

١٤٥

 J. Edu. & Sci., Vol. (23), No. (3) 2010

Genetic Algorithm to Solve Sliding Tile 8-Puzzle

Problem

Ruqaya Zedan Sha’ban Isra Natheer Alkallak
 Computer unit. Department of Basic sciences
 College of Medicine College of Nursing
 University of Mosul University of Mosul

Mowada Mohamad Sulaiman
Department of chemistry

College of Sciences
University of Mosul

Accepted Received

02 / 11 / 2009 09 / 06 / 2009

 الخلاصة
 والتي تعد من مسائل الذكاء الاصطناعي مع ٨-تطرق البحث إلى دراسة مسألة اللغز

أساسيات الخوارزمية الجينية مع قواعـد حـل على ارزمية الجينية، اعتمد البحث مفهوم الخو
 في رقعة اللعبة ومن ثم الوصول إلـى هـدف حـل الحالية من الحالة اًابتداء، ٨-مسألة اللغز

في الحالـة) خارج الموقع(غير المتطابقة الأماكن عتمد في حل المسألة على حركةا المسألة،
تم تحديـد).الفراغ(المكان الخالي حركة دون اللعبة مقارنة مع هدف حل اللعبة لرقعة الحالية

 الأمـاكن ركة ح لاحتمالاتمن خلال المجموع الكلي المعدة حجم المجتمع للخوارزمية الجينية
أثبتت نتائج . والتبادل طريقة الترتيب في عمليتي التزاوج ة، في حين تم استخدام المتطابق غير

 .امج حاسوبية بلغة ماتلاب لحل مسألة البحثنأعدت بر. البحث كفاءة الخوارزمية

ABSTRACT

The research tackled the classical problem in artificial intelligence
as 8-puzzle problem with genetic algorithm. The research present the
fundamental of genetic algorithm with sliding tile 8-puzzle problem.
Starting from current state for state space search into a goal state by
depending on the tile’s move (tiles out of place) in the current and
compare with the solution of the problem (goal), without blank’s move.
population size chose by the summation of probabilities misplaced tile’s

Genetic Algorithm to Solve Sliding Tile 8-Puzzle Problem.

١٤٦

move (tiles out of place) in current state comparing with goal state. In this
research, depended on the Crossover and mutation for ordered
chromosomes method. The experimental in this research show that the
algorithm is efficient. The source code is written in Matlab language.

1. Introduction

The 8 puzzle is a game invented by Sam Loyd in 1870s [12]. The
8-puzzle is a square tray in which are placed 8 square tiles. The remaining
ninth square is uncovered. Each tile has a number on it. A tile that is
adjacent to be the blank space can be slid into that space. A game consists
of a starting position and a specified goal position. Rich [8].

The sliding tile puzzle is also called the n-puzzle, which features n
tiles numbered from 1 to n and one blank tile in a square grid. The n-
puzzle is known in various forms, the most famous being the 8-puzzle
and 15-puzzle. A puzzle start with a jumbled arrangement of these tiles.
A player can slide an adjacent tile into a position occupied by the blank
tile. The goal of this game is to move the tiles so as to reach the goal state
where all numbers are placed in an increasing order from left to right and
from top to bottom Qian [6]. The objective of the 8-puzzle is to rearrange
a given initial configuration of eight squared tiles on a 3x3 board into a
specified goal configuration by successively sliding tiles into the
orthogonally adjacent empty square (the blank square). While it would
seem easy to find any solution to this problem, we are only interested in
obtaining optimal solutions with the fewest moves. There exist 9!
possible tile permutations on a 3x3 board, and every second permutation
is solvable, there is a total of 9!/2= 181440 solvable problem instances
Reinefeld [7].

A genetic algorithm is a search technique used in computing to find
exact or approximate solutions to optimization and search problems.
Genetic algorithms are a particular class of evolutionary algorithms (also
known as evolutionary computation) that use techniques inspired by
evolutionary biology such as inheritance, mutation, selection, and
crossover also called recombination.

Genetic algorithms are implemented as a computer simulation in
which a population of abstract representations called chromosome or the
genotype or the genome of candidate solutions called individuals,
creatures, or phenotypes to an optimization problem evolves toward
better solutions.

