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 :الخلاصة

 إن هدف هذا البحث هو الحصول على الوجودِ والوحدانيةِ والحدودِ العلياِ مِن الأخطاءِ   
كذلك تحت شروط وقيود مناسبة، تم إثبات وحدانية . لدالة سبلاين من الدرجة السادسة

م اكذلك تم دراسة تحليل تقارب الدالة مع اشتقاق قيود الأخطاء حيث تم استخد. ووجودية الحل
 لإيجاد قيمة تقريبية للدالة المعطاة مع حساب مشتقاتها من خلال الدرجة Splineدالة 

  .   تبين لنا كفاءة وقابلية التقنية الجديدة من خلال المثال العددي. السادسة
 

Abstract 
          In this paper, we consider the construction of the sextic splines 
function which interpolating the lacunary data. Also, under suitable 
conditions, we show that the existence and uniqueness of the solution. 
The convergence analysis of this spline function is studied and the error 
bounds are derived. This spline function applied to find an approximate 
value of a given function and its derivatives through six orders. A 
numerical example has been given to show the applicability and 
efficiency of the new proposed technique. 
  

Keywords: Interpolated polynomials, Spline functions, Convergence 
analysis.  

 
1.  Introduction 
         Spline functions are well known and are widely used for practical 
approximation of functions or more commonly for fitting smooth curves 
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through knot points and  have the advantage over many  approximation 
and interpolation techniques in that they are computational feasible.  
There are a great number of techniques developed for various instances of 
this problem, such as polynomial regression, wavelets, and from the view 
point of differential geometry, developable surfaces are composed of 
general cylinders and cones (see e.g. Yang (2006); Bawa (2005); Kahn 
and Aziz (2003) and Kurt (1991)) studied the algorithm for cardinal 
interpolation based on a representation of the Fourier transform of the 
fundamental interpolation. Also Loghmani and Alavizadeh (2007); 
Siddiqi, etal (2008)) studied the boundary value problems by various 
methods. 

Fawzy(1987); Venturino(1996), Jwamer(2001) and Al-Bayati etal 
(2008) presented several local methods for solving lacunary interpolation 
problems using the different cases. In this study, we derive an algorithm 
to solve a special lacunary interpolation problem by using sextic spline 
function, when the function values and its second and fourth derivatives 
are known at a set of nodes, and also we show that this type of 
construction of spline functions which interpolates the lacunary data is 
useful in approximating complicate function and their derivatives on the 
given interval. The applicability of this spline functions in practical 
applications checked by one numerical example. 

This paper is organized as follows: In section 2, we construct by a 
similar manner of Fawzy (1987) a sextic spline function which 
interpolates the lacunary data (0, 2, 4), some theorems about existence 
and uniqueness of a sextic spline function are also studied. In section 3, 
some theorems about error bounds and convergence analysis of the new 
technique are proved. To demonstrate the convergence of the prescribed 
lacunary spline functions some numerical results are presented in section 
4. Last section, deals with the conclusions. 

 
2.  The approximation of the spline functions  

Descriptions of the method: Let  ),( k
m CS  be the class of spline 

functions with respect to the set of knots ix . This class consists of 
piecewise polynomial functions of degree m , which are smoothly 
connected in the knots, up to the order )( mkk < . The spline functions will 
denoted by )(xSi , where mi ...,,1,0= .  
Now we are concerned with the spline interpolation problem:  
 

Theorem 2.1 Given the real numbers n
kkkk fff 0

)4( },,{ =
″  such that

 )4()4( )(and)(,)( kkkkkk fxSfxSfxS =″=′′= ,     (1) 
where  1...,,1,0 −= nk .   
Then the spline approximation has the form 
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where 1+≤≤ kk xxx  and 1...,,1,0 −= nk  
Proof: We shall define each of the spline functions )()( xS j

k explicitly in 
terms of the data. We choose 
   ),()( kkkk xffxS ==  

 ,)()( kkkk xffxS ′′=″=′′  
and 
  ),()( )4()4()4(

kkkk xffxS ==  
where 1...,,1,0 −= nk . 
From Taylor’s series expansion of )(xf  and after some derivation with 

)(xS , we obtain the following: 
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Also for the first interval ],[ 10 xx , we take: 
 )6()6(

10 SS = ,                        (7)
 )6()5()5(

110 hSSS −= ,          (8) 
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Finally for 1−= nk , we have 
 )( 1

)(
2

)(
1 −−− = n

j
n

j
n xSS , where .6,5,3,1=j               (11) 

 Now the spline function )(xS  which is defined in equations  (1)-(2) 
solves the (0,2,4) lacunary data. Also the construction showed that S is a 
piecewise sextic polynomial. 
            Indeed, )(xS is the unique piecewise sextic polynomial in 
         ],[],[ 2

6
10

4,2,0
nn xxCxxC −I  
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satisfying the interpolation condition (1), we refer to it as lacunary g-
spline, See (Fawzy, 1987). 
The proof of theorem 2.1 is completed. 
 
