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  الملخص 

 العددية المتوازية    بلوك  تطوير خوارزميات   دراسة  الرئيسي من هذا البحث هو     الغرض  
 ذات لحل المعادلات التفاضلية الاعتيادية الصلبة والتي هي مناسـبة للتنفيـذ علـى حاسـبات      

   .عمليات متعددة في آن واحد
  

Abstract   
 The main purpose of this research is the survey of the development 
Block parallel numerical algorithms for solute stiff ordinary differential 
equations which are suitable for running on MIMD (Multiple instruction 
streams with multiple data streams) computers. 
 
1:  Itroduction  

The novel property of these methods which we shall discuss here is 
that of simultaneously production approximations to the solution of the 
initial value problem at a block of points Nnnn xxx +++ ,....,, 21 . Although these 
methods will be formulated in term of linear multi step methods and shall 
see that they are equivalent to certain Runge-Kutta methods and preserve 
the traditional Runge-Kutta advantages of being setf-stavting and of 
permitting easy change of step-length. Their advautage over conventional 
Runge-Kutta methods lies in the fact that they are les, expensive in terms 
of function evaluations for given order.   

A block is the set of all new function values which are evaluated 
during each application of the iteration formula. For a k-points block k 
new values of the solution are produced simultaneously in each 
computational step. Thus, a block method generates a set, or block, of 
new values in a single integration step. 
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 Block methods appear to have been first proposed by Milne (1953) 
who advanced their use only as a means of obtaining starting values for 
predicator-corrector algorithms for general use. 
 Several authors (see, for example, [1,2,3,5,6,7,8,9,12,15]) have 
considered block methods for the parallel solution of the initial value 
problem (IVP). 

00 )(),,( yxyyxfy ==′                                                                         (1) 
 By means of  a single application of a calculation unit, a block 
method yields a sequence of new estimates for y. If k ≥1 is the block size, 
then in simple cases the values of x at which solution are computed will 
be evenly separated [14]. In other words, each basic cycle of the 
calculation has the potential to advance the solution by k new points in 
the x direction. Each such block can, therefore, be considered as a unit of 
calculation. Let ny  denotes the approximation to the exact solution )( nxy  

at  nxx = . Also, nf  denotes the value of f )( nn yx , the approximation for 
)( nxy′ . For n=m k, a block of solution can be represented by the vector 

T
knnnm yyyY ),,,( 21 +++ −−−=  with jny + (1 ≤ j ≤ k), the generated solution at 

jhxx njn +=+ , where nx  is the right-hand end point of the preceding 
block and is the uniform spacing between solution values. 
 

 Such  procedures  can be formulated either as implicit predictor-
corrector methods [12]. In addition the underlying formulae may only rfer 
to the end point of the previous block, so called one-step methods. In 
order words, by one-step methods, we mean methods that compute the 

block of values iny + , i=1, …,k, from the value of ny  only. Otherwise, 
some or all of the points in the previous block could be used (multi-step 
methods) or a number of previous blocks in which case the methods are 
referred to as multi-block methods. 
 
2:  Cash's Block Method For Nonstiff ODEs and stiff ODEs: 
 Each has the following form for Nonstiff  case: 
  }4/34/1{ 311 kkhyy nn +=−+  
  }32/2732/732/2132/9{ 54312 kkkkhyy nn +++=−+  
  }126/3948/69112/117504/105{ 64313 kkkkhyy nn +++=−+  
 The formula is obtained by using the standard RK formalism for 
block methods with the coefficients of the Butcher array for a 

thp  order 
formula given for the stepsize H= ph, and the weights for solution at 
internal points in the block are given under the dotted lines. 
 And has the following form stiff case to compute 

)2(
3

)2(
2

)2(
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)1(
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)1(
1 ,,,, +++++ nnnnn yyyyy  respectively: 
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          and  (2) 
 

We note that five stage block formula (2) provides 5 separate solution.  
 