The evolution usually starts from a population of randomly
generated individuals and happens in generations. In each generation, the
fitness of every individual in the population is evaluated, multiple
individuals are stochastically selected from the current population based
on their fitness, and modified recombined and possibly randomly mutated

Ruqaya Zedan Sha’ban & Isra Natheer Alkallak & Mowada Mohamad Sulaiman

١٤٧

to form a new population. The new population is then used in the next
iteration of the algorithm Mitchell [5].

Commonly, the algorithm terminates when either a maximum
number of generations has been produced, or a satisfactory fitness level
has been reached for the population. If the algorithm has terminated due
to a maximum number of generations, a satisfactory solution may or may
not have been reached Qian [6], [10],[11].

The research aims to present the fundamental of heuristic genetic
algorithm with sliding tile 8-puzzle problem. Starting from current state
for state space search into a goal state by depending on the tile’s move
(tiles out of place) in the current and compare with the solution of the
problem (goal), without blank’s move not as classical methods

1-2 Methodology of Genetic Algorithm

A genetic algorithm operates through a simple cycle of stages
Konar [3].

i. Creation of a "population" of strings.
ii. Evaluation of each string.

iii. Selection of best strings.
iv. Genetic manipulation to create new population of string.

Figure (1) illustrated the cycle of a genetic algorithm Konar [3].

 Figure (1): The cycle of a genetic algorithm

Population
(chromosome)

Fitness
Evaluation

Parents

Genetic
Operators

Selection
(Mating Pool)

Offspring New generation Decoded Strings

Reproduction Manipulatio

Genetic Algorithm to Solve Sliding Tile 8-Puzzle Problem.

١٤٨

Fig.(2): Flowchart of Genetic algorithm with 8-puzzle problem

No

Calculate the fitness function to the new generation

Execute Selection operator to the population

Criteria

Calculate the fitness function

Yes

End

Print the result

Generate the Initial population .The size of initial generation depending on the number of misplaced
tiles in initial state that from the goal.chromosome is represented by one dimension of array.

2 0 4 7 6 3 5 1 8
1 2 3 4 5 6 7 8 9

2 0 4 7 1 3 5 6 8
 1 2 3 4 5 6 7 8 9

0 2 4 7 6 3 5 1 8
1 2 3 4 5 6 7 8 9

Input the initial state & Goal then Find the difference tile position between them

1 0 4
7 6 3
5 2 8

2 0 4
7 6 3
5 1 8

Initial State

Goa

 Mutation operator:

0 2 4 7 6 5 3 1 8

0 2 4 1 6 5 3 7 8
Offspring after mutation

Mutation two points

 Crossover operator:
Child1: A

Child2:

7 6 4 5 0 3 1 8 2

0 2 4 7 6 3 5 1 8

Point selection for crossover

0 2 4 7 6 5 3 1 8

From Child1 From Child2

2. Flowchart for proposed genetic algorithm with 8-puzzle problem
Below figure (2) Flowchart for proposed genetic algorithm with 8-puzzle problem

Ruqaya Zedan Sha’ban & Isra Natheer Alkallak & Mowada Mohamad Sulaiman

١٤٩

2-1 Create the Individuals and Population
Initially many individual solutions are randomly generated to form

an initial population size depends on the nature of the problem, covering
possible solutions (the search space) Mitchell [5].

In this research, the population size was equal the number of tiles
out of place therefore, this is depended on the number of generations.
The length of each Individuals varies from one to another with a lower
bound of 2 and an upper bound of 24 in 8-puzzles. Also in this research,
uses a 9 bits to represent the chromosome.

for example if tile in the index 3 and tile in the index 4 is out of
place, then tile in the index 3 has 2 tile's moves (left, down) and tile in the
index 4 has 3 tile's moves (right, up, down) therefore the population size
must be 5 chromosome.
 are shown next:

The problem :

The chromosome

2-2 Selection

During each successive process, a proportion of the existing
population is selected generation. Individual solutions are selected
through a fitness-based process. The fitness of each solution and
preferentially select the best solutions Gen et.al [1].

In this research, used tournament selection method that is one of
many methods of selection in genetic algorithms which runs a
tournament among a few individuals chosen at random. from the
population and selects the winner (the one with the best fitness) for
crossover. Below the steps of tournament selection procedure see
Mitchell [5] :

 1- Choose two individuals at random from population.
 2- Choose a random r between 0 and 1.
 3- Choose k is parameter, for example 0.75
 If r < k then the fitter of the two individuals is selected to be
parent.
 Otherwise the less fit individual is selected.
 4- The two are then returned to the original population and can be

selected again.

