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Abstract

The autonomous Van der Pol system was solved accurately by
MADM [4]. The method has the advantage of giving the form of the
numerical solution within each time interval which is not possible in
purely numerical techniques like RK45 and classical ADM. In this paper
we will derive the convergence of A Multistage Adomian Decomposition
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Method (MADM) by deriving the Homotopy Analysis Method for this
system. We will show that if the series

X;(t=0) +iiaijjxmdt +ixin (t)dt

[T n-1
where
d"% (t, ) i
- —an 4 4n
Xin (£) = Xi(;]ft) I " - :ééaipqz‘;% ‘ Rizgﬁ{’n’ % 4) » dt, n>1

Is convergent and it must be a solution of Van der Pol system, then the

k k
two sequences z, = > Ry (t) , v, = > h,(t) are converges to zero.
n=1 n=1

1. Introduction

The study of nonlinear oscillators has been investigated in the
development of the theory of dynamical systems. The Van der Pol
oscillator (VPO), described by a second — order nonlinear differential
equation which can be regarded as a description of a mass - spring -
damper system with a nonlinear position - dependent on damping
coefficient or, equivalently, an RLC electrical circuit with a negative -
nonlinear resistor, such as electronics, biology or acoustics. It represents a
nonlinear system with an interesting behavior that arises naturally in
several applications.

This kind of nonlinear oscillator was used by Van der Pol in the 1920s
to study oscillations in vacuum tube circuits.

In standard form, it is given by a second — order nonlinear differential
equation of type:
X+ u(x* —1)%x+x=0, )]
Which can be reduced to two dimensional system of first order
differential equations
X=Yy
. 2 (2)
y=—Xx—u(x* -1y
Where 4 (u>0) is a control parameter that reflects the degree of

nonlinearity of the system. In studying the case(ux>>1), Van der Pol
discovered the importance of what has been become known as relaxation
oscillations [21].

The Multistage Adomian Decomposition Method (MADM) that will
be handeled in this paper, has been applied to such as the multispecies
Lotka—Volterra equations [16,17], the extended Lorenz system [20], the
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prey— predator problem [7] the chaotic Lorenz system [1,8-10], systems
of ODEs [18], the classical Chen system [15, 1] and the Haldane equation
for substrate inhibition enzyme kinetics [19]. The Homotopy Analysis
Method (HAM), which was first introduced by Liao (see [11-14] and the
references therein), is another technique used to derive an analytic
solution for nonlinear operators. It consists of introducing embedding
operators and embedding parameters where the solution is assumed to
depend continuously on these parameters. The method has been used
intensively by many authors and proved to be very effective in deriving
an analytic solution of nonlinear differential equations [5,6,11,12]. In [4]
we have been considered the (MADM) for solving Van der Pol system
and the numerical results of this method show the efficient and powerful
of the method as it compared with the classical Rungge — Kutta order four
(RK45) and the classical Adomian Decomposition Method (ADM) for
finding the solution of this system. In this paper we are interested to
obtain the convergence of the Multistage Adomian Decomposition
Method (MADM) by deriving the Homotopy Analysis Method (HAM)
for this system.

2. The Multistage Adomian Decomposition Method for solving

system (2)
Recall [4], we consider the general system:
X; _Zau J+Zzalpq pXq 1=12 (3)
p=lg=1

Where x,=xX'(t)=xandx, =y'(t)=y, the prime denotes differentiation
with respect to time.

If we denote the linear term (the first term on the r.h.s.) as R,and the
nonlinear term (the second term) asR.,, then we can write the above
system of equation in an operator form:

Lx;, =R; +R,, , 1=12 4)
Where L is the differential operatord()/dt. Applying the inverse
(integral) operator L™ to (4) we obtain

x (t)=x({t=0)+L"R, +L'R, , =12 (5)
According to the ADM [2, 3], the solution x; (t)will be given by the series
0= . i=12 6)
Bearin;_(t)his in mind, the linear term R.,then becomes

u-E g

{0 that L'R,, will be given by:
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LR, —Zzaujxmdt =12 @)
j=1n=0
The non-linear term R., is decomposed as follows:
Zzalpq ZAIH p.q’ (9)
p=1lg=1l n=0

Where the A, . ’s are the so-called Adomian polynomials, computed by
using Algorithm [4] or using the following formula:

14d
Ain,|0.q | da" {M (Zlkxkp’zﬂk Xkg } (10)
k=0 =0

Where M (x,y)=x?y for each n=0.12,... Moreover, LR, will be given
by

LﬁlR - Zzaupq Zj An,p, q (11)
p=1g=1 n=00
Putting (6), (8), (9) into (5) we then have for each i=1,2
ZXm (t)=x(t —0)+Zza., j Kt +3 Y2, S j Anpqd (12)
j=1n=0 p=lg=1 n=00
Consequently, for each |=1,2we have
=x(t=0), (13)
ZaufxuodHZZamq ZJ.AIO p.q (14)
p=1lg=1 n=0o
Zau leldt + Zzalpq ZI All P, q (15)
—1q—1 n=00
|n+1 Zaljjxlndt+ZZaIqujA,n p.q (16)
p=1g=1 n=00

Now by using only the nonlinear terms of the input functions in
Algorithm bellow

Algorithm (Computing Adomian Polynomials)[4]

Input: the system
G, =G(u,u,,...,u,)

G, =G(u,u,,...,u,)
set n=N,m=M k=K the input of Adomian Polynomials needed.
Output: Aji ; the Adomian Polynomials
Step 1: seti=1
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Step 2: while i <n we have:

u, (1) = Zmluibﬁb

b=0

Step 3: set j=1
Step 4: while j<n do steps (5) and (6)
Step 5: G;(1) =G;(u;(t) =u; (1))
Step 6: G, =G, (1)
Step 7: s, =expansion of G, (1) w.r.t. A

ft; =s;(1)
Step 8: while j<k and while j<m
Aj =%(ﬁj)(0)/(i)!= D'(ft;)(0)/(i)!

Step 9: output Aji (the Adomian Polynomials)
Step 10: end.

From equation (10) we compute the Adomian Polynomials as follows:
AlO,p,q =0

Ail,p,q

=0
Az pq =0
" 17.a
. (17.2)

=0

A13, p.q

A14, p.q

and

Ao pg = _,U(Xlzoxzo)

PApipg = _D(ﬂ)(xlzoxzo)(leoxzoxn + X120X21)

1
Ay, pg D) D® (ﬂ)(xlzoxzo)(leoxzoxn + X120X21)2

1
5 D(y)(XfOXZO)(ZXleZO + AXyXp1 X1 + AXqpXooXpp + 2)(120)(22)
1. 2 2 3
Asspg = "5 D )(ﬂ)(xlo X20)(2X10X a0 %41 + Xi9X1)
1 D(z) 2 y) 2 2 2 4 4
5 (12)(X19 X0 )(2X19X 20 Xqq + XigXo1 )(2X(1Xo0 + 4XgXp1 Xy + 4XqXo0 X
1
2 2 2
+2Xj9Xp9) = 5 D () (Xig X 90 ) (12X11 X g0 g5 + 6X{1 X1 +12%19X 00 Xy1 +

2
+12X39Xp1 X1p +12X19 X0 Xq3 + 6X{pXp3)
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__ 1 5@\ 2 2, a4
Aot pg = ) (£0)(X10 %00 )(2X10 Xa0 Xe1 + X0 Xo1)

1
2 D® (ﬂ)(xfoxzo)(leoxzo)% + )(120)(21)2 (2X121X20 + A% Xp1 Xy

1
2 2 2 2
+ 4% Xop X1y + 2X40X00) = 3 D' )(/u)(XmXZO)(ZXllXZO + A% X01 X4

2 1.2 2 2
+ 4% Xo0 X1 + 2Xi0Xp0) = 5 D™ (1) (X0 X00 )(2X40Xa0 X1 + XigXo1 )12 X10 X0 X5
2 2
+6X1 X1 12X X50 %11 +12X0X51 X1, +12X10X00 X053 + 6X10X55)
1 2 2 2
o D (1) (X10X00) (24 X15X50 + 48Xy 1 Xg1 X1 + 48Xy Xog Xz + 24 X1 X5,

+ 48Xy Xpg Xy + 48X o Xon Xyy + 48X o Xo X3 + 48X o Xp0Xyy + 24 xf0x24)

(17.b)
and so on
Since A, ,,=0,vn=012,..
t
o [Anpe=0 ,¥n=012.. andhence
0
X0 =% (t=0) (18)
2 t
X1 = Zaljjxlodt (19)
=0
2 t
Xpp = Dy [ X0t (20)
=0
2 t
Xini1 = zaijjxlndt (21)
= o0

also

t
IAzo, p,th = _,U(Xlzoxzo)t
0

t
1
_[AQL p,th = 5 (_D(ﬂ)(xlzoxzo)(leoxzoxn + )(120)(21))t2
0
t 11
IAQZ. pqdt= 3 (_E D@ (1) (X0%20) (2X10%Xa0%01 + iy Xo1)°
0

