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Abstract
The self-scaling VM-algorithms solves an unconstrained non-linear
optimization problems by scaling the Hessian approximation matrix
before it is updated at each iteration to avoid the possible large eigen-
values in the Hessian approximation matrices of the objective function
f(x).It has been proved that these algorithms have a global and super-
linear convergences when f(x)is non- convex.

In this paper we are going to propose a new self-scaling VM-
algorithm with a new non-monotone line search procedure with a detailed
study of the global and super-linear convergence property for the new
proposed algorithm in non-convex optimization.

Keywords: VM-methods, non-monotone line searches, self-scaling AL-
Bayati VM- method, global converge, super-linear convergence.
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1. Introduction
We study the global convergence of a self —scaling Al-Bayati [4],
VM- method with non-monotone line searches for solving the
unconstrained optimization problem (see[3]and[12])
minflx (1.1)
xeR"

where f is a continuously differentiable function of n variables. At the k™
iteration of the self-scaling method, asymmetric and positive definite
matrix By is given, and a search direction is computed by

d=-8B'9 L. (1.2)
where g is the gradient of f evaluated at the current iterate xx. One then
computes the next iterate by

Xey =% +ad, (1.3)
where the step size oy satisfies the wolfe conditions
f(x, +a d )< fx)+Sadlg, ... (1.4)
and
o(x, +o,d)'d, >8,djg, .. (1.5)

Where 0<81<% and §, <8, <1.

and satisfies another conditions as we explain it later.

Variable Metric Method

The theory of Variable Metric methods is beautiful. We now have
a fairly good understanding of their properties. Much of this knowledge
has been obtained recently, and we will discuss it in this paper.

The BFGS method is a line search method. At the k-th iteration, a
symmetric and positive By is given and a search direction is computed by
(1.2) and (1.3). It has been found that it is best to implement BFGS
formula (Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno
(1970) ), (see [1]1,[2]).

BoVivi Be | ViV
Vi Byv, Yi Vi

Bk+l = Bk -

Where

Y =0k — Yk and Vi =X = X% (17)

The analysis has been extended by Byrd, et. al. (see [11]) to

restricted Broyden class of Quasi-Newton method in (1.6) which is
replaced by

BoVivi Be | ViV

VI Bkvk yIVk

where ¢<]0, 1], and
v _{ Yo B,V }
k — T T

YV Vi Byvy

g@z
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The choice ¢ = 0 gives rise to the BFGS update where as ¢ =1
defines the DFP method, the first Variable Metric method proposed by
Davidon, Fletcher and Powell (see Fletcher, [13]). And then the Hessian
approximation is then updated by Al-Bayati [4].

BV B | Yi¥i

Bi.. =B, +
k+1 k V: B,V, k VI yI
where
v, B, v . i
£ :ﬁ (for more details see Al-Bayati [4])
k Yk

Note that this is done only for a quadratic model. But for non quadratic
models, see (Al-Bayati [5], Al-Bayati & Al-Assady [6] and Al-Bayati
[7]). For the constraint optimization problems and scaled sequential
BFGS algorithm see (AL-Bayati and Hammed [8]).

2. A new Non-monotones self-scaling Al-Bayati (1991) VM-
algorithm
First we give the outline of the above algorithm as follows:

Algorithm (2.1)
At the k™ iteration denote f, = f(x) and gk = g(xx)
Step (0) For given X, and initial symmetric positive definite matrix H, let
k=0
Step (1) If [|g«|| =0 stop
Step (2) Determine the search direction
d=—Blo,, L (2.1)

Step (3) Find step length o by a new line search approach (NLS) below
Step (4) Generate a new iteration point by

Xerp = Xe+oue e (2.2)
Step (5) Update the Hessian matrix Gy by the following Al-Bayati [4]
self-scaling

VM- update

B,v,V,B A

B  —B _—2kkYkPk o kYk
k+1 k VIBka Pk Vlyk ...... (23)
V=X =% (2.4)
Ye=%%a-% . (2.5)

VB, Vv,

Pe=—cr, 2.6
Vv (2.6)

Step (6) Let k=k+1 and go to step (1).