2 0 4
7 6 3
5 1 8

2 0 4 7 6 3 5 1 8

Genetic Algorithm to Solve Sliding Tile 8-Puzzle Problem.

١٥٠

[p1,p2] = select(p1,p2,geel); % where p1,p2 two chromosome chooses
at
 % random from function called select and
variable
 % geel is the length of population
r=rand(1) % Choose a random r between 0 and 1.
If prob(p1) > prob(p2) % Compare the probability of p1 & p2

 great=p1;
 small=p2;
Else
 great=p2;
 small=p1
End
K = 0.75 % Choose k is parameter, for example 0.75
 If r < k
 great; % then the fitter of the two individuals is selected to
be parent.
 Else
 small; % Otherwise the less fit individual is selected.
End

The two are then returned to the original population and can be selected
again.

2-3 Crossover

The next step is to generate a second generation population of
solutions from the genetic operators. Crossover (also called
recombination). For each new solution to be produced, a pair of "parent"
solutions is selected from selected previously. By producing a "offspring"
solution. The process continues until a new population of size is
generated. The Crossover operator used to generate the next population
and have many crossover techniques Goldberg [2].

In this research, in Crossover operation used the ordered
chromosomes method. A crossover point is selected on the parents. Since
the chromosome is an ordered list, a direct swap would introduce
duplicates and remove necessary candidates from the list. Instead, the
chromosome up to the crossover point is retained for each parent. The
information after the crossover point is ordered as it is ordered in the
other parent as represented by:

 Crossover operator:
Child1: A

 Child2:

7 6 4 5 0 3 1 8 2

0 2 4 7 6 3 5 1 8

Point selection for crossover

Offspring after Crossover
 2 4 7 6 5 3 1 8

From Child1 From Child2

Ruqaya Zedan Sha’ban & Isra Natheer Alkallak & Mowada Mohamad Sulaiman

١٥١

2-4 Mutation
The mutation is a genetic operator used to maintain genetic

diversity from one generation of a population of chromosome to the next.
A common method of implementing the mutation operator involve
generating a random variable for each bit in a sequence. The purpose of
mutation in genetic algorithms is to allow the algorithm to avoid local
minima by preventing the population of chromosomes from becoming too
similar to each other Koza [4].

In this research, used the order changing method for mutation
operator. As represented by :

2-5 Fitness Function

The fitness function depends on the nature of the problem. It
computed for every chromosome by depending on the objective function
the chromosome Schmidt et.al [9].

We express in this research, the proposed fitness function is
calculated by:

 ∑
=

=
9

1
*

i
inF n : represent the tile's value

 i : index of tile

2-6 Termination

This generational process is repeated until a termination condition
has been terminating. many runs were performed, stop criterion was used
like classical measures to accept (reach) the solution and depends on the
nature of the problem Goldberg [2].

In this research, classical measures used to reach the goal depend
on the number of generation.

3. The Steps of Proposed Heuristic Genetic Algorithm

Below the illustrated steps of the proposed heuristic genetic
algorithm for solving the 8-puzzle problem :
Step 1: Create an initial state matrix of the problem as 3x3 grid filled

numbers 1-8 and a blank, the length of chromosome represented by:

 Mutation operator:

 2 4 7 6 5 3 1 8

0 2 4 1 6 5 3 7 8

Mutation two points

Offspring after
mutation

Genetic Algorithm to Solve Sliding Tile 8-Puzzle Problem.

١٥٢

 Similarly, the goal state of the problem could be represented :

Step 2: Create the initial generation (population) randomly, population
size is the number of misplaced tiles (tiles out of place) in initial
state, As below in the table (1). Represented the number and
direction of tile's move

Where R: Right, L: Left, U: Up, D: Down

The initial state is some arbitrary arrangement of the tiles. An initial state
and goal state are shown next :

 Initial state Goal state

For above example, in the initial state the population size is 5
depend on the tile's moves, when the tile in the index 3 has 2 tile's moves,
and the tile in the index 6 has 3 tile's moves are shown next :