3.1: Parallel Block Implicit Methods: 
 Block implicit methods as described by Shampine and Watts [12] 
and Rosser [11] have been shown to be competitive with standard 
methods for integrating ODEs. Worland [15] showed that block methods 
are good candidates for parallel processor implementation and are easily 
adapted to a parallel mode with little apparent degradation in the solution. 
 In block implicit methods, time is divided into a series of blocks 
with each block containing a number of steps at which solutions to 
system equations are to be found [5]. Block values are all obtained 
together in a single block advance and the block may be considered as 
unit calculation. The accuracy of the method can be changed by changing 
the number of steps in a block or the size of the steps. These changes can 
be made dynamically at the start of each block calculation on the basis of 
error condition occurring in the previous block. 
 In a k-point block method each pass through the algorithm 
simultaneously produces k new equally spaces solution values. 
 Block implicit methods can be applied in a one- step mode, in 
which only the last point in the block is used to compute the first 
approximation to the k values of the next block. Then, implicit formulas 
are applied iteratively until convergence is achieved to the maximum 
order of accuracy obtainable [12]. 
 An example of a parallel 4- point one – step implicit block scheme, 
based upon integration formulas which are basically of the Newton- 
Cotes type, is (see Worland (1976)[15]): 
 

nnrn rhfyy +=+
)0(

            ,                r = 1, 2, 3, 4 
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Where s = 0, 1, …, S is the iterations number, r indicates a node in a 

block, ).,(),(, )()()1()1( s
ii

s
i

s
iii

s
ii yxfandfyxffyy === ++

 
 However, on a parallel machine rnrn andfy ++  are computed on 
processor r, and thus they are calculated simultaneously for different r. 
 Block implicit methods can also be adapted to a predictor – 
corrector mode, as we shall see later; in this case the solution values of a 
block may be used to predict a solution at each node of the next block. 
 
3.2: Parallel Block Predictor- Corrector (PBPC) Methods:- 

As an example consider the two point case block PC method. This 
is a process of  two parallel prediction following by two parallel 
correction: 
(1) first, the initial values of the solution have to be computed or 

known. 
(2) Predictor formulae are used to calculate new values (in this case 

two values). 
(3) Corrector formulae are used iteratively. 
This procedure can be easy applied using two processors, where each 
processor is allocated to doing both predictor and corrector calculations 
for one point of the block. 
 To make it clear consider a fourth order block PC for the numerical 
integration of a system of a set of ODEs, presented by Shampine and 
Watts [12] is as follow: 
 The predictor equations are: 

),1343(
6

)(
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1

12121
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p

n FFFhYYYY +−+++= −−−−+                    (3) 
  ),797229(
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n FFFhYYYY +−+++= −−−−+             (4) 

The corrector equations are: 
)85(

12 211
p

n
p

n
c

n
c

n
c

n FFFhYY +++ −++=
                                           (5) 

)4(
3 212

p
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n
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n

c
n FFFhYY +++ +++=

                                             (6) 
 
 In this case, each block consist of two steps, n+1 and n+2. the 
predictor equations are dependent on values taken from the previous 
block (n, n-1, n-2). The corrector equations depend on a single value from 
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the previous block (n) and the predicted values of the current block (n+1, 
n+2). The first predictor is used to set up the first corrector; then the 
second predictor can be computed to set up the second corrector. The 
equations within each part are independent of each other even though 
they refer to successive time steps. Thus the equation can be easily 
mapped onto a two-processor system where one processor is devoted to 
point n+1 and the other to pint n+2. the processors have to exchange 
information twice per block, once after the predictor equations and 
corresponding function evaluations have been evaluated, and once after 
the corrector equation and corresponding function evaluation have been 
evaluated. Solution of each block, however, provides two Y values, 
where the function evaluation and the Y variable calculation for these two 
are performed in parallel. This effectively halves the time required for 
function evaluation and Y variable calculations [5]. 
 A timing diagram for a single block which corresponds to a two 
processors implementation of (3) through (6) is given in the following 
figure: 
 
Processor  P1 
 
 
 
Processor  P2       
 

Fig. (1): timing for PBPC integration algorithm              Data  
are being exchanged[4]. 

 
 Each processor in the figure performs both the predictor and 
corrector evaluations associated with a single point, processor 1 point n+1 
and processor2 point n+2. 
 Franklin [5] says that if more processors are available, then it is 
possible to increase the number of steps per block and change the block 
size such that each processor is allocated to one or more points per block. 
In general, the method's parallelism guarantees that the function 
evaluation times will effectively decrease directly as the number of 
processors used increases. The following figure (2) shows the timing 
diagram for the case k = 4. 
 
