< J. Edu. & Sci., Vol. (23), No. (3) 2010 -

Survey of Parallel Block Methods

Bashir M. Khalaf Mohammed A. Al-Taee

Department of Computers Sciences / College of Education
University of Mosul

Abdulhabib Abdullah

Received Accepted
16/12/2008 06/04/2009

Abstract
The main purpose of this research is the survey of the development
Block parallel numerical algorithms for solute stiff ordinary differential
equations which are suitable for running on MIMD (Multiple instruction
streams with multiple data streams) computers.

1: Itroduction

The novel property of these methods which we shall discuss here is
that of simultaneously production approximations to the solution of the
initial value problem at a block of points x_,,X, ,,.... X, . Although these

n+lo Mnt2 00
methods will be formulated in term of linear multi step methods and shall
see that they are equivalent to certain Runge-Kutta methods and preserve
the traditional Runge-Kutta advantages of being setf-stavting and of
permitting easy change of step-length. Their advautage over conventional
Runge-Kutta methods lies in the fact that they are les, expensive in terms
of function evaluations for given order.

A block is the set of all new function values which are evaluated
during each application of the iteration formula. For a k-points block k
new values of the solution are produced simultaneously in each
computational step. Thus, a block method generates a set, or block, of
new values in a single integration step.

Y.

Survey of Parallel Block Methods.

Block methods appear to have been first proposed by Milne (1953)
who advanced their use only as a means of obtaining starting values for
predicator-corrector algorithms for general use.

Several authors (see, for example, [1,2,3,5,6,7,8,9,12,15]) have
considered block methods for the parallel solution of the initial value
problem (IVP).

y'= Ty, ¥(X) =Y, 1)

By means of a single application of a calculation unit, a block
method yields a sequence of new estimates for y. If k >1 is the block size,
then in simple cases the values of x at which solution are computed will
be evenly separated [14]. In other words, each basic cycle of the
calculation has the potential to advance the solution by k new points in
the x direction. Each such block can, therefore, be considered as a unit of

calculation. Let Yn denotes the approximation to the exact solution Y(X,)
at X=X,. Also, f. denotes the value of f (x,Y,), the approximation for
Y% | For n=m k, a block of solution can be represented by the vector

_ _ T
Vi =Yoo ™ == You) - with yn+j(1 < j < k), the generated solution at

Xouj =% F Jh, where v is the right-hand end point of the preceding

block and is the uniform spacing between solution values.

Such procedures can be formulated either as implicit predictor-
corrector methods [12]. In addition the underlying formulae may only rfer
to the end point of the previous block, so called one-step methods. In
order words, by one-step methods, we mean methods that compute the

block of values y““, 1=1, ...k, from the value of Y only. Otherwise,
some or all of the points in the previous block could be used (multi-step
methods) or a number of previous blocks in which case the methods are
referred to as multi-block methods.

2: Cash's Block Method For Nonstiff ODEs and stiff ODEs:

Each has the following form for Nonstiff case:
You — Y, =h{l/4k, +3/4k,}

Yoo — ¥, =h{9/32k, +21/32K, +7/32K, +27/32k,}
Yoo, — Y, = h{105 /504 k, +117 /112 k, + 69 / 48k, + 39 /126 k,}
The formula is obtained by using the standard RK formalism for

block methods with the coefficients of the Butcher array for a P" order
formula given for the stepsize H= ph, and the weights for solution at
internal points in the block are given under the dotted lines.

And has the following form stiff case to compute

6] 6] (2) (2) (2)
yn+1 H yn+2 ’ yn+1 ’ yn+2 ’ yn+3 respectively:

AR

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

1
1 1 2 ‘ 1 1 1 /2 —1/2 1
1 |1 1 /2 -1/2 1

/72 -1/2 1
1 -1 1 1

S SR

1 -1 1 1 and (2)

We note that five stage block formula (2) provides 5 separate solution.

3.1: Parallel Block Implicit Methods:

Block implicit methods as described by Shampine and Watts [12]
and Rosser [11] have been shown to be competitive with standard
methods for integrating ODEs. Worland [15] showed that block methods
are good candidates for parallel processor implementation and are easily
adapted to a parallel mode with little apparent degradation in the solution.