Now we produce a new non-monotone line search approach to determine
the step- length in step (3). For this we introduce the concept of forcing
function.
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Definition 2.1: The mapping o: [0, +w]—[0, +wo] is called a forcing
function, if for any sequence {t;} with t;>0 we have

limo(t) =0=limt, =0 (2.7)
2.3 A new non-monotone line search (NLS) approach
let 61, o, be two forcing functions
let m be a positive integer
Given parameters 0<d,<p<1 and M>0, §,>0
At the iteration k, the step length oy (for more details see[9]).
satisfies that:
f(x, +o,d,)<C, -5, min {Gl(uk)1Gz(Ck)}_Szai”dk”Z """ (2'8)
(x, +o,d)"d, >pgd, . (2.9)
T
d
W =— Eﬁé |T Gk :_O('kg-l[dk ...... (2.10)
k
Co=fo, Q=1 and C,,, = %‘ﬁfm ...... (2.11)
k+1
with v, € [0, 1] and
Q= Qetl (2.12)

The updating of Cy in (2.11) was recently given by Zhang and
Hager [15]. Clearly from (2.11) and (2.12) Cy is a convex combination of
the function values f,, fq, ...., f.

The choice of yx controls the degree of the non-monotonicity
If w= 0 and min {o;, c,}=Cx for each k then (2.8) reduces to the
monotone line search. If y=1 for each k then Cy is the average of f,, fi,
...., fx and (2.8) reduces to the monotone non-increasing function.

Theorem 2.4:
Consider Xy+1=Xxtok Ok, ok satisfying (2.8)-(2.10) if {fi} in infinite and
bounded below then

» min{o, (1), 0, ()} + 0‘2||dk||2 .

> 0. T (2.13)
Proof:
From (2.8) it is clear that
ou’ || dk]| > > 0 and since d is descent
then y>0and x>0
= min{c;,c2}>0 . (2.14)
= fxs1 <Cfrom(28 . (2.15)

and
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C = 7« QiCy +fk+1
k+l — Q ......
k+1

- Q.G HC, ~min{oy, o} - ag]d, [}
- Qk+1

< C{nQ +1} _ min{o;, Gz}"‘akzndk”z
Qk+1 Qk+1
from (2.12) we get

c min{o;, o} +aZ|d, [’
Qk+1
.{C«} is monotone non-increasing since {fi} is bounded
from (2.15) {fi} is non- increasing (see [10]). This implies
5 Min{or, o+ afd” e (2.17)
Qi

3. The global convergence property of the new proposed
algorithm (2.1)
Let us consider the following
Assumption 3.1
(1) for a given x;eR"
let the level set S={xeR": f(x) < f(x,)} be abounded ... (3.1)
(2) In some neighborhood N(S) of S. g(x) satisfies Lipschitz continuous
condition, i.e.
forall x,xeN(s) ...

Jot-o60] <t~ 62)
Lemma 3.2
Under assumption 3.1 if oy satisfies
Gadi > Bgid, o<p<t (3.3)
then o, > 1P P
L [d]
Proof:
Clearly
Oorg) < fgorgdl o (3.4)
from (3.2) < L‘ X — xHHdkH
<L ok
lael> . (3.5)

Also from (3.3) we can write
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g-ll<—+1dk _g1k—dk 2 Bgldk _gldk .

= (0. -9)'d. >B-Ygid, >0 (3.6)
since O<p<1
from (3.5) and (3.6) we have
Lo df > (B-Dod. e (3.7)
B-1g,d,
T 3.8
Y G.8)
from (2.10) we have
1-8 w4
o, > —-—
k L ”dk” ...... (39)

Now before starting the proof of the global convergence of the proposed
algorithm, we define an auxiliary matrix sequence {B«} as Nocedal and
Yuan did in [14],

assume that B, =B, and

_ T
B k+l=&8k+ll kZl

= DBy, k2L 3.10
v, B v, (3.10)
from (2.1) we have
v =-a, B, gy
where
o V-kr—lyk—l
Oy =—F=—=7—0 3.11
‘ Vi BV, ‘ ( )
since px >0 then if vy, >0=> Bi. isa positive definite
Lemma 3.3: From [12]
For {B«} defined in (3.10) we have
R A R 1
tr(Bea)=tr(B«) ———=——+ Tk_ S Tﬁ k Tk
v, Bkv, v, Bkv, Vv Bk, YV
. . R TR T T
Bei=Be— DB, YV Ve (3.12)
v, Bkv, v, Bxv, VY
Then for all k>1
—
I - NV A
tr(Bk:1) = tr(Bx) — == +2Ek 1+ ) (3.13)

