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  الملخص
 ـ               -L (ـفي هذا البحث تم تحديد مقياس جديد لذاكرة الخـزن المحـدود لطريقـة ال

BFGS(     ـ   m=3القياسـية مـع   ) L-BFGS (ـ، الغاية من البحث هي المقارنة مع طريقة ال
 ان  إلىالتحديث الجديد يشير    .  لاختبار المسائل  الأبعادفة  خطية مختل  وباستخدام عشرة دوال لا   

  .النتائج العددية فعالة جدا بالمقارنة مع الخوارزمية القياسية
 

Abstract 
In this paper, we have investigated a new scaling parameter in the 

standard memoryless L-BFGS algorithm. This new consideration is 
compared with the standard L-BFGS method under the assumption of the 
L-BFGS method with m=3, and by using ten nonlinear different 
dimensionality test problems. The new modification performs very 
effective numerical results compared with the standard algorithm. 

 
1.  Introduction 

BFGS quasi-Newton methods have reliable and efficient for the 
unconstrained minimization of a smooth nonlinear function RRf n →: . 
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However, the need to store an n x n approximate Hessian has limited their 
application to problems with a small to medium number of variables. 

For large n it is necessary to use methods that do not require the 
storage of a full n x n matrix. Sparse quasi-Newton updates can be 
applied if the Hessian has a significant number of zero entries (see, e.g., 
Powell and Toint [13], Fletcher [5]. 

In nonlinearly constrained optimization, other methods must be 
used. Such methods include conjugate-gradient methods, limited-memory 
quasi-Newton methods, and limited-memory reduced-Hessian quasi-
Newton methods (see Gill,et al [7]). 

 
1.1: Variable Metric Methods: 

We have seen that in order to obtain a super linearly convergent 
method. 

How can we do this without actually evaluating the Hessian matrix 
at every iteration? The answer was discovered by Dixon (1959), and was 
subsequently developed and popularized by (Fletcher and Powell [6]). It 
consists of starting with any approximation to the Hessian matrix, and at 
each iteration, update this matrix by incorporating the curvature of the 
problem measured along the step. If this update is done appropriately, one 
obtains some remarkably robust and efficient methods, called variable 
metric methods. they revolutionized nonlinear optimization by providing 
an alternative to Newton's method, which is too costly for many 
applications. There are many variable metric methods, but since 1970, the 
BFGS method has been generally considered to be the most effective. It 
is implemented in all major subroutine libraries and is currently being 
used to solve optimization problems arising in a wide spectrum of 
applications. 

The theory of variable metric methods is beautiful. The more we 
study them, the more remarkable they seem. We now have a fairly good 
understanding of their properties. Much of this knowledge has been 
obtained recently, and we will discuss it in this section. We will see that 
the BFGS method has interesting self-correcting properties, which 
account for its robustness. We will also discuss some open questions that 
have resisted an answer for many years. 

The BFGS method is a line search method. At the thk −  iteration, a 
symmetric and positive definite matrix kB  is given, and a search direction 
is computed by 

kkk gBd 1−−=                                                                                      (1) 
The next iterate is Given by 
         kkkk dxx λ+=+1                                                                                  (2) 
where the step size ( kλ ) satisfies the following Wolfe conditions: 
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kkkkkk dgxfdxf λσλ 1)()( +≤+                                                        (3) 
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T
kkk dgddxg 2σλ ≥+                                                                  (4) 

where 10 21 <<< σσ  
It has been found that it is best to implement BFGS with a very loose line 
search: typical values for parameters in (3), (4) are 4

1 10−=σ  and 9.02 =α . 
The Hessian approximation is updated by: 
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k
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kkK

Kk sy
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BssB

BB +−=+1 .                                                          (5) 

s.t: 
 kkk ggy −= +1 , kkk xxs −= +1 .                                                    (6) 
 

Note that the two correction matrices on the right hand side of (5) 
have rank one. Therefore by the interlocking eigen value theorem 
Wilkinson, (1965), the first rank-one correction matrix, which is 
subtracted, decreases the eigen values. We will say that it "shift the eigen 
values to the left" on the other hand, the second rank one matrix. Which 
is added, shifts the eigen values to the right. There must be a balance 
between these eigen values shifts, for otherwise the Hessian 
approximation could either approach singularity or become arbitrarily 
large, causing a failure of the method. 