In block implicit methods, time is divided into a series of blocks
with each block containing a number of steps at which solutions to
system equations are to be found [5]. Block values are all obtained
together in a single block advance and the block may be considered as
unit calculation. The accuracy of the method can be changed by changing
the number of steps in a block or the size of the steps. These changes can
be made dynamically at the start of each block calculation on the basis of
error condition occurring in the previous block.

In a k-point block method each pass through the algorithm
simultaneously produces k new equally spaces solution values.

Block implicit methods can be applied in a one- step mode, in
which only the last point in the block is used to compute the first
approximation to the k values of the next block. Then, implicit formulas
are applied iteratively until convergence is achieved to the maximum
order of accuracy obtainable [12].

An example of a parallel 4- point one — step implicit block scheme,
based upon integration formulas which are basically of the Newton-
Cotes type, 1s (see Worland (1976)[15]):

yrg(i)r =Yn t rhfn

, r=1,2,3,4
yr(j:” =y +%)(25 If, +646fn(fl) —264fn(2 +106fn(2 _19fn(i)1

'Y

Survey of Parallel Block Methods.

(S)_24f(5)+4f(5)_f(5)

n+1 n+2 n+3 n+4

yEn oy +%(29 fo+124 f

n+l n+2 n+3 +

yes =y, +%(9 fo+34FC) —24F0) 41140 —)

ye =y, +%(7 fL+32 60 12 £6) 43210 - 7£5))

n+l n+2 n+3 +

Where s =0, 1, ..., S is the iterations number, r indicates a node in a
block, i = yi(s+1)’ fi = f(x, yi(s+l) fi(S))and = f(x, yi(S)).

However, on a parallel machine Yoo@Ndfy are computed on

processor 1, and thus they are calculated simultaneously for different r.
Block implicit methods can also be adapted to a predictor —

corrector mode, as we shall see later; in this case the solution values of a

block may be used to predict a solution at each node of the next block.

3.2: Parallel Block Predictor- Corrector (PBPC) Methods:-

As an example consider the two point case block PC method. This
is a process of two parallel prediction following by two parallel
correction:

(1) first, the initial values of the solution have to be computed or
known.

(2) Predictor formulae are used to calculate new values (in this case
two values).

(3) Corrector formulae are used iteratively.

This procedure can be easy applied using two processors, where each

processor is allocated to doing both predictor and corrector calculations

for one point of the block.

To make it clear consider a fourth order block PC for the numerical
integration of a system of a set of ODEs, presented by Shampine and
Watts [12] is as follow:

The predictor equations are:

Y” =%(Yn°_2 +Y.°, +Yn°)+%(3Fn°_2 —4F° +13F)),

n+1

3)
V= (s Y Y+ QIS ~ T2, +TOFY))
The corrector equations are:
Ync+l = Ync + L(5 I:nc + 8Fn5—l - Fn‘j—z)
12 (5)
Ync+2 = YnC "'D(FnC + 4Fn'~)+1 + Fnaz
3 (6)

In this case, each block consist of two steps, n+1 and n+2. the
predictor equations are dependent on values taken from the previous
block (n, n-1, n-2). The corrector equations depend on a single value from

\ry

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

the previous block (n) and the predicted values of the current block (n+1,
n+2). The first predictor is used to set up the first corrector; then the
second predictor can be computed to set up the second corrector. The
equations within each part are independent of each other even though
they refer to successive time steps. Thus the equation can be easily
mapped onto a two-processor system where one processor is devoted to
point n+1 and the other to pint n+2. the processors have to exchange
information twice per block, once after the predictor equations and
corresponding function evaluations have been evaluated, and once after
the corrector equation and corresponding function evaluation have been
evaluated. Solution of each block, however, provides two Y values,
where the function evaluation and the Y variable calculation for these two
are performed in parallel. This effectively halves the time required for
function evaluation and Y variable calculations [5].

A timing diagram for a single block which corresponds to a two
processors implementation of (3) through (6) is given in the following
figure:

Processor P1

Yngl an—l YnC+1 FnC-H
p p c p
Processor P2 Vi Fois Yoo Foo
Fig. (1): timing for PBPC integration algorithm Data

are being exchanged|[4].

Each processor in the figure performs both the predictor and
corrector evaluations associated with a single point, processor 1 point n+1
and processor2 point n+2.