3.  Consistency relation and convergence analysis: 
 In this section, the convergence analysis of the new technique has 
been proved. However, it is essential to determine the order of 
convergence, and also convenient to write the function using Taylor’s 
expansions, we can establish the following lemma: 
 
Lemma 3.1: For 20 −≤≤ nk  and ,6,5,3,1=j we have 
 );()( )6(6)()( hfDWhcxfS j

kjk
jj

k
−≤− ,  

where 1,...,2,1,0 −= nk , );( )6( hfDW  is the modulus of continuity of )6(f , 
and then the constants kjc  are given in the following table: 

 1kc  3kc  5kc  6kc  

0=k  
432
49  

288
181  

2
3  

4
9  

21 −≤≤ nk  
4320
117  

288
85  

6
7  

4
9  

1−= nk  
6480
17  

216
7  

9
2  1 

 

Proof:  First for 0=k  on the interval ],[ 10 xx  and from equations (3)-(10), 
we obtain 
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After using Taylor’s expansion for )4(
1

)4(
123 and,,,

2
fffff ′′′′′′  about 0x in 

the above equation, we obtain 
 );(

432
49 )6(5

00 hfDWhfS ≤′−′ . 

Similarly, we can find 
 );(

288
181 )6(3

00 hfDWhfS ≤′′′−′′′ , 

 );(
2
3 )6()5()5(

0 0
hfDWhfS ≤− , 
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and 
  );(

4
9 )6()6()6(

0 0
hfDWfS ≤− . 

 By the same technique as above, on the intervals ],[ 1+kk xx  
for 1,...,2,1,0 −= nk , and using Taylor’s expansion for 

)4(
1

)4(
123 2

,,, ++++ +
′′′′′′ kkkk fandffff

k
 about kx , we shall obtain all constants 1kc , 

3kc , 5kc  and 6kc .  
 
Lemma 3.2: Let ],0[)( 1 bCxf m+∈ and )(xS be the lacunary g-spline function 
constructed (2)-(11). Then the following order of convergence is  
obtained; i.e. 
 )()()( 1)()( +−− =− i

k
im

k
im hOxfxS , where ],0[ bx∈ , 5...,,1,0=i   (12) 

and 
 )()()( 6hOxfxS =− .        (13) 
Proof: Let 1+≤≤ kk xxx and kxxz −= , then Taylor’s expansion for )(xf  
leads to  
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 Subtracting (14) from (15), provided that )()( xS m  is a constant 
over 1+≤≤ kk xxx , and it is zero where 4and2,0=m , we obtain 
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If we make use of the subinterval, given that hxxk ≤− , hxxk 21 ≤−+  and 
hxxk 33 ≤−+ , then  
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 for 1+≤≤ kk xx ξ . 
 Equation (13) has been proved.  To prove equation (12), we define 
the function )()( xS im−  which are piecewise continuous on ],0[ b , and using 
Taylor’s expansion of )(xf of order )( im − , shall obtain 
 )()()( 1)()( +−− += iimim hOxyxS , where 5,...,1,0=i . 
Then 
 )()()( 1)()( +−− =− iimim hOxyxS , where 5,...,1,0=i . 
 This completes the proof of lemma 3.2.  
Note: Similar results to Lemma 3.2, was proved under different 
conditions by Sallam and EL-Hawary (1984) and Fawzy (1987). 
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Theorem 3.1: Let ],[)( 0
6

nxxCxf ∈ and let )(xS be the lacunary g-spline 
function constructed by the equation (2)-(11). Then for all ]6,0[∈j  and all 

]1,0[ −∈ nk  
 );()()( )6(6

],[

)()(

1
hfDWhbxfxS j

kjxxLk
j

k
j

kk

−≤−
+∞

, 
where the constants kjb are given in the following table: 

 0kb  1kb  2kb  3kb  4kb  5kb  6kb  

0=k  
4320
101  

8640
4397  

36
35  

288
505  

8
21  

4
15  

4
9  

21 −≤≤ nk  
864
77  

2880
679  

12
7  

288
361  

24
55  

12
41  

4
9  

1−= nk  
3240
77  

1620
59  

9
1  

216
67  

18
13  

9
11  1 

 

Proof: Suppose that 21 −≤≤ nk  and let 1+≤≤ kk xxx . Then using Taylor’s 
expansion of )(xf and the spline function in equation (2.2), we have  
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where 1+≤≤ kkk xx ξ . 
Now from equation (16) for  21 −≤≤ nk , and  using Lemma 3.1, we 
obtain 
 );(