A global convergence result for the BFGS method can be obtained 
by careful consideration of these eigen value shifts. This done by Powell 
[12], who uses the trace and the determinant to measure the effect of the 
two rank-one corrections on kB . He is able to show that if f is convex, 
then for any positive definite starting matrix 1B  and any starting point 1x , 
the BFGS method gives lim inf 0=kg . If in addition the sequence { }kx  
converges to a solution point at which the Hessian matrix is positive 
definite, then the rate of convergence is superlinear. 

This analysis has been extended by Byrd, Nocedal and Yuan [4], to 
the restricted Broyden class of quasi-Newton methods in which (5) is 
replaced by  

T
kkkk
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BB )(1 φ++−=+                                     (7) 

Where ]1,0[∈φ , and  

⎥
⎦

⎤
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k
k sBs

sB
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y
v . 

 

The choice 0=φ  gives rise to the BFGS update, whereas 1=φ defines the 
DFP method, the first variable metric method proposed by Davidon, 
Fletcher and Powell. Byrd, Nocedal and Yuan prove global and 
superlinear convergence on convex problems, for all methods in the 
restricted Broyden class, except for DFP. Their approach breaks down 
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when 1=φ , and leaves that case unresolved. Indeed the following 
question has remained unanswered since 1976, when Powell published 
his study on the BFGS method, [11]. 

 
2.  The Limited Memory BFGS Method. 

Quasi-Newton methods are a class of numerical methods that are 
similar to Newton's method except that the inverse of Hessian 1))(( −

kxG  is 
replaced by a n x n symmetric matrix kH , which satisfies the quasi-
Newton equation: (see [8]). 

11 −− = kkk syH ,                                                                                   (8) 
where 

11-k1111 y                  , −−−−− −==−= kkkkkkk ggdxxs λ                               (9) 
And 01 >−kλ  is a step-length which satisfies some line search conditions. 
Assuming kH nonsingular, we define 1−= kk HB . It is easy to see that the 
quasi-Newton step. 
 kkk gHd −=                                                                                    (10) 
Is a stationary point of the following problem:   

dBdgdxfd k
T

k
T

kkRd n
2
1)()(min ++=

∈
φ                                                       (11) 

Which is an approximation to problem )(min xfnRx∈  near the current iterate 

kx , since )()( dxfd kk +≈φ  for small d . In fact, the definition of )(dkφ in 
(11) implies that 
 )()0(),()0( kkkk xgxf =∇= φφ                                                           (12) 
and the quasi-Newton condition (8) is equivalent to 
 ).()( 11 −− =−∇ kkkk xgxxφ                                                                  (13) 
Thus, )( kk xx −φ is a quadratic interpolation of )(xf at kx  and 1−kx , 
satisfying conditions (11)-(12). The matrix kB  (or kH ) can be updated so 
that the quasi-Newton equation is satisfied. 
One well known update formula is the BFGS formula which updates 1−kB  
from kB , ks  and ky  in the following way: 
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In Yuan [9], approximate function )(dkφ in (11) is required to satisfy the 
interpolation condition. 
 )()( 11 −− =− kkkk xfxxφ                                                                      (15) 
instead of (13). This change was inspired from the fact that for one-
dimensional problem, using (15) gives a slightly faster local convergence 
if we assume 1=kλ  for all k . Equation (15) can be rewritten as 
 [ ]k

T
kkkkk

T
k gsxfxfsBs 1111 )()(2 −−−− +−= .                                              (16) 
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In order to satisfy (16), the BFGS formula is modified as follows: 
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If 1+kH  is the inverse of 1+kB , then 
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with  
 

k
k t

1
=α                                                                                          (20) 

Assume that kB is positive definite and that 0>k
T
k ys , 1+kB  definite 

by (17) is positive definite if and only if 0>kt . The inequality 0>kt  is 
trivial if f  is strictly convex, and it is also true if the step-length kλ  is 
chosen by an exact line search, which requires 01 =+k