Franklin [5] says that if more processors are available, then it is
possible to increase the number of steps per block and change the block
size such that each processor is allocated to one or more points per block.
In general, the method's parallelism guarantees that the function
evaluation times will effectively decrease directly as the number of
processors used increases. The following figure (2) shows the timing
diagram for the case k =4.

VY ¢

Survey of Parallel Block Methods.

Processor y’ f(x,y") Y f (X, y;)
" | |
Processor . b c c
P2 Y, f(Xza Y,) Y2 f(Xza yz)
Proclz)e;ssor yP f(x,,y") Y3 f(X5,y3)
Processor y, f(x,,y5) Ya f(X,,)
P4 —A— —B— —C— —D— —E— —F—

— »time

A: evaluate the predictor formulas.
B: evaluate the derivative function.
C: exchange derivative values.

D: evaluate the corrector formulas.
E: evaluate the derivative function.
F: exchange derivative values.

Fig.(2): Timing diagram for four processor case[4].

We note that with PCBC algorithm in the two processor system,
processors are assigned doing to both predictor and corrector calculations,
but on successive step, with PPC algorithm, processors are assigned to
doing only predictor or corrector calculations but on a single step.

3.3: Parallel Block Methods — Fixed Order and Fixed Length:
Adopting the notation used by Birta and Abou-Rabia [2], the
formula of the block method can be expressed as:

Y., =ey, +hdf +hBF(Y,))

+th
Where e and k-vectors, B is a kx k matrix, and F is a k=factor whose !
entry is Foey = T g5 Vo), 1 <j<k. As (7) is implicit in Y~ it has to be
solved iteratively using, in the first instance, predicted solution values. A
predictor equation for Y can be expressed in the form:

0) _ q
Y. =ey. +hdf_, ®)

Where is k-vector. Substitution of into the right-hand side of (7) yields
the block predictor-corrector (BPC) method:

Y =ey. +hdf_ +hBF (ey, +hdf,) ©)
We can write (9) in the form:
Y, =ey, +hdf + AY 9+ hBf (10)

\ye

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

Where A is kx k matrix.

In accordance with the terminology used in the linear multistep
case, this application is called PEC mode. Of course, one can continue
this process by substituting the result of (9) into the right-hand side of

(7) arriving at P(EC)VEl_ymode, in which y=0 indicates that a final
evaluation is done before proceeding to the next block. Abbas and Devles
[14] considered this approach using an explicit Euler predictor and then
corrected twice by a trapezoidal corrector applied in the composition
case. This method can be computed in three steps for each equidistant
step pointr=1, ..., k as:

YO =y +rhf(x,.y,),

n+r

r-1
=Yy Fh/ 28 (X, Y), b s Ve +h/2F (X Vi),

Y(l)
i1 a1
r—1
Yn(+2r) = yn +h/2f(xn=yn):hz f(Xn+i=yr(11+)i)+h/zf(xn+r5yr(11+)r)'
i=l
b Yo P(EC)’
With "'m by (8), method (11) has from
Y® ey +hdf,,
(s+1) __ (s)
Y, =ey, +hdf +hBF(Y,”), s=0, 1
Where
/20]
1 1 1/2
1 2 1/2 . 12
e=|.|, d=|. |, d=| . || B=|: : :
' 1 1 1/2 0
1 k 1/2
1 11 12

As we have seen that the simplest initial estimate for elements of

¥n is obtained by the one step Euler formula as in equation (8). following

an application of equation (10) or (8), equation (7) may be applied
iteratively through:
Yrr(]iﬂ) :eyn + hdfn + hBFn(]I) (12)

YO vy F®) . .
Where 'm m and 'm is a k-vector holds the derivatives
f(x, +ihy!), =12,k
Inspection of equations (7), (10) and (12) shows the potential for
parallelism in the calculation of Ym (equation (10)), |:"gl)(equation (12)),
and also in the calculation of the right-hand side of equation (7). the

granularity of the parallelism is variable and depends upon both the block
size and the computation effort to calculate the derivative function

f(x,y).

AR

Survey of Parallel Block Methods.