864
77)()()()( )6( hfDWxfxSxfxS k ≤−=− , 

 );(
2880
697)()( )6( hfDWxfxSk ≤′−′ , 

 M  
 );(

4
9)()( )6()6()6( hfDWxfxS

k
≤− . 

will easily compute all other constants for 21 −≤≤ nk . 
For 0=k  and ],[ 10 xxx∈ , using the same technique in Lemma 3.1, from 
equation (16), we obtain 
 );(

4320
101)()( )6(

0 hfDWxfxS o ≤−  
 M  
 );(

4
9)()( )6()6(

0
)6(

0 hfDWxfxS ≤− ,  
where 10 xx k ≤≤ ξ . 
Finally for 1−= nk  and for Lemma 3.1 and equation (16), we obtain 
 );(

3240
77)()( )6(

1 hfDWxfxSn ≤−− , 
 M  
 );()()( )6()6()6(

1 hfDWxfxSn ≤−− ,  
where 12 −− ≤≤ nkn xx ξ . 
This completes the proof of Theorem 3.1 
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3.4 Outlines of the new sextic spline Algorithm: 
Step 1: Partition ],[ ba into N subintervals Ik. 
Step 2: Set  
 ),()( kkk xffxS == )()( kkk xffxS ′′=″=′′  and )()( )4()4()4(

kkk xffxS == , 
where 1...,,1,0 −= nk . 

Step 3: For  1...,,1,0 −= nk   do equations (3)-(6) or apply Lemma 3.1.  
Step 4: If  ],[ 1 ii xxx −∈  go to step 6, else i=i+1 and repeat this until find a 
proper i. 
Step 5: Set k=i. 
Step6: Computing all pieces of the spline function at N equally spaced 
points in each subinterval ],[ 1+ii xx , i=1, 2,…, N or applied Theorem 3.1 . 
Step 7: Stop. 
 
4.  Numerical illustrations 
       To illustrate our new technique and to demonstrate the applicability 
of our presented work computationally, we compare the spline solution of 
equations (3)-(6), with the analytic value for the test problem 4.1. The 
numerical results are depicted in tables 4.1A and 4.1B.  
  
Problem 4.1:  Let  )exp()1()( xxxxf −=  where 10 ≤≤ x . (Siddiqi etal) 
 

Table 4.1A: absolute errors by using Lemma 3.1. 
h  ∞

′−′ fS  ( ) ( )
∞

− 33 fS  ( ) ( )
∞

− 55 fS  ( ) ( )
∞

− 66 fS  

05.0  3109.3 −×  1101.4 −×  1106.12 −×  1104.21 −×  
015.0  4104.3 −×  1102.1 −×  1106.3 −×  1102.6 −×  
01.0  4105.1 −×  21007.8 −×  1104.2 −×  1101.4 −×  

005.0  5107.3 −×  2102 −×  21012 −×  2105.20 −×  
001.0  6105.1 −×  3108 −×  2104.2 −×  2104 −×  

0001.0  8105.1 −×  4108 −×  4104.2 −×  3106.4 −×  
 

Table 4.1B: Absolute errors by using theorem 3.1. 
h  ∞

− fS  
∞

′−′ fS  
∞
′′−′′ fS  ( ) ( )

∞
− 33 fS ( ) ( )

∞
− 44 fS  ( ) ( )

∞
− 55 fS  ( ) ( )

∞
− 66 fS  

05.0  2104.5 −×  3103.8 −×  11013.1 −× 1104.8 −× 1104.8 −×  1107.25 −×  1104.21 −×

015.0  2105.1 −×  4109.6 −×  2107.2 −× 1104.2 −× 1103.2 −×  1103.7 −×  1102.6 −×  
01.0  2101 −×  4103 −×  2107.1 −× 1106.1 −× 1105.1 −×  1108.4 −×  1101.4 −×  

005.0  3105 −×  5105.7 −×  3106.8 −× 21003.8 −× 2105.7 −×  2101.24 −×  2105.20 −×
001.0  3101 −×  6103 −×  3106.1 −× 31016 −×  2105.1 −×  2108.4 −×  2104 −×  
0001.0  4101 −×  8103 −×  4106.1 −× 41016 −×  41015 −×  41048 −×  41046 −×  
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5.  Conclusion: 
In this paper, we have studied the existence and uniqueness of the 

sextic spline function that matches function values, second and fourth 
derivatives at the knots. Also, the error estimate was derived theoretically 
and examined numerically to show that our construction of the spline 
function for interpolating lacunary data was efficient. 
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