bit in plaintext and key. 

These are modeled after neurons, with weighted links interconnecting 

the units together. The main difference between ANNs and together 

learning mechanism is that it is composed of these units which are work 

together in a highly parallel manner.  

4. The new algorithms may be considered adaptive, because of its ability 

to generate, different schemes for the same plaintext and secret key 

with weights variations of neural network. 

 

 

 



Design and Implementation of Block Cipher Using Neural Network. 

173 

References  

1) Carol C., “Baltimore Technologies Announces Integration of (ASE) 

Algorithm into Baltimore Product Set”, http://www.baltimore.com/ 

devzone/ase/index.html, 2000. 

2) Stallings W., “Cryptography and Network Security: Principles and 

Practice” , New Jersey: Prentice Hall, 2003. 

3) R. Callan R., “The Essence of Neural Networks”, Prentice Hall 

Europ, 1999.  

4) J. Kortelainen “Pattern Recognition and Neural Networks”, 

http://www.ee.oulu.fi /research /tklab/courses 

/521497S/progex/Instructions_BP.pdf,2009 

5) Razavi-arazavi A., “Analysis and Evaluation of Cryptographic Pseudo 

Random Number Generators”, 

http://www.swen.uwaterloo.ca/~arazavi/papers/ece628proj.pdf ,2004 

6) Jorstad N., “Cryptography Algorithm Metrics”, http://csrc.nist. 

gov/nissc/1997 proceedings/128.pdf,1997 

7) Gustafson H., dawson E., Nielson L. and Caell W., “Computer  & 

Security”, No. 8, Vol. 13, 1994 

8) Tannenbaum A. S, “Computer Network,” Prentice Hall, 1996. 

9) Kenneth. R., “Data Network Handbook,”, Galgotia Publications (P) 

LTD, 1998. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.swen.uwaterloo.ca/


Prof. Siddeq Y. Ameen  &  Dr. Mazin Z. Othman  &  Dr. Safwan O. Hasson 

174 

Appendix A 
2 - Distribution Table 

Table (A.1): 2 - distribution table  

 

 

0.99 0.975 0.95 0.05 0.025 0.01 0.005 0.001 

1 0.0157 0.0982 0.0393 3. 841 5.024 6.635 7.879 10.827 

2 0.0201 0.0506 0.103 5.991 7.378 9.210 10.597 13.815 

3 0.115 0.216 0.352 7.815 9.348 11.345 12.838 16.266 

4 0.297 0.484 0.711 9.488 11.143 13.277 14.860 18.466 

5 0.554 0.831 1.145 11.070 12.832 15.086 16.750 20.515 

6 0.872 1.237 1.653 12.592 14.449 16.812 18.548 22.457 

7 1.239 1.690 2.167 14.067 16.013 18.475 20.278 24.3219 

8 1.646 2.180 2.733 15.507 17.535 20.090 21.955 26.124 

9 2.088 2.700 3.325 16.919 19.023 21.666 23.589 27.877 

10 2.558 3.247 3.940 18.307 20.483 23.209 25.188 29.588 

11 3.053 3.816 4.575 19.657 21.920 24.725 26.757 31.264 

12 3.571 4.404 5.226 21.026 23.337 26.217 28.300 32.909 

13 4.107 5.009 5.892 22.362 24.736 27.688 29.819 34.528 

14 4.660 5.629 6.571 23.685 26.119 29.141 31.319 36.123 

15 5.229 6.262 7.261 24.996 27.488 30.578 32.801 37.697 

16 5.812 6.908 7.962 26.296 28.845 32.000 34.267 39.252 

17 6.408 7.564 8.672 27.587 30.191 33.409 35.718 40.790 

18 7.015 8.231 9.390 28.869 31.526 34.805 37.156 42.312 

19 7.633 8.907 10.117 30.144 32.852 36.191 38.582 43.820 

20 8.260 9.591 10.851 31.410 34.170 37.566 39.997 45.314 
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Appendix B 
Data Encryption Standard (DES) 

In January 1977, the U.S. government adopted a product cipher 

developed by IBM as its official standard for unclassified information. This 

cipher, DES, was widely adopted by the industry for use in security 

products. It is no longer secure in its original form, but in modified form it is 

still useful. 