T
k gs . For a uniformly 

convex function, it can be easily shown that there exists a constant 0>δ  
such that [ ]2,δ∈kt  for all k , and consequently global convergence proof 
of the BFGS method for convex functions with inexact line searches, 
which was given by Powell [12]. However, for a general nonlinear 
function f , inexact line searches do not imply the positivity of kt , hence 
Yuan [15] truncated kt  to the interval [0.01,100], and showed that the 
global convergence of the modified BFGS algorithm is preserved for 
convex functions. If the objective function f  is cubic along the line 
segment between 1−kx  and kx  then we have the following relation 
        [ ])()(624)( 111111 kkk

T
kk

T
kkk

T
k xfxfgsgssxGs −−+= −+−−−−                            (21) 

By considering the Hermit interpolation on the line between 1−kx  and kx . 
Hence it is reasonable to require that the new approximate Hessian 
satisfies condition 
        [ ])()(624 111111 kkk

T
kk

T
kkk

T
k xfxfgsgssBs −−+= −+−−−−                                (22) 

Instead of (18). Biggs [2],[3] gives the update of (19) with the value kt  
chosen so that (22) holds. The respected value of kt  is given by 

         [ ] 2)((6
11 −+−= ++ k

T
kkk

k
T
k

k gsxfxf
ys

t                                                 (23) 
 

For one-dimensional problems, Wang and Yuan [14] showed that (17) 
with (23) and without line searches (that is 1=kλ  for all k ) implies R-
quadratic convergence, and expect some special cases (17) with (23) also 
give Q-convergence. It is well known that the convergence rate of secant 
method is ( ) 2/51+   which is approximately 1.618 and less than 2. 
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The limited memory BFGS method is described by Nocedal [10], 
where it is called the SQN method. The user specifies the number m of 
BFGS corrections that are to be kept, and provides a sparse symmetric 
and positive definite matrix 0H , which approximates the inverse Hessian 
of f . During the first m iterations the method is identical to the BFGS 
method. For mk > , kH is obtained by applying m BFGS updates to 0H  
using information from the m previous iterations. The method uses the 
inverse BFGS formula in the form 

,1
T
kkkkk

T
kk ssVHVH ρ+=+                                                               (24) 

Where 
T
kkk

k
T
k

k syI
sy

ρρ −== kV      ,1 .                                                       (25) 

(see [3]). 
 
2-1: Non-Convex Functions 

All the results for the BFGS method discussed so far depend on the 
assumption that the objective function f  is convex. At present, few 
results are available for the case in which f  is a more general nonlinear 
function. Even though the numerical experience of many years suggests 
that the BFGS method always converges to a solution point, this has not 
been proved. 

Consider the BFGS method with a line search satisfying the Wolfe 
conditions (3), (4). Assume that f  is twice continuously differentiable 
and bounded below. Do the iterates satisfy lim inf 0=kg , for any 
starting point 1x  and any positive definite starting matrix 1B ? 
 This is one of the most fundamental questions in the theory of 
unconstrained optimization, for BFGS is perhaps the most commonly 
used method for solving nonlinear optimization problems. It is 
remarkable that the answer to this question has not yet been found. 
Nobody has been able to construct an example in which the BFGS 
method fails, and the most general result available to us, due to (Powell 
[12]). 
 
2-2: Outlines of the limited memory BFGS algorithm 
step 1: Choose 1'   1/2,'0   ,0 <<<< βββx , and initial matrix IH =0 . Set 

0=k . 
step 2: Compute      

kkk gHd −=                                                                                   (26) 
and 

kkkk dxx λ+=+1                                                                              (27) 
where kλ  satisfies: 
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(the step-size 1=λ  k is tried first). 
step 3: Let { }1,min −= mkm . Update 0H  for 1+m  times by using the pairs 
{ }k

mkjii sy −=, , i.e. let 
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step 4: If ε<+1kg  then stop, otherwise, put k = k+1 and Goto step (2). 
 
3.  Derivation of a new Scaling parameter  
 From section (2) above we have observed that taking 1=kα  from 
(19) yields the standard BFGS method, Now, taking the scalar 

k
T
k

kk
T
k

k sy
yHy

=α  which was known as Al-Bayati [1] parameter, with our 

consideration that for the purpose of the storage of the matrix H , we 
considered that kk IH = , so we have obtained a new scalar parameter, 

namely 
k

T
k

k
T
k

k sy
yy

=α , because this quantity does not need the calculation of 

the matrix kH   at every iteration. 
 