1
5 D(ﬂ)(xlzoxzo)(lezlxzo +4X%10X91 X1 + AXgoXopXgp + 2)(120 X22 ))t3
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1,1
JAza, p.qdt = 1 (_6 D® (1) (X5 X50) (2X10Xa0 %11 + XipXo1)®
0

1 0 2 2 2
5 D )(:u)(X10X20)(2X10X20X11 + X{gXa1) (2X{1 Xo0 + AX10X01X1y

1
+ 4% X0 X2 + 2X120X22) 6 D(ﬂ)(xlzoxzo)(llelxzoxlz + 6X121X21

2 4
+12%0XppXg1 +12X10 X1 Xgp + 1210 Xp0 %13 + 6X[0 X))t

hence we obtain

=X, (t=0) (22)

Zazj_[xzodt"‘ Zzaz oq (= ,U(Xloxzo)t) (23)

plql

zaZJ _[ X, dt + Zzaz pq( (- D(,U)(Xloxzo)(leoxzoxn + X10X21))t ) (24)

J1 O qul

Xp3 = Zaz, J. Xpodt+ Zzaz 0q (_— D@ (1) (X X0 ) (2X40 X0 Xy + XipXp1)?

=L 0 p=1g=1 (25)
1
) D(ﬂ)(xlzoxzo)(lezlxzo + 4X10Xo1 Xgg + AXyo XX, + 2X120X22))t3)
2, 2,3 D® 2 2., \3
Z Gy I Xpadt+ ZZ a, P (—— (£6)(X10Xa0)(2X10 X0 Xe1 + X40Xo1)
=1 0 p=1g=1
1
) D® (ﬂ)(xlzoxzo)(leoxzoxn + X120X21)(2X121X20 +4Xy0 %01 Xy (26)

2 1 2 2
+ 4% XogXgy + 2X19X00) = 5 D (£0)(X19 %20 )12 X33 X50 %45 + 6X13 X5
2 4
+12 X)X Xy +12 X0 Xg1 X415 + 12X Xp0X45 + 6Xig Xp3))L")

and so on

Upon calculating the polynomials (10) and integrating, one then has for
all t>0:

xi(t):idin% i=12 27)
n=0 -
Where the coefficients d. are given by
io = % (1), (28)
n d
a,d n—1)! POk o n>1 29
Z ijn-n +( )pziqZ;kZ}) ipg k' ki(n—k —1)! (29)

Hence from (27)-(29), the explicit solution to the autonomous Van der
Pol system (2) is:
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x=§:ant— , n>1 (30)
n=0 n!

y=3bL n>1 (31)
n=0 n!

Where the coefficients are given by the recurrence relations

8, =X(t=0) , by=y(t=0), (32)

a =Y

by = =%, — (x5 = 1)Yo (33)

a,=b,, ,nx1

n-1 2
b, 4

bn =-a,,+ /Ubnfl - :u(n _1)IZ

ko KI(n—k-1)! n=1 (34)

Again, Recall [4], we have been considered the numerical results of this
method. This results show the efficient and powerful of Multistage
Adomian Decomposition method when compared with RK4 and classical
ADM for finding the solution of the system (2).

Case 1: x =2, and the initial conditions x(0) =x, =0.1and y(0) =y, =1
Case 2: u =5, and the initial conditions x(0) =x, =0.1and y(0) =y, =1
Case 3: 1 =10, and the initial conditions x(0) = x, =0.1and y(0) =y, =1

— — --ADM - RK45 - MADM

Fig. (1): Comparison of the solution of system (2) xandy at time t for case 1
using 4-term classical ADM, 4-term MADM and RK45.
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--ADM - RE4S - MADM

Fig. (2): Comparison of the solution of system (2) xandy at time t for case 2
using 4-term classical ADM, 4-term MADM and RK45.

--ADM - RK45 - MADM

Fig. (3) Comparison of the solution of system (2) xandy at time t for case 3
using 4-term classical ADM, 4-term MADM and RK45.

As depicted in Fig. (1), Fig.(2) and Fig. (3), these 4-term ADM solutions
are not accurate enough. However, our 4-term MADM solutions agree
very well with the RK45 solutions.

