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Abstract
In this paper, we consider the construction of the sextic splines
function which interpolating the lacunary data. Also, under suitable
conditions, we show that the existence and uniqueness of the solution.
The convergence analysis of this spline function is studied and the error
bounds are derived. This spline function applied to find an approximate
value of a given function and its derivatives through six orders. A
numerical example has been given to show the applicability and

efficiency of the new proposed technique.

Keywords: Interpolated polynomials, Spline functions, Convergence
analysis.

1. Introduction
Spline functions are well known and are widely used for practical
approximation of functions or more commonly for fitting smooth curves
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through knot points and have the advantage over many approximation
and interpolation techniques in that they are computational feasible.
There are a great number of techniques developed for various instances of
this problem, such as polynomial regression, wavelets, and from the view
point of differential geometry, developable surfaces are composed of
general cylinders and cones (see e.g. Yang (2006); Bawa (2005); Kahn
and Aziz (2003) and Kurt (1991)) studied the algorithm for cardinal
interpolation based on a representation of the Fourier transform of the
fundamental interpolation. Also Loghmani and Alavizadeh (2007);
Siddiqi, etal (2008)) studied the boundary value problems by various
methods.

Fawzy(1987); Venturino(1996), Jwamer(2001) and Al-Bayati etal
(2008) presented several local methods for solving lacunary interpolation
problems using the different cases. In this study, we derive an algorithm
to solve a special lacunary interpolation problem by using sextic spline
function, when the function values and its second and fourth derivatives
are known at a set of nodes, and also we show that this type of
construction of spline functions which interpolates the lacunary data is
useful in approximating complicate function and their derivatives on the
given interval. The applicability of this spline functions in practical
applications checked by one numerical example.

This paper is organized as follows: In section 2, we construct by a
similar manner of Fawzy (1987) a sextic spline function which
interpolates the lacunary data (0, 2, 4), some theorems about existence
and uniqueness of a sextic spline function are also studied. In section 3,
some theorems about error bounds and convergence analysis of the new
technique are proved. To demonstrate the convergence of the prescribed
lacunary spline functions some numerical results are presented in section
4. Last section, deals with the conclusions.

2. The approximation of the spline functions
Descriptions of the method: Let (S, ,C*) be the class of spline

functions with respect to the set of knotsx,. This class consists of

piecewise polynomial functions of degree m, which are smoothly
connected in the knots, up to the order k (k <m). The spline functions will

denoted by S,(x), where i=0,1,...,m.
Now we are concerned with the spline interpolation problem:

Theorem 2.1 Given the real numbers{f,, f, , f.*’}"_, such that

S(Xk) = fk’ S”(Xk) = fk" and 8(4)(Xk): fk(4)! (1)
where k=0,1,..,n-1.
Then the spline approximation has the form
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where x, <x<x,, and k=0,1,...,.n-1
Proof: We shall define each of the spline functions s (x)explicitly in
terms of the data. We choose
Si(x) = =f(x,),
Si(x) =1, = 1"(x,),
and
Sk(A) (Xk) = fk(4) =f® (Xk)’
where k=0,1,...,n-1.
From Taylor’s series expansion of f(x) and after some derivation with
S(x), we obtain the following:

2 14 14 H n
5.0 = St st w3t 1] +—[f @ _f ], )
2 " " " 2h
Sk(S) =h_3[fk+2 2f|<+1+ f ] [f “ fw] 5(6) (4)
.9 = Ltr, 5, vaf]e f(4’—2f(4)+£8§6), 5
k k+2 +1 6 k+1 k 2
and
! 1 h 14 " 14
Sy :F[fkﬂ_ fk]+_[7 f,,—44 ', —53 fk]+
3:50 1. - fw] 135 755" (©)
Also for the first interval [x,, x,], we take:
S(G) 8(6) (7)
S® = g6 _ g ® ’ (8)
SP=8® - hsf4>+h2—zsf~”>—2—ssfe>, 9)
and
| h? .7 h* h* h?
So = Lfi=fo- o T AR YO
° Lhi=tfo=5r T =50t 6 6
5 6
1112'; 0+ 2 5071 (10)
Finally for k=n-1, we have
S =sW(x ), where j=1,3,5, 6. (11)

Now the spline function S(x) which is defined in equations (1)-(2)
solves the (0,2,4) lacunary data. Also the construction showed that S is a
piecewise sextic polynomial.