 
 
 
 
 

p
nY 1+           
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py4  ),( 44
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cyxf   
←A→ ←B→ ←C→ ←D→ ←E→ ←F→ 

 time 
   A: evaluate the predictor formulas. 
   B: evaluate the derivative function. 
   C: exchange derivative values. 
   D: evaluate the corrector formulas. 
   E: evaluate the derivative function. 
   F: exchange derivative values. 
  Fig.(2): Timing diagram for four processor case[4]. 
 
 We note that with PCBC algorithm in the two processor system, 
processors are assigned doing to both predictor and corrector calculations, 
but on successive step, with PPC algorithm, processors are assigned to 
doing only predictor or corrector calculations but on a single step. 
 
3.3: Parallel Block Methods – Fixed Order and Fixed Length: 
 Adopting the notation used by Birta and Abou-Rabia [2], the 
formula of the block method can be expressed as: 

 )( mnnm YhBFhdfeyY ++=                                               (7) 
Where e and k-vectors, B is a k× k matrix, and F is a k=factor whose 

thj  

entry is ),,( jnjnjn yxff +++ =  1 ≤ j ≤ k. As (7) is implicit in my  it has to be 
solved iteratively using, in the first instance, predicted solution values. A 
predictor equation for Y can be expressed in the form: 

         ,~)0(
nnm fdheyY +=                                                      (8) 

Where is k-vector. Substitution of into the right-hand side of (7) yields 
the block predictor-corrector (BPC) method: 

          )~( nnnnm fdheyhBFhdfeyY +++=                       (9) 
We can write (9) in the form: 

          nmnnm hBfAYhdfeyY +++= )0(
                               (10) 

Processor 
P1 
 

Processor 
P2 
  
  

Processor 
P3 
  
  

Processor 
P4 
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Where A is  k× k matrix. 
 In accordance with the terminology used in the linear multistep 
case, this application is called PEC mode. Of course, one can continue 
this process by substituting the result of  (9) into the right-hand side of  
(7) arriving at 

yv EECP −1)( mode, in which γ=0 indicates that a final 
evaluation is done before proceeding to the next block. Abbas and Devles 
[14] considered this approach using an explicit Euler predictor and then 
corrected twice by a trapezoidal corrector applied in the composition 
case. This method can be computed in three steps for each equidistant 
step point r = 1, …, k as: 

),,()0(
nnnrn yxrhfyY +=+   

),,(2/),(),,(2/ )0()0(
1

1

)1(
rnrnin

r

i
innnnrn yxfhyxfhyxfhyY +++

−

=
++ ++= ∑

    (11) 

).,(2/),(),,(2/ )1()1(
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)2(
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i
innnnrn yxfhyxfhyxfhyY +++
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=
++ ++= ∑

 
 
With 

)0(
mY  by (8), method (11) has 

2)(ECP  from  
,~)0(

nnm fdheyY +=  
),( )()1( s

mnn
s

m YhBFhdfeyY ++=+

         s = 0, 1 
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 As we have seen that the simplest initial estimate for elements of 

mY  is obtained by the one step Euler formula as in equation (8). following 
an application of equation (10) or (8), equation (7) may be applied 
iteratively through: 

)()1( i
mnn

i
m hBFhdfeyY ++=+

       (12) 
Where mm YY =)0(

  and 
)(i

mF   is a k-vector holds the derivatives 
.,...,2,1),,( kjyjhxf p

jn =+  
Inspection of equations (7), (10) and (12) shows the potential for 
parallelism in the calculation of my  (equation (10)), 

)(i
mF (equation (12)), 

and also in the calculation of  the right-hand side of equation (7). the 
granularity of the parallelism is variable and depends upon both the block 
size and the computation effort to calculate the derivative function         
f(x , y). 
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3.4: Parallel Block Methods – Fixed Order and Varying Length: 
 This method uses equation (8) to predict solutions to the problem 
then applies the equation (13) iteratively: 

p
m

i
m hAFeyY +=+

0
)1(

         (13) 
Where  

)1( +i
mY  is as in (12), e is a unit k-vector, A is a k × k matrix and  

p
mF  

is a (k+1)-vector whose 
thj  entry is ),,)1(( 101

p
jj yhjxff −− −+=  

With 
p
jy 1−  the latest estimate for jy . 