Now in order to obtain the convergence of the MADM, we have to derive
the Homotopy analysis method for the system:
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3. The Derivation of the Homotopy Analysis method for system
(2)
Consider a nonlinear differential operatorR,,, let h=0 and Abe
complex numbers and A (1) and B, (1), i=12 be complex functions
analytic in the region |4|<1, satisfying

AQ=B©0)=0 , A@®=B@®=1, i=12 (35)
respectively. Besides, let
A =X an A BA)=2 Sk (36)

denote tf}e Maclaurin’s series (;f A (1) and B;(1), i=12 respectively.

Because A (1) and B, (1), i=12 are analytic in the region|A|<1, therefore

we have

AD=>an =1 BWM=2p=1 i=12 @37)
k=1 k=1

The above defined complex functions A (1) and B, (1), i=12are called

the embedding and 2 is the embedding parameter.

Consider

R,(x()=0, t>0, i=12 (38)

Where R, is a differential operator, x, (t)is a solution defined for t>0.

To solve Equation (38) using Homotopy analysis method we construct
the equation

-8 (ﬂ)]Hz (t,2) — (% (t=0) + iiai,-ixmdt)}} =hA(DR,IX ()] (39)

j=1n=0 0
Where £ is a properly selected auxiliary linear operator satisfying

£(0)=0 (40)
and h=0 is an auxiliary parameter, x (t=0) is an initial approximation

2 ® t
and > > a; [ x;, dt is the solution of linear term.

Usiniqzltr;]:e0 faco:ts that A (0)=0andB,(0)=0, i=12 Eq. (39) gives

E{ii (t,0) — (x; (t =0) + iiamjxmdt)} =0, i=12

or equivalently e

%.(t,0) = x (t :0)+iiaujxm dt (41)

j=In=0 ¢
Similarly, when 2=1,Eq. (39) is the same as Eq. (38) so that we have
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X (D =x(t) (42)
Suppose that Eqg. (38) has solution of nonlinear term X, (t,A)that is
t

jRiz that converges for all o<ai<1 for properly selected h, A (1)and
0

B.(4), i=12.
Suppose further that x; (t, 1) is infinitely differentiable at 2 =0 that is

N 4 (W) B

XoM)=— 15— o k=0123,...

:>x,0(t)— [ZZa,quR,z(xp xq)dt] i=12 (43)
=1qg=1

where Riz(x, y) = x?y exists for all k=0,1,2..... Thus as 4 increases from O
t

to 1, the solution X (t, 2) of the nonlinear term of Eq. (39), i.e.[R;, , varies
0

continuously from X;(t,0)to the solution x,(t)of the original Eqg. (38).
Clearly, Eq. (41) and Eq. (42) gives an indirect relation between X, (t,0)
and the general solution x;(t).

The homotopy analysis method depends on finding a direct
relationship between the two solutions which can be described as follows:

Consider the Maclaurin’s series of X;(t,1) about 1=0

. - 2 (d % (t, 4) a
xi(t,i)—xi(t,0)+kz:;(—d/lk HJ k!
k k
% (t,4) =R, 0)+zza,pqz[j R'Z(dxjk’ o) dtJ%. (a4)
p=1g=1 =1\ 0 A=0 -

Assuming that the series above converges at1=1, we have by Egs. (41)
and (42) the relationship:

X () = x (t = 0)+22au j x,ndt+zxm(t) (45)

where _

X (1) = ,O(t) d/1" Zi .pq L1 d“R,z((Sn, Xgs A) =1 (@)
p=1g=1 =0

To derlve the governing equation ofxin (t), we differentiate Eq. (39) n
times w. r.t. 2 we get
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n(n)d* =B, d" o 2, |
Z [ k( )l g (K6 A) — (x (t=0)+ D" > & [ x,,dt)]
= A dA j=0n=0
0 () d A (4) d" R, [X (1, A)]
=h i2L7 47
;‘)(kJ dA dA"x) (47)
Further dividing Eqg. (47) by n! and then setting1=0, we have the so

called nth-order deformation equations

2 2 t1d”F~2-2(x, A)
£ a [——=—F !

dt—

A=0

1 dO9R,(x,x

Zﬂllkzz IPQJ. k)' d/ﬁt(n I;I)<; Q’

k=1 p=1qg=1

z)|

‘20

} =R, (©)  (48)

where R, (t) in fact depends on the previous calculated values of

2 o t
X (t=0)+>" > ay[xpdt, i=12
j=1n=0 0
are given by
R, (1) = hzau,k b ok (1) (49)
k=1

and h;, (t) ére the homotopy polynomials given by

h (1) _1 d Riz[xin(t’/ﬁf)]
n! di 2=0

We emphasize that Homotopy Analysis Method provides us with the

=12 (50)

large flexibility to select the nonzero auxiliary parametersh, the
embebbing functions A (1) andB,(1), i=12 and the auxiliary linear
operator £.