3-1: Suppose that f  is differentiable and bounded below. Consider the 
BFGS method with a line search satisfying the Wolfe conditions (3), (4). 
Then lim inf 0=kg  for any starting point 1x  and any positive definite 
starting matrix 1B  if  the parameter 

⎭
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k
T
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k
T
k

sy
yy                                                                                          (31) 

is bounded above for all k . 
 
3-2: Outlines of the new algorithm 
step 1: Choose 0x as initial point. 
step 2: Let 00 >ε . 
step 3: Put k=0, repeat. 
step 4: Compute kkk gHd −= , and kkkk dxx λ+=+1 , 
where kλ satisfies wolfe conditions (3),(4). 
step 5: Compute kkk xxs −= +1 , kkk ggy −= +1 . 
step 6: Compute kH  from 
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step 7: If ε<+1kg  then stop, otherwise, put k = k+1 and Go to step (4). 
 
4.  Computational Results: 

In this section, we present and discus some numerical experiments 
that were conducted in order to test the performance of limited memory 
Quasi-Newton methods for unconstrained optimization using the standard 
BFGS formulae again using modified BFGS update. 

The algorithms used for limited memory methods are form L-
BFGS, which provides the line search strategy for calculating global step. 
The line search is based on backtracking, using quadratic and cubic 
modeling of )(xf in the direction of search. 

Ten test functions, with variable dimensions, have been chosen 
from literature of optimization. The description of these test problems can 
be found, for instance, in More et al. [9]. Each function is tested with 
seven different dimensions, namely n=2,4,10,100,500,1000 and 10000, 
m=3. All test functions are tested with a single standard starting point. 

All algorithms are implemented in FORTRAN. The runs were 
performed with a double precision arithmetic, for which the unit round 
off is approximately 10-16. In all cases, convergence is assumed if 

510−<kg                                                                                   (32) 
For the obtained numerical results, we have from tables (4.1)-

(4.10) that taking NOI as the standard tool for comparison neglecting 
NOF because it depends up on NOI under the condition of using the 
cubic fitting technique as a linear search subprogram. The improvement 
percentage of the new method is between (13 - 41)%. 
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Table (4.1) A 
(Comparison between standard L-BFGS method and modified L-BFGS using 

Dixon test function (2≤n≤10000) 

Dixon BFGS   1=kα  
k

T
k

k
T
k

k sy
yy

=α  

Function NOI Function Value NOI Function Value 
n=2 
M=3 9 1.E-3 8 2.E-17 

n=4 
M=3 21 1.E-11 15 2.E-16 

n=10 
M=3 58 6.E-11 32 8.E-11 

n=100 
M=3 282 5.E-1 32 1.E-9 

n=500 
M=3 315 5.E-1 34 1.E-4 

n=1000 
M=3 310 5.E-1 

 27 1.E-8 

n=10000 
M=3 307 5.E-1 708 5.E-1 

Total 1302  856  
 

Table (4.1) B 
Percentage performance of the improvement of the new modification against the 

standard method using Dixon function 
Tools BFGS New Scale Improvement 

percentage 
NOI 100% 65.75% 35% 

 
Table (4.2) A 

(Comparison between standard L-BFGS method and modified L-BFGS using 
Wood test function (2≤n≤10000) 

Wood BFGS   1=kα  
k

T
k

k
T
k

k sy
yy

=α  

Function NOI Function Value NOI Function Value 
n=2 
M=3 18 9.E+3 17 9.E+3 

n=4 
M=3 112 1.E-13 70 1.E-13 

n=10 
M=3 253 9.E+3 205 9.E+3 

n=100 
M=3 102 1.E-11 77 4.E-12 

n=500 
M=3 115 7.E-11 80 2.E-14 

n=1000 
M=3 122 3.E-9 69 2.E-12 

n=10000 
M=3 98 2.E-8 100 5.E-12 

Total 820  618  
 

Table (4.2) B 
Percentage performance of the improvement of the new modification against the 

standard method using Wood function 
Tools BFGS  New Scale Improvement 

percentage 
NOI 100% 75.37% 25% 
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Table (4.3) A 
(Comparison between standard L-BFGS method and modified L-BFGS using 