3.4: Parallel Block Methods — Fixed Order and Varying Length:

This method uses equation (8) to predict solutions to the problem
then applies the equation (13) iteratively:
Yn(]”l) =€y, + hAFmp (13)

i+, p
Where ' is as in (12), e is a unit k-vector, A is a k x k matrix and Fn

- th _ P p
is a (k+1)-vector whose i entry is Fa = T06 + (=D, y),

p
With Y7 the latest estimate for Y1
Lets us consider an implementation of the method with A define by:

4 =8 =U2 where =1, ..., k (14)

And a; =1 where =2, ...,k and j=2, ...,r (15)
It can be seen that there is a potential for parallelism in the calculation of

the predicted y values 1.e Yo (equation (8)) and hence the predicted

derivative values Fmp. The right — hand side of (13) can be split up into
sub-block work packets and farmed out to processors, allowing a high
degree of parallelism to be accomplished.

For example with 2 processors, equation (13) can be manipulated thus:
First with A in its complete form:
(172 1/2

/2 1 1/2

/72 1 1 1/2

=ey,+hl1/2 1 1 1 12 FP (16)

y(i+1)
1/2 1 1 1 ... 1 1/2
1/2 1 1 1 1 1 1/2
1/2 1 1 1 ... 1 1 1 1/2

The calculation of A Fn is readily parallelized using a splitting of A.
If we write A as:

/2 1/2

/2 1 1/2

/2 1 1 1/2 0| |0 0
A=[1/2 1 1 1 12 + 1/2 . an

/2 1 1 1 a1 0

: : : : : 0

/2 1 1 1 1 1 w12

/2 1 1 1 a1 1 1 1/2
And further split A up to:

\Yv

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

1/2 1/2
1/2 | 0 0 1 1/2
1/2 0 1 1 1/2
: : : 0
A=(1/2 + 1 1 1 1/2
1/2 1 1 1 :
: 0 0| |0 : : : 0
1/2 1 1 1 1
1/2 1 1 1 1
0 0 0
(18)
1/2
0 0 :
1 1/2
1 1 1/2
Or v+ A+A (19)
Then (16) could be represented by:
Yn(1i+l) =€y, + h{Ao + Al + Az}Fmp (20)
Or Yo " =eY, +hAFL +hAF] + AR 1)

Where

Fr=[f,,00,0.,..,0]",F" =[0,f,f,..
f T’

FP =[0,0,...0,f, ., f

k/2+1°

p
Thus by splitting up the Fn' vector and matrix A over 2 processors with

both processors knowing h/2

k/2+29°°°>

f

f

s Tk/2 709-'-90]T

and

are (k+1)-vectors.

z fo. r=1, ..., k/2 then estimates for Yr(l), r=1,...,k/2 and

Y(i)

s » s=k/2+1 ,... , k can be obtained in parallel.
It should now be apparent that A can be split across any number of
processors. In general for a P processors where k/P = q we follow the

procedure of splitting up as in equation (21)[4], i.e
Y =ey, + hAFr +hAF +hB,G,,

ml

Where
G2, =[0,0,....,0, f,.,, f f 1’

q+l2 “g+20°0

VYA

are (k+1) — vectors.

Fro =[£5.0,0,...0" ,F =10, f,, f,...., f,0,..,0]" and

o and processor 2 knowing estimate of

(22)

Survey of Parallel Block Methods.

The splitting up continue with B,

0 0 0 0 0 0
1/2
1 1/2
1 1 1/2
0 : : : 0 0 0 0
8 = R N S V22 I (23)
1 1 1 1 1/2
0 : : 0 0 0 :
1 1 1 1 1 1/2
1 1 1 1 1 1 1/2
Or B2 =A +B; 24)
Then Fop =100, f o, foinnens £2,0,..,077,

And G =050, Fagurs Frguzs Fio '

Similarly we split B3, into ” and B., and continue until finally:
0 0 0) (0 0 0

172

1

1 1 1/2

a | 1 1 12 i (25)
1 1 1 1 1/2
0 0| |o 0 :
1 1 1 1 1 1/2
1 1 1 S| 1 S| 1/2
Or Bp_1 = Ap_1 + Ap (26)
Giving us:
i P
Yn(1l+1) = eyo + hAO FmPO + hz Ar FmF:'GrzZ
= (27)
P _ T
Where Fme =00, g Trg 00] and the A matrices are defined as
above.
Thus the work of calculating k y-values may be farmed out by splitting
F p

up '™ and A into P+1 sub-vectors and matrices. As each processor
knows the value of Yo and fO, processor P needs only to receive an
estimate of 21 , =1, ..., (p-1)q, to calculate its sub — block of y-