Now by comparing Eg. (50) with the Eg. (10) we conclude that
Homotopy polynomials will be reduced to the Multistage Adomian

decomposition polynomials and when h=-1, we conclude that
Ain(t):hin(t)-

4. The Convergence of MADM for system (2) using HAM
In this section the question of convergence of MADM will be

addressed.
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Theorem 1.

If the series
X (t=0)+ ZZau j x, dt + zxm (t)dt (51)

j=1n=0
where
X; (t, A)
e n 2 2 d"R A
Xin (t) = %) d4 2 ZZa,qu ! 2 (Xp:Xq: 2) dt, n>1
=g da” =0

IS convergent, it must be a solution of system (2).
Proof. By Eq. (48) we have

0 2 2 dR X,
ZR.n(t) Zﬁ{ZZa.qu : 'Z(X" vt

=1 p=1lg=1

A=0

= 2, 3 : 1 d(n k)Ruz(X ' 1
& quZ I(n—k)! PLEY 22, o

0

2 d"R A
Z apoZIl IZ(Xp, - ) dt—
p=lg=L  n=1p [l 1=0
1 Lq d(n—k)ﬁ_z(xp, X! 2)
a; ' dt
R e
2 2 1d" RI (x Xq:4)
83 S L it
p=1g=1 n=lo =0
22 a2t 1 d"Rp(Xp,Xg.A)
dt
;ﬂllk;;a'pqég(n—k)! d/ln 120 }
1d" RI (x X, A)
ZRln(t) £(l Zﬂllk) ZZ |quJ - p : dt (52)
p=lg=L  n=1p [l 1=0
Recall that g,(1) =1, i=12 therefore
0 when k=0
B =11 when k=1
0 when k>1
Which given by Eq. (42)
> Ry (1) =0 (53
n=1

6n the other hand by Eqg. (49) and Eq. (50) that:
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Z Rln (t) thall k',(n—k) (t) - hzall k Zhl (n-k) (t) hzall k Zhl n(t)

n=1l k=1

1 d"R,[%(t, )]

=h 54
Zaﬂ-kz n| din 120 ( )
Again, A (1) =4, i =12, therefore
0 when k=0
ay =41 when k=1
0 when  k>1
Therefore, iail’k =1, thus the above expression becomes
k=1
ZR.n ()= hZ () = hZ 10" R.z[xn(t A)] (55)
n' dA 1=0
Note thath=—1, therefore, By Eqgs. (53) and (54) we have
= 1 d"R,[X (t, )]
[ =0 56
Zo n! da" =0 ( )

In addition, X, (t, 2) is not a solution of equation (2) in general when 1 =1.
Now define A(t, 1) =R, [X; (t, A)] - Ri, [X; ()] =R, [X; (t, 2)],as a residual error
of system (2) then The Maclaurin's series of this residual about 2=0 is

Zo| At,2) A" id "R, [X; (t, )]
n=0 dﬂn n! n=0 dﬂn

ﬂn

=0 N!

According to (50), the above Maclaurin's series converge at 1 =1, say

2 1 d"Ry,[% (t, A)]

At =R, [X (1)) = <1 dan

=0

A=0

Which means that

2 ©

X (t) =X (t,1) = x (t =0) + ZZaﬁjxde

j=In=0 ¢

ZZ:aI tl d” R|2(Xp’ q’ )
] pqo d/ln

2
t2
p=

=1

A=0
must be a solution of Eq.(2), which completes the proof.

To estimate whether the series converges or diverges, one can use the
following theorem:
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Theorem 2. If the series in Eq. (51) converges then the following two
sequences:

K
Xk :ZRin(t)
n=1

K
Vi = Z hiy (1)
n=1

Where R, (t) and h,(t) are defined by Eqgs. (49) and (50) converges to

zero.
Proof: The proof of this theorem is subsequent of Egs. (53) and (55).

5. Conclusions

The derivation of the Homotopy Analysis method for system (2)
has been applied in this paper. This method provides us with a convenient
way of controlling the convergence of approximation series. We have
been shown that if the series (51) converges then the two sequences

K K
2 =D Ry (andv, =>"h, (t) converge to zero.
n=1 n=1
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