Indeed, S(x) is the unique piecewise sextic polynomial in

C%%*[%0, X, JNC°[X, 5, X, ]
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satisfying the interpolation condition (1), we refer to it as lacunary g-
spline, See (Fawzy, 1987).
The proof of theorem 2.1 is completed.

3. Consistency relation and convergence analysis:

In this section, the convergence analysis of the new technique has
been proved. However, it is essential to determine the order of
convergence, and also convenient to write the function using Taylor’s
expansions, we can establish the following lemma:

Lemma 3.1: For 0<k<n-2 and j=1 3,5, 6, we have

S~ Ux,)| <ch* W (D@ f:h),
where k=0,1,2,..,n-1, W(D®f;h) is the modulus of continuity of f®,
and then the constantsc,; are given in the following table:

Ckl Ck3 Ck5 Ck6
(=0 49 181 3 9
432 288 2 4
1< k <n-=-2 ﬂ 8_5 Z g
4320 288 6 4
—n_1 A7 7 2 .
6480 216 9

Proof: First for k =0 on the interval [x,,x,] and from equations (3)-(10),

we obtain
! 1 h 14 14 n 14

S, = F[fl— f,]+ %[22 f/— 225 f— 294 f"— f/]+

h3

[-22¢® 4339 £,® —46 1],
1080 : :

and
! ! 1 ! h n n 14 n
S, - f, =F[f1— f, — hf, }+%[22 f/— 225 f,— 294 f"— f/]+
h3
1080
After using Taylor’s expansion for f;, f;, f", f@and f“ about x,in
the above equation, we obtain

49
S'— fl<—hW(D®f:h).
S5 - 15 432 ( )

[F22f® 4339 1, — 6 1@

Similarly, we can find

181
Sy—fJf<=—h*w(D®f;h),
S5 fof< 5o h*W (D@ f:h)

SR ff’\g%hW(D‘G)f;h),
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and

S - fo“”‘s%W(D“”f;h).

By the same technique as above, on the intervals [x,,x, ]
fork =0,1,2,..,n-1, and using Taylor’s expansion for
fea flo £l f@and £5) aboutx,, we shall obtain all constants c,,,
Cis,Cs AN Cq .

Lemma 3.2: Let f(x)eC™[0,b]and S(x) be the lacunary g-spline function
constructed (2)-(11). Then the following order of convergence is
obtained; i.e.

s (x,) - £ (x,)|=0(h""), where x[0,b],i=0,1...5 (12)

s () - f 0] =0(h%). (13)
Proof: Let x, <x<x.and z=x-x,, then Taylor’s expansion for f(x)
leads to

and

m-1

f(x) = " f‘”)(x )+ f‘m)(f) for x <&<x., (14)
and 7
S(x) = i w S™(x, )+ s“”) (&) for x <&<x.,. (15)

Subtractmg (14) from (15), provided that s™(x) is a constant
overx, <x<x,,,and it IS zero wherem =0,2and 4, we obtain

s (0-t00)<Y \ s™M(E)- ™).

If we make use of the sublnterval, given that X, =X <h,[x.,, —Xx<2h and
X,s —X <3h, then

SO (x)—f® (x)H + \

_4

s (0 fo]< ZZ—

o l)IH (2n+1)(x) ]¢(2n+1)(X)H+ ‘

S GER RG]

for x, <&<x,.,-

Equation (13) has been proved. To prove equation (12), we define
the function s™"(x) which are piecewise continuous on [0,b], and using
Taylor’s expansion of f(x) of order (m-i), shall obtain

SM(x) = y™(x)+0O(h'"), where i=0,1,...,5.

Then
‘ S(m) () — y(m-D (X)H =0(h""), where i=0,1,...,5.

This completes the proof of lemma 3.2.
Note: Similar results to Lemma 3.2, was proved under different
conditions by Sallam and EL-Hawary (1984) and Fawzy (1987).
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Theorem 3.1: Let f(x)eC®[x,,x,]and let S(x)be the lacunary g-spline

function constructed by the equation (2)-(11). Then for all j<[0,6] and all
k e[0,n-1]

s (%) <bgh®W(D® f;h),
Lo DX X1l
where the constants b, are given in the following table:
beo b, b bes by bes bes
(=0 101 [ 4397 | 35 [ 505 [ 21 [ 15 [ 9
4320 8640 36 288 8 4 4
l<ksn_z | 77 | 619 [ 7 [sel | s [an [ 9
864 2880 12 288 24 12 4
77 59 1 67 13 11
k=n-1 = — = — 1
3240 1620 9 216 18 9

Proof: Suppose that 1<k <n-2 and let x, <x<x,,,. Then using Taylor’s
expansion of f(x)and the spline function in equation (2.2), we have

500 - F | =[s, ()~ F(0|< Y ‘Sm)(x) Fo )] ‘s“) o
Sgﬁ‘s(n)(x)_ f(n)(x)‘+a“s(s)(§k)_ f(6)(§k)ul (16)

where x, <&, <x,,.