Lets us consider an implementation of the method with A define by: 
,2/1)1(1 == +rrr aa  where r=1, …, k                              (14) 

And 1=rja  where r=2, …, k and j=2, …,r     (15) 
It can be seen that there is a potential for parallelism in the calculation of 
the predicted y values i.e 

p
mY  (equation (8)) and hence the predicted 

derivative values 
P

mF . The right – hand side of (13) can be split up into 
sub-block work packets and farmed out to processors, allowing a high 
degree of parallelism to be accomplished. 
For example with 2 processors, equation (13) can be manipulated thus: 
First with A in its complete form: 

(16)p
m

i
m Fhyey
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The calculation of A 

p
mF is readily parallelized using a splitting of A.  

If we write A as: 

(17),
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And further split A up to: 
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Or 210 AAA ++         (19) 
Then (16) could be represented by: 

p
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i
m FAAAheyY }{ 2100

)1( +++=+

      (20) 
Or 

P
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P
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P
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i
m FAFhAFhAeyY 2211000
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     (21) 
Where 

T
k

P
m

TP
m fffFfF ]0,...,0,,...,,,0[,]0,....,0,0,0,[ 2/21100 ==  and 

T
kkk

P
m fffF ],...,,,0,....,0,0[ 22/12/2 ++=  are (k+1)-vectors. 

Thus by splitting up the 
P

mF  vector and matrix A over 2 processors with 
both processors knowing h/2 0f  and processor 2 knowing estimate of 

,∑ rf  r=1, …, k/2 then estimates for 
)(i

rY , r=1 ,… , k/2 and 
,)(i

sY  s=k/2+1 ,… , k can be obtained in parallel. 
It should now be apparent that A can be split across any number of 
processors. In general for a P processors where k/P = q we follow the 
procedure of splitting up as in equation (21)[4], i.e 

P
m

P
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P
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i
m GhBFhAFhAeyY 2211000
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Where 
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T
kqq

P
m fffG ],...,,,0,....,0,0[ 212 ++=  are (k+1) – vectors. 
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The splitting up continue with 2B : 
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Similarly we split 3B , into 3A  and 4B , and continue until finally: 
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Or  ppp AAB += −− 11                                                                 (26) 
Giving us: 
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Where 
T

rqqr
P

me ffF ]0,....,0,,....,,0,...,0[ 1)1( +−=  and the rA  matrices are defined as 
above. 
Thus the work of calculating k y-values may be farmed out by splitting 
up 

p
mF  and A into P+1 sub-vectors and matrices. As each processor 

knows the value of 0y  and 0f , processor P needs only to receive an 

estimate of ∑ rf , r= 1, …, (p-1)q, to calculate its sub – block of y- 
values, 

)(i
ry , r = (p-1)q+1, pq[4]. 

On inspection of the method it was found that increased accuracy could 
be achieved in the corrector by updating the estimate of 1−jf  in the 
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calculation of 
)(i

jY  through the sub-block. E.g. consider the first point in a 

sub-block 
)(i

jY . The equation to calculate this point can be written: 
p

j

j

r

p
r

i
j fhfhfhyy 2/2/

1

0
00

)( +++= ∑
−

=                                             (28) 
Where 00 , fy , and 

p
jf  are known locally and the sum of 

p
jf 's are 

communicated. 
The next point in the block is calculated by: 

∑
−

=
++ ++++=

1

0
1001 2/2/

j

r

p
j

p
j

p
r

p
j fhhffhfhyy

                                   (29) 
Or  )(2/ 1

)()(
1

p
j

p
j

i
j

i
j ffhyy ++ ++=                                                      (30) 

But as we have calculated 
)(i

jy  before we start to calculate 
)(
1

i
jy +  we could 

find 
p

jf  and use this equation (30) to find an update solution for 1+jy . 
Then for all points of a sub-block except the first one, the equation for 

)(i
ry  (r ≠ 1) is: 

)(2/ 1
)(
1

)( p
r

i
r

i
r

i
r ffhyy ++= −−                                                            (31) 

 
3.5: Methods of Miranker and Liniger: 

The methods of Miranker and Liniger [10] can be represented as 
explicit, one-stage BRK methods. For example, their second-order 
method can be represented by the array 

2/12/110
)1,2(0210

10
01

(32)Tc =
 

 
And their fourth – order method by  

24
19

24
9

24
5

24
11000

3
5

3
8

3
4

3
11000

00001000
)1,2,0,1(00000010

1000
0100
0010
0001

−

−−

−= (33)Tc

 
         Both methods require only two processors and respectively two and 
four starting values when implemented in BRK form. 
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3.6: Predictor-Corrector Method of Shampine and Watts:  
The PC method of Shampine and Watts [13] is based on the block 

method of Clippirige and Dimsdale (1958), which can be presented in the  
form (44) as: 

