1 1 1

Abstract

A parallel-coupled band pass filter is presented in this work. The filter was designed at center frequency of 2GHz, on two different substrate (ϵ_r =9) and (ϵ_r =16) with thickness (h=0.635mm). A brief description of design calculation steps is also included. Filter's response is characterized and their performance was compared from the output results like insertion loss, VSWR and bandwidth frequency. The Insertion loss and VSWR for substrate (ϵ_r =9) were (-1.24dB) and (1.5dB) respectively and the bandwidth was (960MHz). Where for (ϵ_r =16) the output results were to (-2.8dB), (2.5dB) and (800MHz) respectively. The Q-factor and filters size were reduces as ϵ_r and electrical losses increases for a certain filter design.

 $(\varepsilon_r=9)$ (2GHz) $(\epsilon_r=16)$.(h=0.635mm)() $(\epsilon_r=9)$ (1.5dB)(-1.24dB)(2.5dB)(-2.84dB) $(\varepsilon_r=16)$.(960MHz)(2.1)(2.5)(Q) (960MHz))

Active

Passive filters

filters

Lowpass filters

stopband filters

highpass filters

bandpass filters

directional couplers

[Trinogga, 1991] [Combes, 1987]

(Makimoto and Yamashita,1980)
(SIR)

(Tean (Microwave Office 2000)

and Johari, 2000)

(1.45-1.49GHz)

(tangent loss)

(Vantrepl and Bazire, 2001)

(Agilent advanced

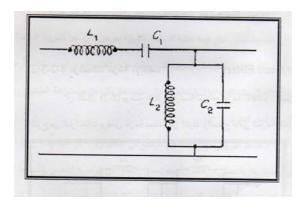
design system)

(Ain and Hassan, 2007)

S

L

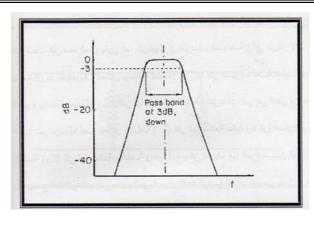
Microwave Office


: **.2**

Band pass filter (BPF)

() (L2) (C1)

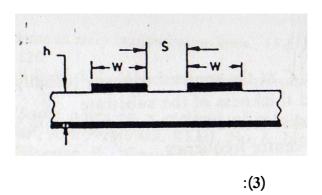
(L1) (C2)


.[Combes, 1987]

BPF :(1)

(2) (-3dB)

.(-20dB,-30dB,)



:(2)

(parallel-coupled microstrip lines)

(3)

(t)

.3

 $\epsilon_r \hspace{1cm} f_o \hspace{1cm} f$

(δ)

:[Edward,1981]

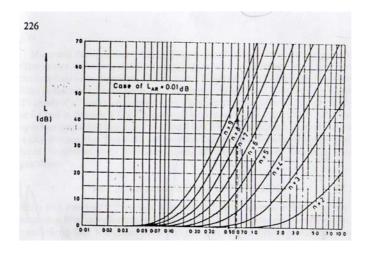
h

(gi)

$$\delta = \frac{f_2 - f_1}{f_a} \qquad \dots (1)$$

 f_0 f_2 f_1

 (ω_i/ω_c) (1)


$$\frac{\omega_i}{\omega_c} = \frac{2}{\delta} \left(\frac{f_i - f_o}{f_o} \right) \tag{2}$$

 ω_i [Edward,1981] ω_c

.(1)

(4) (n) .

chebyshev

[Edwards,1981] :(4)

$$\frac{J_{01}}{Y_o} = \sqrt{\frac{\pi\delta}{2g_0g_1}} \qquad \dots (3)$$

$$\frac{J_{j,j+1}}{Y_o}\bigg|_{j=1to(n-1)} = \frac{\pi\delta}{2\omega_c \sqrt{g_j g_{j+1}}} \qquad(4)$$

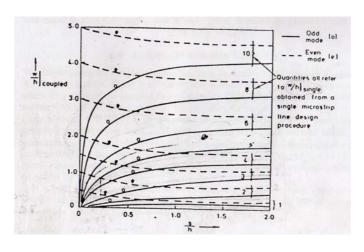
 Z_{oo} , Z_{oe}

$$. \ a = J_{_{j,j+1}} \eqno(10) \tag{8}$$

:[Edwards,1981] $(Z_o){44-2\varepsilon_r}\Omega$

$$\frac{w}{h} = \left(\frac{\exp H}{8} - \frac{1}{4 \exp H}\right)^{-1} \tag{8}$$

$$H = \frac{Z_o \sqrt{2(\varepsilon_r + 1)}}{119.9} + \frac{1}{2} \left(\frac{\varepsilon_r - 1}{\varepsilon_r + 1}\right) \left(\ln \frac{\pi}{2} + \frac{1}{\varepsilon_r} \ln \frac{4}{\pi}\right) \qquad(9)$$