T T T
Vi Biv, v, Bivy YiVi

g@:



Prof Dr. Abbas Y. AL-Bayati & Dr. Maha S.Y. AL-Salih

Theorem 3.3

Let x; be a starting point for which assumption 3.1 holds, let {xx} be the
sequence generated by the new proposed algorithm 2.1. If there exists a
positive number k>1 for which

Iyvd<ap el (3.14)
for all k > K then
liminfg /=0 (3.15)
Proof:
By Contradiction
Assume that there exists a positive ¢;>0 for which
leclzec. L (3.16)
For all k > 1. Now since
Vo=-oBrg, e (3.17)
=B, =—axg, e (3.18)
Let us start with
V] Bkv, = (—&kEElgk)T(—&kgk)
from (3.11), (3.17) and (3.18) we get
- T V-I[—lyk—l Bl
=(- ———7k g, B
(o gy) ( VI Blv, . oBkg) (3.19)
From (3.10) take k+1=k and then (2.1)
we get.
et (3.20)

= V] BV, =—axa, gy d,
Now from (3.6) we have
yed, = (B—-1)g,d,

=YV 2 (B-Degde L (3.21)
substitute (3.18), (3.20) and (3.21) into (3.13)

. . e 2 _ T _ T 2
B <tr(Be) - 09 (B-Daoid,  (B-Dagid, v

—aka, 9y d,  — ke, Gy d, —ava, 9;d, (B-De,09¢d,
_ _ —2 2 _ T 2
tr(Be) <tr(Be) + — 29 DO v :
axen 9, dy axg, d, -aka, 9, d,

from (3.14) we have

— 2 2 2
wlol o pais, 0-plol

tr(Bxa) <tr(B,) + _
‘ akg-krdk akgldk akakgzdk
- _ o afo] a-p|, @Bl
tr(Br«a) <tr(B«) + ——+———1- — 1 (3.22)
o9, a, Ak a.9,d,

g@z
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since B<1 and d,g, <0 clearly
tr(Bk+1) < tr(Bk) forall k > K
Thus 3 a constant C, > 0 for which
tr(Bx) < C, foralk . (3.23)

let 0 < Ay < Ay < ... < A, be the n eigen values of B«then by (3.23)
r.(B)<C, (3.24)

C, =f[zi (Bx)< A, (Bx)C™

s.daconstant C, >0 >

A(BY=C, (3.25)
i.e. a,(Bx)is the largest eigen value of the matrix (Bx)
Now
Let de=-Bvg, e (3.26)
take the norm
Hdku by (3.25)
1
<=lof (3.27)
C4
Now
-9,d, = gzéigk by (3.26)
>
o
>Cle L (3.28)

From the def. of », and (2.10) we have
_gldk_ gldk 4” ||>CC
k

H = = =0
Tl T e e
from (3.16)
Also
¢ =-o,9.d, rom@9 . (3.29)
-0y k[ -p j
= L 3.30
jo.] : (-39
from (2.10)
1—
=(Tﬁjuﬁ ...... (3.31)
(1 ﬁ) o (3.32)
L C§
Holds foranyk . (3.33)
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since <1 L>0=(,x>0 '
= min {61 (l,tk), (o)) (Ck)} >Cs>1 Y (334)

From Qg+ = 1+ vy Qk from (2.12)

:1+_§kéf_[oykmsk+2 ...... (3.35)
min(e,,o,) +a2d, | & C,
>
=) o _;k+2>oo ...... (3.36)

which contradicts (2.17)
so we complete the proof

Remark: we can say that the above theorem will be true for the
following case: depending on determinant of the matrix By
since

det (Blﬁ'l‘B‘"“’a“):,ok det (B) (3.37)
T

with p, =min {wl} ...... (3.48)
Ve Vi

similarly, be taking the auxiliary matrix Bxas

Bi=B,, Bii= max{yk—‘:k 1}8k+l . k>1
(3.49)

we claim that (3.38) and (3.39) are superior on the actual BFGS
update.
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