( )

6
1

3
2

6
1010

)1,2/1(
24

1
3
1

24
5010

10
01

34Tc =−  

 
And on the predictor defined by 
 

( )

24
793

24
290

3
1

3
1

3
10

12
13

3
1

4
10

3
1

3
1

3
10

00001000
)1,2/1,0,2/1(00000100

1000
0100
0010
0001

−

−−

−= 35Tc

 
Method (34) is one of the oldest block methods proposed in the 

literature. Sham pine and Watts proved that this corrector method is 
fourth-order accurate at the step points. They also proved that the 
predictor method is third-order accurate and possesses favorable stability 
properties. This predictor can also be applied as a method on its own and 
requires four starting values and one processor.  

In order to apply the PC pair (35) - (34) using the BRK format, we 
rewrite the corrector in the form: 

 

6
1

3
200

6
10001000

24
1

3
100

24
50001000

000000001000
)1,2/1,0,2/1(000000000100

1000
0100
0010
0001

−

−= (36)Tc

 
The PC method of Sham pine and Watts was implemented by 

Worland [15]On two processors. 
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4:  Parallel Block Runge-Kutta Method:- 
Lets us take a block which consists of k equidistant points 

,rhxx nrn +=+  r=1, …, k where h is the step size, and kh represents the 
block length. And let ny  represents the approximate solution of a given 
first order differential equation at nx  the initial point of the current block, 
and y( nx ) is the exact solution at nx . 
 The formulas for sequential two- point block scheme are:- 

nnn hfyy +=+
)0(
1          (37) 

)(
2

)0(
1

)1(
1 ++ ++= nnnn ffhyy

          (38) 
)1(
1

)1(
2 2 ++ += nnn hfyy           (39)  

)85(
3

)1(
2

)1(
1

)2(
1 +++ −++= nnnnn fffhyy

        (40) 
)2(,1),4(3

)(
2

)(
1

)1(
2 =−++= ++
+
+ sfffhyy s

n
s

nnn
s

n      (41) 
 The sequence (28) – (41) is used minimize the number of 
derivative evaluation required. 
 The corresponding formulas for the parallel are: 

)4(
3

)85(
12

2,1,

)(
2

)(
1

)1(
1

)(
2

)(
1

)1(
1

)0(

s
n

s
nnn

s
n

s
n

s
nnn

s
n

nnrn

fffhyy

fffhyy

rrhfyy

++
+
+

++
+
+

+

−++=

−++=

=+=

 
Where s = 0, 1, 2, (3). On parallel machine 

)1(
1
+
+
s

ny   and 
)1(

2
+
+
s

ny  are obtained 
simultaneously for each s. 
Second processor calculates: 

( )nnnnn fffhyy ++=− +++ 122 4
3

 

We can reduce  the sequence (28) – (41) to following Runge-Kutta form: 
( )

( )
( )

( )

⎟
⎠
⎞

⎜
⎝
⎛ ++++=

⎟
⎠
⎞

⎜
⎝
⎛ −+++=

++=

⎟
⎠
⎞

⎜
⎝
⎛ +++=

++=
=

++=−+

)4(
3

,2

)85(
12

,

2,2

)42(
22

,

,
,

4
3

5416

4315

34

213

12

1

6512

kkkhyhxfk

kkkhyhxfk

kyhxfk

khkhyhxfk

hkyhxfk
yxfk

kkkhyy

nn

nn

nn

nn

nn

nn

nn
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 This form can be converted to Parallel form as follows: 
1- we produce the value 21 yandy sequentially or in parallel by using one 

or two sequential forms of Runge-kutta type methods, then the 
parallel calculation continues as follow: 

( )

( ) ,...6,4,2,4
3

,...5,3,1,)4(
3

6512

6512

=++=−

=++=−

+

+

rLLLhyy

nkkkhyy

rr

nn

43  

 

Where 654321 ,,,, kandkkkkk are as given (42) and r erplace each n in the 
form of L's. 
Form (43) is a parallel form suitable for two Processor and (43) can be 
easily modified for forms suitable for 3,4,5 and more processors. 
 

5:  Future work:-   
We suggest driving and developing parallel block methods of 

higher order for solving stiff IVPs. 
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