Shallow test function (2≤n≤10000) 

Shallow BFGS  1=kα  
k

T
k

k
T
k

k sy
yy

=α  

Function NOI Function Value NOI Function Value 
n=2 
M=3 13 5.E-14 10 1.E-15 

n=4 
M=3 14 1.E-13 11 5.E-15 

n=10 
M=3 13 3.E-15 10 6.E-13 

n=100 
M=3 15 1.E-10 14 8.E-11 

n=500 
M=3 13 6.E-14 10 2.E-9 

n=1000 
M=3 13 2.E-10 12 2.E-12 

n=10000 
M=3 13 7.E-9 11 1.E-13 

Total 94  78  
 

Table (4.3) B 
Percentage performance of the improvement of the new modification against the 

standard method using Shallow function 
Tools BFGS New Scale Improvement 

percentage 
NOI 100% 82.98% 18% 

 
Table (4.4) A 

(Comparison between standard L-BFGS method and modified L-BFGS using 
Cubic test function (2≤n≤10000) 

Cubic BFGS   1=kα  
k

T
k

k
T
k

k sy
yy

=α  

Function NOI Function Value NOI Function Value 
N=2 
M=3 36 3.E-14 25 8.E-10 

N=4 
M=3 34 6.E-16 19 2.E-10 

N=10 
M=3 38 3.E-16 24 1.E-14 

N=100 
M=3 37 3.E-12 23 6.E-13 

N=500 
M=3 38 4.E-11 21 1.E-11 

N=1000 
M=3 42 1.E-15 24 7.E-15 

N=10000 
M=3 36 2.E-15 18 4.E-11 

Total 261  154  
 

Table (4.4) B 
Percentage performance of the  improvement of the new modification against the 

standard method using Cubic function 
Tools BFGS New Scale Improvement 

percentage 
NOI 100% 59.0% 41% 
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     Table (4.5) A 
(Comparison between standard L-BFGS method and modified L-BFGS using 

Rosen test function (2≤n≤10000) 

Rosen BFGS   1=kα  
k

T
k

k
T
k

k sy
yy

=α  

Function NOI Function Value NOI Function Value 
N=2 
M=3 38 5.E-16 33 4.E-13 

n=4 
M=3 38 1.E-15 27 3.E-18 

n=10 
M=3 36 2.E-13 26 1.E-11 

n=100 
M=3 32 3.E-15 37 8.E-13 

n=500 
M=3 35 1.E-11 26 6.E-19 

n=1000 
M=3 34 1.E-10 27 1.E-14 

n=10000 
M=3 34 2.E-16 34 2.E-9 

Total 247  210  
 

Table (4.5) B 
Percentage performance of the improvement of the new modification against the 

standard method using Rosen function 
Tools BFGS New Scale Improvement 

percentage 
NOI 100% 85.02% 15% 

 
Table (4.6) A 

(Comparison between standard L-BFGS method and modified L-BFGS using 
Non-Diagonal test function (2≤n≤10000) 

Non-Diagonal BFGS   1=kα  
k

T
k

k
T
k

k sy
yy

=α  

Function NOI Function Value NOI Function Value 
n=2 
M=3 29 1.E-14 31 2.E-15 

n=4 
M=3 34 5.E-18 32 1.E-20 

n=10 
M=3 37 3.E-16 30 1.E-17 

n=100 
M=3 37 6.E-12 36 2.E-15 

n=500 
M=3 41 3.E-14 29 7.E-16 

n=1000 
M=3 39 2.E-14 25 1.E-12 

n=10000 
M=3 44 8.E-16 35 5.E-16 

Total 261  218  
 

Table (4.6) B 
Percentage performance of the improvement of the new modification against the 

standard method using non-Diagonal function 
Tools BFGS New Scale Improvement 

percentage 
NOI 100% 83.52% 17% 
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Table (4.7) A 
(Comparison between standard L-BFGS method and modified L-BFGS using 

Fox test function (2≤n≤10000) 