$$\vdots \qquad (Z_o \langle \{44 - 2\varepsilon_r\}\Omega)$$

$$\frac{w}{h} = \frac{2}{\pi} \{(d-1) - \ln(2d-1)\} + \frac{\varepsilon_r - 1}{\pi \varepsilon_r} \left\{\ln(d-1) + 0.293 - \frac{0.517}{\varepsilon_r}\right\} \qquad(10)$$

$$d = \frac{59.95\pi^2}{Z_o \sqrt{\varepsilon_r}} \qquad(11)$$

$$h \qquad (5) \qquad \left(\frac{s}{h}\right) \left(\frac{w}{h}\right)$$

. s>0.1 mm s w

[Edwards, 1981] :(5)

& &

:[Edwards,1981]

$$\lambda_{ge} \approx \frac{300}{f} \frac{Z_{oe}}{Z_{01e}}$$

$$300 Z_{oe}$$

$$\lambda_{go} \approx \frac{300}{f} \frac{Z_{oo}}{Z_{olo}}$$

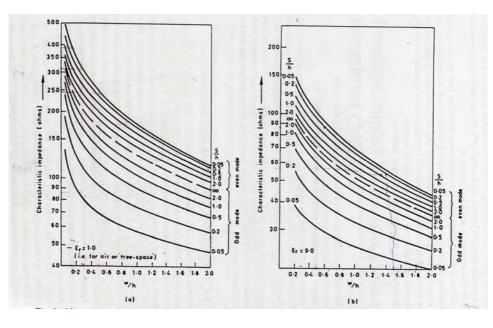
 $\varepsilon_r = 9$

$$Z_{o1o}$$
 Z_{oo}

 Z_{oe} , Z_{ole} , Z_{oo} , Z_{olo}

$$\lambda_{gm} = rac{\lambda_{ge} + \lambda_{go}}{2}$$

$$\ell = \frac{\lambda_{gm}}{4}$$


 ℓ

$$Z_{01e}$$
 Z_{oe}

$$\varepsilon_r = 1$$

$$\varepsilon_r = 1$$
 $\varepsilon_r = 9$

(6)

:(6)

$$\varepsilon_r = 9$$
 [Edwards,1981] (b) $\varepsilon_r = 1$

(b)
$$c = 1$$

:[Edwards,1981]

$$Q = \frac{f_o}{bandwidth}$$

: .4

 g_i :(1)

go	g_1	g_2	g_3	g_4	\mathbf{g}_5	g_6	\mathbf{g}_7
1	0.781	1.36	1.69	1.535	1.497	0.71	1.101

(n)
$$\left(\frac{J_{j,j+1}}{Y_0}\right)$$
 .(2)

:(2)

j	$rac{{J}_{j,j+1}}{Y_0}$	$\left(Z_{oe} ight)_{j,j+1}\Omega$	$\left(Z_{oo} ight)_{j,j+1}\Omega$
0	1.0025	150.3	50.125
1	0.76	115.625	40.625
2	0.517	89.00	37.5
3	0.487	86.01	37.25
4	0.517	89.00	37.5
5	0.761	115.625	40.625
6	1.0021	150.3	50.125

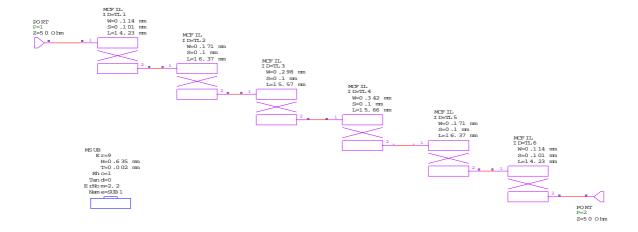
 $\left(\frac{w}{h}\right)_{s}$:(3) (10) (8) Matlab

:(3)

$\left(\frac{w}{h}\right)_{so}$	3.271	4.366	4.851	4.894	4.851	4.366	3.271
$Z_{oso}\Omega$	25.15	20.31	18.75	18.625	18.75	20.31	25.15
$\left(\frac{w}{h}\right)_{se}$	0.402	0.779	1.321	1.406	1.321	0.779	0.402
$Z_{\mathit{ose}}\Omega$	75.15	57.81	44.5	43.005	44.5	57.81	75.15

:(4)

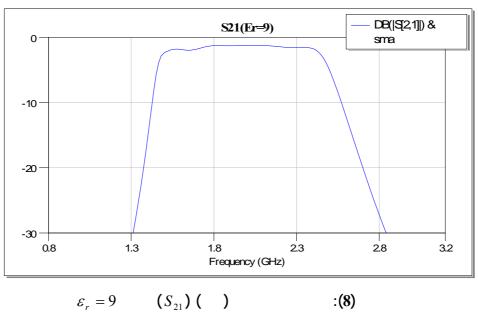
$\left(\frac{w}{h}\right)_{se}$	$\left(\frac{w}{h}\right)_{so}$	$\left(\frac{w}{h}\right)_c$	$\left(\frac{s}{h}\right)$
0.402	3.271	0.18	0.16
0.779	4.366	0.27	0.075
1.321	4.851	0.47	0.115
1.406	4.894	0.54	0.11
1.321	4.851	0.47	0.115
0.779	4.366	0.27	0.075
0.402	3.271	0.18	0.16