Now from equation (16) for 1<k<n-2, and using Lemma 3.1, we
obtain

1S(0) - F (9] =S, () - f(x)| W(D(‘”f hy,

697 W(D“”f h)

— (%)<

‘st’(x)— £ O (x) S%W(D(‘” f:h).

will easily compute all other constants for 1<k<n-2.
For k=0 and xe[x,,x], using the same technique in Lemma 3.1, from
equation (16), we obtain

|s 09— f,0]<, 101

\Séﬁ’ (9 £,% 00 < WD :h),

where x, <& <x,.
Finally for k=n-1 and for Lemma 3.1 and equation (16), we obtain

nl(x) f o<y

s“i(x) f ‘6’(x)\<W(D<G>f h),
where x _, <& <x_,.
This completes the proof of Theorem 3.1

113




Abbas Y. Al Bayati & Rostam K. Saeed & Faraidun K. Hama-Salh

3.4 Outlines of the new sextic spline Algorithm:
Step 1: Partition [a,b]into N subintervals Iy

Step 2: Set
S(x)= T =f(x), $"(x)=1f, =1"(x) and  $@(x) =¥ =F9(x,),
where k=0,1,...,n—1.
Step 3: For k=0,1,..,n-1 do equations (3)-(6) or apply Lemma 3.1.
Step 4: If xe[x,,,x] go to step 6, else i=i+1 and repeat this until find a
proper i.
Step 5: Set k=i.
Step6: Computing all pieces of the spline function at N equally spaced
points in each subinterval[x ,x. .1, 1=1, 2,..., N or applied Theorem 3.1 .
Step 7: Stop.

4. Numerical illustrations

To illustrate our new technique and to demonstrate the applicability
of our presented work computationally, we compare the spline solution of
equations (3)-(6), with the analytic value for the test problem 4.1. The
numerical results are depicted in tables 4.1A and 4.1B.

Problem 4.1: Let f(x)=x({-x)exp(x) where 0<x<1. (Siddiqi etal)

Table 4.1A: absolute errors by using Lemma 3.1.

Y 3 _ £0) () _ 05 6) _ £(6)

h =1, | |sO—fC] | s® -1 | s

0.05 3.9x10° 4.1x107" 12.6x107" 21.4x107"

0.015 3.4x107™ 1.2x107* 3.6x107" 6.2x107!

0.01 1.5x107* 8.07x1072 2.4x107" 4.1x107"

0.005 3.7x10°° 2x107? 12x107 20.5x1072

0.001 1.5x10°° 8x107° 2.4x107? 4x1072

0.0001 15x10°8 8x10™ 2.4%x10™ 4.6x10°°

Table 4.1B: Absolute errors by using theorem 3.1.

h [Is-fl (- [l [I6°- 0L [ 19 -], | "L | °-1",
0.05 | 54x107% | 83x107°% | 1.13x107" | 8.4x107* | 8.4x10™" | 25.7x107! | 21.4x107!
0.015 | 15x102 | 6.9x10™ | 2.7x1072 | 2.4x107t | 2.3x107" | 7.3x107* | 6.2x107"
0.01 1x1072 3x10™* | 1.7x1072 | 1.6x107" | 1.5x107* | 4.8x10" | 4.1x10™
0.005 | 5x10°° | 7.5x107° | 8.6x107° | 8.03x102 | 7.5x107% | 24.1x107% | 20.5x107?
0.001 | 1x10® | 3x10° | 1.6x107° | 16x10° | 1.5x1072 | 4.8x10°? 4x107?
0.0001 | 1x10™* 3x10°% | 1.6x10™* | 16x10™* | 15x10™* | 48x10™* 46x107*
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5. Conclusion:

In this paper, we have studied the existence and uniqueness of the
sextic spline function that matches function values, second and fourth
derivatives at the knots. Also, the error estimate was derived theoretically
and examined numerically to show that our construction of the spline
function for interpolating lacunary data was efficient.
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