Fox BFGS  1=kα  
k

T
k

k
T
k

k sy
yy

=α  

Function NOI Function Value NOI Function Value 
n=2 
M=3 11 -5.E-1 10 -5.E-1 

n=4 
M=3 11 -1.E0 9 -1.E0 

n=10 
M=3 10 -2.E0 9 -2.E0 

n=100 
M=3 12 -2.E+1 10 -2.E+1 

n=500 
M=3 11 -1.E+2 10 -1.E+2 

n=1000 
M=3 12 -2.E+2 10 -2.E+2 

n=10000 
M=3 11 -2.E+3 10 -2.E+3 

Total 78  68  
 

Table (4.7) B 
Percentage performance of the improvement of the  new modification against the 

standard method using Fox function 
Tools BFGS New Scale Improvement 

percentage 
NOI 100% 87.18% 13% 

 
Table (4.8) A 

(Comparison between standard L-BFGS method and modified L-BFGS using 
Pen(1) test function (2≤n≤10000) 

Start BFGS  1=kα  
k

T
k

k
T
k

k sy
yy

=α  

Function NOI Function Value NOI Function Value 
n=2 
M=3 3 4.E-32 3 1.E-32 

n=4 
M=3 3 8.E-32 3 2.E-32 

n=10 
M=3 7 5.E-14 4 6.E-32 

n=100 
M=3 6 1.E-13 4 9.E-30 

n=500 
M=3 7 6.E-18 4 4.E-28 

n=1000 
M=3 7 2.E-17 4 2.E-26 

n=10000 
M=3 7 1.E-16 4 2.E-27 

Total 40  26  
 

Table (4.8) B 
Percentage performance of the improvement of the new modification against the 

standard method using start function 
Tools BFGS New Scale Improvement 

percentage 
NOI 100% 65% 35% 
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                                                       Table (4.9) A 
(Comparison between standard L-BFGS method and modified L-BFGS using 

Powell test function (2≤n≤10000) 

Powell BFGS  1=kα  
k

T
k

k
T
k

k sy
yy

=α  

Function NOI Function Value NOI Function Value 
n=2 
M=3 38 8.E-18 31 2. E-18 

n=4 
M=3 38 4. E-15 26 1. E-13 

n=10 
M=3 35 2. E-13 27 4. E-12 

n=100 
M=3 33 4. E-19 34 1. E-15 

n=500 
M=3 35 1. E-11 24 1. E-12 

n=1000 
M=3 35 2. E-16 30 1. E-11 

n=10000 
M=3 34 2. E-16 35 4. E-13 

Total 248  207  
  

Table (4.9) B 
Percentage performance of the improvement of the new modification against the 

standard method using Powell function 
Tools BFGS New Scale Improvement 

percentage 
NOI 100% 83.48% 17% 

  
Table (4.10) A 

(Comparison between standard L-BFGS method and modified L-BFGS using 
Pen(2) test function (2≤n≤10000) 

Pen(2) BFGS  1=kα  
k

T
k

k
T
k

k sy
yy

=α  

Function NOI Function Value NOI Function Value 
n=2 
M=3 3 5.E-6 4 5.E-6 

n=4 
M=3 3 1. E-5 2 1. E-5 

n=10 
M=3 7 2. E-5 4 2. E-5 

n=100 
M=3 8 2. E-4 4 2. E-4 

n=500 
M=3 8 1. E-3 5 1. E-3 

n=1000 
M=3 8 2. E-3 6 2. E-3 

n=10000 
M=3 8 2. E-3 5 2. E-3 

Total 45  30  
  

Table (4.10) B 
Percentage performance of the improvement of the  new modification against the 

standard method using Pen(2) function 
Tools BFGS New Scale Improvement 

percentage 
NOI 100% 66.66% 34% 
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5.  Conclusions: 
We have attempted, in this paper, to develop a numerical procedure 

for solving large-scale unconstrained optimization problem that are based 
on different technique of approximating the objective function. We have 
applied BFGS updated and the new scale in the limited memory scheme 
replacing the standard BFGS update. 

We have tested these algorithms on a set of standard test functions 
from More et al. [14]. Our test results show that on the set of problems 
we tried, our partially modified L-BFGS methods require fewer 
iterations, gradient evaluations and the minimum value is less than 
L-BFGS by Nocedal [13]. 

Numerical tests also suggest that these partially modified L-BFGS 
algorithms are more superior than the standard L-BFGS algorithms. 
Thus for large problems where space limitations do not preclude using 
the full quasi-Newton updates, these methods are recommended. 
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