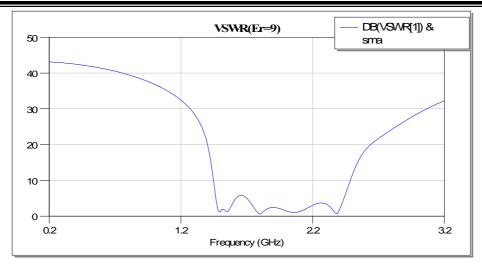

 $s,w \\ : (5) \hspace{1cm} n_i \hspace{1cm} s,w,\ell \hspace{1cm} (15)$

:(5)

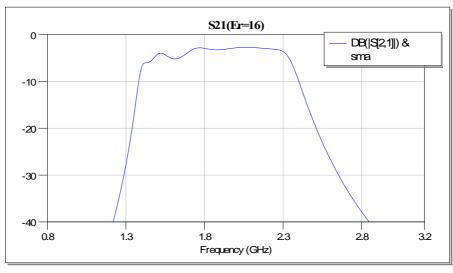
N	W (mm)	S (mm)	ℓ (mm)
1	0.114	0.101	14.23
2	0.171	0.1	16.37
3	0.298	0.1	15.57
4	0.342	0.1	15.66
5	0.171	0.1	16.37
6	0.114	0.101	14.23

 $(\varepsilon_r = 16)$ $\varepsilon_r = 16 \qquad \varepsilon_r = 9$ (0.9%)

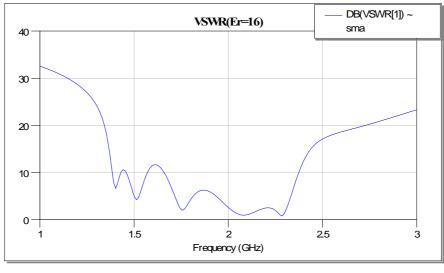

(7) (microwave office 2000) $\varepsilon_r = 16 \qquad \varepsilon_r = 9$



:(7)


.5

$$(S_{21})$$
 ()
$$\varepsilon_r = 16 \qquad \varepsilon_r = 9 \qquad \text{(VSWR)}$$
 (- (BW) (h=0.635mm) (11) (10) (9) (8) f_0 3dB)



 $\varepsilon_r = 9$ (VSWR) :(9)

 $\varepsilon_r = 16$ (S_{21}) () :(10)

 $\varepsilon_r = 16$ (VSWR) :(11)

:(6)

:(6)

substrate	f_0 GHz	S ₂₁ (dB)	VSWR (dB)	Bandwidth (BW)MHz	Q- Factor
$\varepsilon_r = 9$ $h = 0.635$	2	-1.24	1.5	960	2.5
$\varepsilon_r = 16$ $h = 0.635$	2	-2.84	2.54	800	2.1

6 (11) (10) (9) (8)

 \mathcal{E}_r

(960MHz)

 ε_r (800MHz) $\varepsilon_r = 9$

 ε_r (2.1) (2.5) (Q) $\varepsilon_r = 16$

.6

 $(f_0 = 2GHz)$ $S_{21}($

- 1) Bahl, I. and Bhartia, P.,(1988), "Microwave solid state circuit design", John Wiley and sons,Ine.
- 2) Combes, P. F., Graffieuil, J. Sautereau, F. J., (1987), "Microwave components, Devices and active circuits", John Wiley and sons, Inc.
- 3) Edward, T. C., (1981), "Foundation for Microstrip circuit design", John Wiley and sons, Ine.
- 4) Makimoto, M., Yamashita, Y., (1980), "Bandpass filters using parallel coupled stripline stepped impedance resonators". IEEE transactions on microwave theory and techniques vol. MTT-28, No.12.
- 5) Trinogga, L. A., Kaizhou, G. Hunter, I. C., (1991), "Parctical microstrip circuit design". Ellis Horwood.
- 6) Tean, T. G. Johari, M. Hj. A. B. (2000), "Design of microstrip bandpass coupled lines filter". Danny9811@yahoo.co.uk.
- 7) Ain, M. F. Hassan, S. I., (2007), "Design of symmetrical microstrip bandpass filter for S-band frequency range". American Journal of applied sciences.
- 8) Vantrepol, L. Bazire, B. (2001), "New design methodology for microwave coupled line filters based on Agilent advanced design system. Agilent technologies, France.