(i)
values, Y7, r = (p-1)q+1, pq[4].
On inspection of the method it was found that increased accuracy could

be achieved in the corrector by updating the estimate of it in the

¥4

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

(i

)
calculation of i through the sub-block. E.g. consider the first point in a

(i
sub-block 1 . The equation to calculate this point can be written:

. il
y{" =y, +h/2f +h> fP+h/2fp
‘ ‘ (28)
p p
Where Yo fo , and ' are known locally and the sum of s are
communicated.
The next point in the block is calculated by:

j-1
yhi=Yo+h/2f +hY fP +hfP+h/2fp

j+l

| ' r=0 (29)
Or ySh =y +h/2(FP + £0) 30)

j+l
(i) (i)
But as we have calculated i before we start to calculate Yi* we could

find i’ and use this equation (30) to find an update solution for Yia,
Then for all points of a sub-block except the first one, the equation for
;" (r#1)is:

=y +h/2(f L+ £ (1)

3.5: Methods of Miranker and Liniger:

The methods of Miranker and Liniger [10] can be represented as
explicit, one-stage BRK methods. For example, their second-order
method can be represented by the array

1 0
0 1
0 1 2 0 c=2.0" (32)
0 1 /2 1/2
And their fourth — order method by
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0 0 0 0 0 c=(-1,0,2,1)" (33)
0 0 0 1 0 0 0
o 0 o 1| & & s
3 3 3 3
o 0 o 1| L = oow
24 24 24 24

Both methods require only two processors and respectively two and
four starting values when implemented in BRK form.

AKX

Survey of Parallel Block Methods.

3.6: Predictor-Corrector Method of Shampine and Watts:
The PC method of Shampine and Watts [13] is based on the block
method of Clippirige and Dimsdale (1958), which can be presented in the

form (44) as:
1 0
0 1
0 1 o > 1
24 3 24
o 1 |o L 2 1
6 3 6
And on the predictor defined by
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 11 1 1 -1 =B
3 3 3 4 12
0 r 1 1 » 5 D
3 3 3 24 24

c=@1/2,)7 (34)

c=(-1/2,01/21)"

(35)

Method (34) is one of the oldest block methods proposed in the
literature. Sham pine and Watts proved that this corrector method is
fourth-order accurate at the step points. They also proved that the
predictor method is third-order accurate and possesses favorable stability
properties. This predictor can also be applied as a method on its own and
requires four starting values and one processor.

In order to apply the PC pair (35) - (34) using the BRK format, we

rewrite the corrector in the form:

0
0
1
0
1
0

oS ol o o =
S ol o = O

0 0 0

0 0 0

ol o o o

1

[=N]

@1 2l

W W= O D

e = =]
=

c=(-1/2,01/2,1)

(36)

The PC method of Sham pine and Watts was implemented by

Worland [15]On two processors.

KA

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

4: Parallel Block Runge-Kutta Method:-

Lets us take a block which consists of k equidistant points
Xpor = Xo + 1, =1, ..., k where h is the step size, and kh represents the
block length. And let Y represents the approximate solution of a given
first order differential equation at *» the initial point of the current block,

and y(*") is the exact solution at *n.
The formulas for sequential two- point block scheme are:-

Yo = Yo +hf, (37)
h
Yo = Yn +§(fn + 1) (38)
Yas = Yo +20f) (39)
Y = Yo Sy +8E0 — 1))
(s+1) _ +V(f +4f(5)_f(5)) 5—1(2)
yn+2 - yn 3 n n+1 n+2 /> o (41)

The sequence (28) — (41) is used minimize the number of
derivative evaluation required.