An outline of DES is shown in Figure.(B.1a). A plaintext is encrypted 

in block of 64-bits, yielding 64-bits of ciphertext. The algorithm, which is 

parameterized by a 56-bit key, has 19 distinct stages. The first stage is a key 

independent transposition on the 64-bit plaintext. The last stage is the exact 

inverse of that transposition. The stage prior the last one exchanges the 

leftmost 32-bits with the rightmost 32-bits. The remaining 16 stages are 

functionally identical but are parameterized by different functions of the key. 

The algorithm has been designed to allow decryption to be done with the 

same key as encryption. The steps are just run in the reverse order [8]. 

The operation of one these intermediate stages is illustrated in 

Figure.(B.2b). Each stage takes two 32-bit inputs and produces two 32-bit 

outputs. The left output is simply a copy of the right input. The right output 

is the bitwise XOR of the left input and a function of the right input and the 

key for this stage, Ki. All the complexity lies in this function [8]. 

The function consists of four steps, carried out in sequence. First,  

a 48-bit number, Expanding (E) , is constructed by expanding the 32-bit Ri-1 

according to a fixed transposition and duplication rule. Second, E and Key 

(Ki) are XOR together. This output is then partitioned into eight  groups of 6 

bits each, each of which is fed into a different Substation-box (S-box). Each 

of the 64 possible inputs to an S-box is mapped onto a 4-bit output. Finally, 

these 32 bits are passed through a Permutation-box (P-box). 

In each of the 16 iteration, a different key is used. Before the algorithm 

starts, a 56-bit transposition is applied to the key. Just before each 

interaction, the key is partitioned into two 28-bit units, each of which is 

rotated left by a number of bits dependent on the iteration number, Ki is 

derived from this rotated key by applying another 56-bit transposition to it. 

A different 48-bit subset of the 56 bits is extracted and permuted on each 

round [8]. 

Because DES is standard, and because it is quite computer-intensive to 

encode and decode data, it has been embedded in silicon (a specific chip). 

The DES chip accepts a 64-bit block of plaintext and the key; it then outputs 

the ciphertext. The same chip can be used to reverse the process by inputting 

the ciphertext and the key to produce the plaintext [9]. 
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Figure (B.1): The data encryption standard, (a) General outline. 

                                     (b) Detail of one iteration 

 
The following plaintext encrypted using Data Encryption Standard 

(DES)  with a specific key. 

 

Plaintext: 

Neural network consist of set of neurons (nodes), each node represents a bit 

in plaintext and key. These are modeled after neurons, with weighted links 

interconnecting the units together. The main difference between ANNs and 

together learning mechanism is that it is composed of these units they work 

together in a highly parallel manner. 

 

Initial transposition 

Iteration 1 

Iteration 2 

Iteration 16 

32 bit swap 

Inverse transposition 

64 bit ciphertext 

(a) 

L i-1  f(Ri-1, Ki) 

32 bit 

Li 

32 bit 

Ri 

(b) 

64 bit plaintext Li-1 Ri-1 
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Key: 

p u t g k q l i 

 

The Data Encryption Standard (DES) will generate the following ciphertext 

depended on specific key. 

 

Ciphertext: 

젞皤麹໇阤 �讗௧쮌㚏 녃虭罹ꆧ冇趦몢㝸 늯껀Ѫ坘ᘷ鏗뼓ǈ瞮�뼓뾜

皎ள 兗髺㮽㒯鑁薹鏗뼓蒦䈥흰斡⪢珼 �௧�⩒罹煣轞郀崞鋧遒㜌丢➟⫿

味레ꀹ楖脫 핐䰵謤諭�퐢秏ᶐ 唯헹䤽晡 袌렎龧�薹G絊 彘�ゖ㚊〵 邬

蒦跒鏗ƺ䭻 㷆刍藼燋໇뛛䨩뿔�沼㪖 䳈퍥�刧薹�邬⌗毣道ㅆ籉 �阤

�䂉꾕훺 态맃 蒦睚᢭⍍阤쒻䮂阤�㨦鏗 䕍紓ư춊ㄲꈹ阤�뒰宰Ꮫ戚鏗✉

扉ۑ 

 

 