٣ ٤ ١
٦ ٧ 0
٢ ٨ ٥

٤ ١ 0
٣ ٦ ٧
٢ ٨ ٥

Index of tile The number of tile's move The direction of tile's move
٢ ١ D,R
٣ ٢ R,L,D
٢ ٣ D,L
٣ ٤ U,D,R
٤ ٥ U,D,R,L
٣ ٦ U,D,L
٢ ٧ U,R
٣ ٨ U,R,L
٢ ٩ U,L

] 1 4 3 7 6 0 5 8 2[
The number 0 is used to represent the blank square

]٧ ٦ ٣ ٥ ٨ ٢ 0 4 1 [

١ ٠ ٤
٣ ٦ ٧
٥ ٢ ٨

1 ٣ ٤
٧ ٠ ٦
٥ ٢ ٨

Ruqaya Zedan Sha’ban & Isra Natheer Alkallak & Mowada Mohamad Sulaiman

١٥٣

∑
=

9

1
i*n

i

∑
=

9

1
i*n

i

Step 3: let it =1 ; the it is a variable of initialize the iteration number of
generation

Step 4: Compute fitness value (fitness function) for each chromosome in
the generation for proposed heuristic genetic algorithm with 8-
puzzle problem is given as:

 F = n : represent the tile's value

 i : index of tile

 and Compute the probability of fitness function by :

 Probi = Fi /
Step 5: Compare the fitness function for each chromosome with

fitness function of the goal, and also compare the tile's value of
chromosome with tile's value of the goal. If the two conditions
are satisfied, then record the generation’s index and chromosome
index. Else go to the next chromosome.

Step 6: The next generation are produced by executing Selection,
Crossover and Mutation operations respectively.

 (a): Tournament Selection operator to select the fitter parents.
 (b): Execute the crossover operator consists of combining parts of

individuals to create new individuals as following:
 Begin
 Initialize
 Let Probability select pc = 0.7 ; where (0.5 < pc < 0.8)
 Let point = randint (length of chromosome); determine the

crossover point
 Let ra = size of population
 Let k =1 ; k is a counter
 While k < = ra
 - Let p1 , p2 pairs of individuals choose d randomly from the

population.
 - Let r a random number ; where (0 < r < 1).
 IF r > pc (if true then crossover operator is executed)

 The first part of chromosom about (child 1) is the same as of
chromosom in p1 before crossover point

 Also the first part of chromosom about (child 2) is the same as
of chromosom in p2 before crossover point

 End

 ٣

 ٠

Genetic Algorithm to Solve Sliding Tile 8-Puzzle Problem.

١٥٤

 -Execute the crossover for ordered chromosomes by Order
procedure to

 create the remained chromosome of child1 and child2 after
crossover point.
 Else
 point = length of chromosome
 the all chromosome of (chile1) and (child2) is the same of

chromosome as in
 p1, p2
 End
 k = k+2 ; increase the counter by 2
 End

 (c): Execute Mutation operator
 Used order changing method as two numbers are selected and
exchanged.

 Begin

 Let Probability mutation bit selected (mutation rate) as pm = 0.011;
where (0.01< pm < 0.5)

 {The Probability mutation bit selected equal the inverse of size of
population multiply length of chromosome as pm = 1/ra * length of
chromosome }

 Let K =1
 While k < ra
 Let rr a random number ; where (0 <rr < 1).
 IF rr < pm (if true then mutation operator is executed)
 point1 = randint (length of chromosome)
 point2 = randint (length of chromosome)
 swap values in two columns positions point1 and point 2 in child(k)
 Else

 point = length of chromosome
 the chromosome in child (k) stay same as not change.
 End
 k = k+1 ; increment the counter
 End
Step 7: it=it+1 increment the iteration number of generation.
 IF it equal the number of generation THEN step8
 Else Return to step 4
Step 8: Stop

Ruqaya Zedan Sha’ban & Isra Natheer Alkallak & Mowada Mohamad Sulaiman

١٥٥

0 100 200 300 400 500
0

10

20

30

40

50

60

No. of generation

N
o.

 o
f s

ol
ut

io
n

3-1 Running the Proposed Heuristic Genetic Algorithm for Solving
the 8-Puzzle

Problem :
 Below two runs of the program in this research.
Run 1:

 Initial state
Goal state

Number of different tiles is 2. therefore length of initial generation is 5.
Below table (2) shows the execution of proposed algorithm and the figure
(3) shows the number of solution with number of generation for run 1:

No. of

generation
No. of

solution
The generation that is found solution in it

10 1 1
25 7 5,8,16,20,22,23,25
50 6 1,12,16,19,46,49
100 No

solution
-

200 23 1,2,13,17,18,24,30,31,48,51,63,72,74,107,109,113,133,144,145,
160,162,168,200

300 29 19,20,27,39,41,49,80,89,91,111,113,116,119,120,123,134,143,1
45,149,155,163,180,203,205,216,245,250,256,282

500 58 48,49,57,63,66,72,74,90,97,98,101,120,138,142,146,147,160,16
3,164,165,168,182,183,215,217,224,227,254,258,260,268,271,2
72,277,283,288,298,299,302,325,327,340,346,355,387,389,405,
406,413,416,420,424,425,427,445,454,459,490

Table(2): the execution of proposed algorithm for run 1

 Figure(3): the number of solution with number of generation for run 1

٤ ١
٣ ٦ ٧
٢ ٨ ٥

٣ ٤ ١
٦ ٧
٢ ٨ ٥

Genetic Algorithm to Solve Sliding Tile 8-Puzzle Problem.

١٥٦

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

No.of generation

N
o.

of
 s

ol
ut

io
n

Run 2:

 Initial state Goal state

Number of different tiles is 3. therefore, length of initial generation is 9.
Below table (3) shows the execution of proposed algorithm and the figure
(4) shows the number of solution with number of generation for run 2 :

No. of generation No. of solution The generation that is found solution in it
10 No solution -
25 2 17,24
50 No solution -
100 1 24
200 4 39,88,131,139
300 9 1,4,10,7,6,3,5,8,2
500 5 21,119,406,420,424

Table (3): the execution of proposed algorithm for run 2

Figure(4): the number of solution with number of generation for run 2

٣ ٤ ١
٦ ٧
٢ ٨ ٥

٤ ١
٣ ٦ ٧
٢ ٨ ٥

Ruqaya Zedan Sha’ban & Isra Natheer Alkallak & Mowada Mohamad Sulaiman

١٥٧

3-2 Conclusion
The sliding tile puzzle is a typical problem for modeling algorithms

involving heuristics. The proposed heuristic genetic algorithm for solving
the 8-puzzle is feasible plan, because heuristic rules can be used as fitness
function to evaluate the individuals that have evolved in each stage. It
founds the feasible solution for a state space search that will enable us to
find a series of moves that transform a start puzzle into a goal puzzle. The
proposed heuristic genetic algorithm has the ability to find a global
solution in a large space. The algorithm performs significantly bettor than
the traditional search methods. The dynamic of population size was equal
the number of tiles out of place therefore, this is depended on the number
of generations in evolutionary computed have been reached to the goal
and reduce the region of the space considered.

References
1) Gen, M., and K. Ida. (2000), spanning tree-based genetic algorithm

for bicriteria fixed charge transportation problem, Journal of Japan
society of fuzzy theory and systems.

2) Goldberg, D. E. (1989), genetic algorithms in search, optimization
and machine learning, Addison, Wesley.

3) Konar, A., 2000, Artificial Intelligence and Soft Computing
Behavioral and Cognitive Modeling of the Human Brain, CRC press,
Inc., Boca Raton London New York Washington, D.C., pp.450.

4) Koza, J. R. (1992), genetic programming, MIT press, Cambridge,
MA.

5) Mitchell, M., 1998, An Introduction to Genetic Algorithms, MIT
press, London.

6) Qian, T., 1995, Using Genetic Algorithm to Solve Sliding Tile
Puzzles, Cognitive Science Program, Oswego, USA.

7) Reinefeld, A. 2006, Complete Solution of the Eight-Puzzle and the
Benefit of Node Ordering in IDA*, Paderborn Center for Parallel
Computing, Germany.

8) Rich, E. 1988, Artificial Intelligence, McGraw-Hill, Inc., Eight Edit,
Singapore.

9) Schmidt, M. and Stidsen, T. (1997), genetic algorithms, Neural
networks and fuzzy logic, DAIMIIR.

10) http:// en.wikipedia.org /wiki /genetic algorithm
11) http://en.wikipedia.org/wiki/mutation_%28genetic_algorithm%29
12) http://en.wikipedia.org/wiki/Sliding_puzzle