The corresponding formulas for the parallel are:
y2 =y, +rhf, : r=1,2

Vi = Y+, #8101

n+l1 +

yﬁP:yn+2Un+4ﬂ”—ffb

n+1 +

(s+1) (s+1)

Where s = 0, 1, 2, (3). On parallel machine Y~ and Y~ are obtained
simultaneously for each s.
Second processor calculates:

h
Yoo = Yn = E(fmz +4fn+1 + fn)
We can reduce the sequence (28) — (41) to following Runge-Kutta form:
h (k, + 4ks + kg)

Yne2 = Yn :E

k) = f(xn,yn)

k, = f(x, +h,y, +hk)
k, = f(x, +2h,y, +2k;)

fl x, +h,y, +%(5k1 +8Kky — k4)j

?_
Wi
Il
TN TN

ke = f| X, +2h,y, +2(k1 + kg +4k5)j

KAl

Survey of Parallel Block Methods.

This form can be converted to Parallel form as follows:

1-

5:

we produce the value y, and y, sequentially or in parallel by using one

or two sequential forms of Runge-kutta type methods, then the
parallel calculation continues as follow:

Yni2 = Ya :g(kl +4k5 + k6) 5 n=13,5,...

(43)

Yoo = Y, =2(L1 +4L+ L), r=246,..

Where k,,k,,k,,k,,k;and k, are as given (42) and r erplace each n in the

form of L's.
Form (43) is a parallel form suitable for two Processor and (43) can be
easily modified for forms suitable for 3,4,5 and more processors.

Future work:-
We suggest driving and developing parallel block methods of

higher order for solving stiff IVPs.

References

1)

2)

3)

4)

)

6)

O. Abou-Rabia and L. G. Birta, "Some Variations on the BPC
parallel integration method", in R. Crosbie and P. Luker (eds.)
Proceeding of the '1986 Summer computer Simulation
conference' (1986), 37-42.

L. G. Birta and O. Abou-Rabia, "Parallel block Predictor — corrector
methods for ODEs", IEEE Trans. On Computers, Vol. c- 36, No. 3
(1987), 299-311.

, "Block Runge-Kutta methods for the numerical integration
of initial value problems in ordinary differential equations, Part I:
The non stiff case" Mathematics of Computation, Vol. 40, No.161
(1983), 193-206.

Murshed, A. A. A: "An Investigation Of Numerical Algorithms for
solving stiff ODEs Suitable for parallel computers"”, Ph.D. thesis,
University of Mosul, (2000).

M. A. Franklin, "Parallel solution of ordinary equations", IEEE
Trans. On Computers Vol.C-27, No. %(1978), 413-420.

S. K. Ghoshal, M. Gupta and V. Rajaraman, "A parallel multi step
predictor-corrector algorithm for solving ordinary differential
equations" J. of Parallel and Distriuted Computing, Vol.6 (1989),
636-648.

KAl

Bashir M. Khalaf & Mohammed A. Al-Taee & Abdulhabib Abdullah

7

8)

9

10)

11)

12)

13)

14)

15)

P. J. van Der Houwen and B. P. Sommeijer, "Block Runge-kutta
methods on parallel computers" Z. Angew, Math. Mech. 72 (1992),
3-18.

E. J. Kerckhoffs, "Parallel algorithms for ordinary differential
equations: An introductory review", in: R. Crosbie and P. Luker
(eds.), Proceeding of the ""1986 Summer Computer Simulation
Conference", (1986), 947-952.

B. M. S. Khalaf, "Parallel numerical algorithms for solving ordinary
differential equations" Ph.D. Thesis, University of Leeds, U.K,,
1990.

W. L. Miranker , " A survey of parallelism in numerical analysis" ,
SIAM Review , Vol.13 , No. 4 (1971), 524-5247.

J.B. Rosser, "A Runge-Kutta for all seasons", SIAM Review, Vol. 9
(1967), 417-452.

L. F. Sham pine and H. A. Watts, "Block implicit one — step
methods" , Mathematics of Computation, Vol.23 (1969), 731-740.

T. E. Shoup, "Applied numerical methods for the micro -
computers" Prentice- Hall, New Jersey, 1984.

D. A. Voss and S. Abbas, "Block predictor — corrector schemes for
the parallel solution of ODEs", Computers Mathematics
Application, Vol. 6 , (1997), 65-72.

P. B. Worland, "Parallel methods for the numerical soluation of
ordinary differential equations" IEEE Trans. On Computers,
(1976), 1045-1048.

Vé¢

