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ABSTRACT

The aim of this paper is to use some concepts of nonstandard analysis given
by  Robinson, [8], and axiomatized by Nelson, E. [6] to present a new result of
continuous and monotonic function when they are defined on nonstandard sets.
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~ 1-INTRODUCTION
In conventional analysis (classical analysis) the set of real numbers does not
contain infinitely small and infinitely large elements, while with nonstandard
analysis one can easily tangible such elements. In this paper the problem of
continuity and monotonic of functions with respect to such elements is considered
to be study. Ismail T.H gave some other results on continuous and monotonic

functions in 1991 [4] and 1994 [5].

Through this paper we need the following definitions, notions and theorems of
nonstandard analysis.

Every set or elements defined in a classical mathematics is called standard

6], [10]
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A real number x is called unhmlted if and only if |x|> r for all real r >0 otherwise
called limited (2], [6].

The set of all unlimited real numbers denoted byR, and the set of all limited
real numbers denoted by R

A real number xis called infinitesimal if and only if |x| < » for all positive

standard real number  [2], [10].
Two real numbers xand y are said to be infinitely close if an only if x -y is

infinitesimal and denoted by x = y [2]
If xis a limited number in R, then itis mﬁmtely close to a unique standard
real number, this unique number is called the standard part of x or shadow of

xdenoted by st(x) °x [2][6].
If f is areal valued function then: -
I-f is called continuous at x if f and x, are standard and for all

X, X=X, [6].
2- 1 is called s- contlnuous at x, ifforall x, x= X, then f(r) (x,) [6].

mond(x) = {y e R st x = y} for limited x
a~m0nd(x):{yeR:X—;—£zO} |
a—micromond(x) ={y :y-x< &" Vstandadd n}
a—galaxy(x) ={y eR: Z% limited } [_2]

Cauchy Principle:-

If Pis an internal property such that p(n) holds for all standard » € N then
there exist w e N such that p(n) holds foralln<w [9]

© 2- MAIN RESULTS

Lemma 2.1
If f is a positive increasing function defined on [rz m]such that f (x)=0 for

all xe[n,m] where n,meN, and »n < m, then

R_(x)= f f(x) for unlimited », where R _, is the remainder of the series

expansion of the sequence (f(n)),.

Proof:
Sincen,meN, so it is enough to prove the result forxe[nn+1], and the

result for x e [n,m]is obtain consequentially.
Now, sinc€ f'is an increasing function then for all x, n<x<n+1 we have
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f(n) < f(x) < f(n =1)
- nff(n)dx < "ff(x)dx < nff(n +1)dx

= f(n) < nff(x)dx <f(n+1)

k+1 oL k4t

Z (n) < jf x)dx <> f(n)

n=0
k+l k+ k+1

Zf(n) IO ff(x)dx Zf(n)<0

/\+| k+l

FO)= flk+D)s [f(x)dc=) f(n)<0

but 7(0)— f(k—1) = ¢, where ¢ is a negative number then

k+l k+l

‘ If(x)dx Zf(n) n for negative numbe1 n>¢ , but f(x)=z0  for all x,

therefore
k+l k+l

J' f(x)dx =) f(n)for standard & ..(D
By Cauchy principle 3w eN s.t
[f)de=Y 1) )

Now, the rema'rrider terms of  (f(n)) | is grven by: R,, (x) = Z Fk) - Z f(k).

k=0

From"(I).and (H) we get
| ()= jf(x) dx - ff(x)dv = Jf(x)dx

Theorem2.2
If fis a posrtrve decreasing function, then 3an unlimited @ € N such that

d < £(0), where 0 <a’m(x) }: f(k) j F(x)dx
Proof:

The integral J f(x)dx represents the area under the curve f(x) over the
0 . . [ 1. .
interval .
[0, k+1], where n, kez , and n<k+1. With out lose of generali_ty we have,

k+1 Coksl

PWIOE jf(x) <Y f0).

n=0 n=0
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kel K+l k]

Since fis positive, therefore Zf(n) 7(0)< jf(r)dx<Zf(n)

:>0<if(n)~ HOEENO

= -f(0)< J.f(x) dx-> f(0)<0 forstandard valueof k

n=0
By Cauchy Principle there exist an unlimited @weN such that

0< Zf(n) jf(r) dx < £(0), which implies that 0 <d, < f(0). Moreover by using

n=0

lemma (2.1), we get 0=d < f(0)
The sensitivity power of the theorem appears when f(0)=0. The following
corollary will treat such a case.

Corollary 2.3
If f(x)is a function satisfying the same properues of theorem (2.2) and

f(0)= 0 then: -
1- Either d_(x) € f(0) - gal(0) or d,(x)e f(0)—mon(0)
2- d_(x) can not exceeding \/7(7)
- d_(x) can not be in mon(f(0))
4- d (x) e f(0) - micromond(0)

Proof:
1) We prove this theorem by contradiction.

is neither

Now by definition of «-mon(x)and o - gal(x) we héve A——d‘“((ox)

infinitesimal nor limited, so 9 (%) is unlimited which is contradiction to that

d, (x)
v (0) .
2) Suppose that dw(x)exceedmg J/(0), then at least one can claim that d,,(x)is

slightly exceed .[f(0)such that d,(x)in a positive of monad(,/f(0) then

d,(x) 1 .
d,(x)=+//(0) or d, Jf(0)+n for 0<p=0, inthe first case —2
) =7 ,(¥) =~/ f(0) +7 VE: s 0" T6 is

unlimited which is contradiction.
The second case immediately impossible since 4, < £(0) .

3) The prove is obvious from 2.
4) Since d,(x) < (f(0))" for all standard », then 4, (x)e f(0)- mzcromond(O)
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Corollary 2.4 -
If fisa function satxsfymg the same property of theorem 2.2 except that

1 is defined for all x>m where meN, then d,(x)< f(m).

Proof: :
By taking Riemann 1ntegrat10n on the interval [m, n+1] with the partition

nel n+l

r={x,=m<m+l<..<n-l<n= x,}, then Zf(x)< J-f(x)dx<2f(n)

t=m t=m

By contmumg this process we get that d —’Z f(x)- J. S(x)dx < f (m)

t=m mn

Example 2.5
For any contmuous function f defined on the closed interval [0,1], we can

see that

w-l

Jf(x)dx =02, f(nm) n=0

n=l

' 1
VProof: Since fis continuous on ‘the closed interval [0,1], then If(x)exists. Let
' 0

2
r={x,=0< % < i <. < g— =1} be a partition of the interval [0,1].

n-1

By using nonstandard definition of integration we get _[ f(x)= Z f ( ).

w-1

Thus for unllmlted n we conclude that J' ¥ (x) 772 fkn)

ﬂ}Lemma26" |
Let fbe a function such that f(x)=0 forall xe D, thenfiss- -uniform

“

continuous function.
Proof: The prove is obvious.

Next we give some condition of uniform continuity for linear functions

Theorem 2.7
Let / be any linear function such that f(x)=0, Vx=0 then fis s-uniformly

continuous

Proof: _
Letx,yeD,stx=zy, thenf(x)-f(3)=/(x-y), since x=ythen x-y=0
and thus there exist @=0 such that x=y+a = f(x)-f()=/f(@)=0

=/x)= /()
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Remark: - ,
The above theorem shows that continuity of linear real valued functions not

remain true ifit's defined on a nonstandard domains, for example a linear function

. _ 3 .
f(x)=awx where wis an unlimited real number such that @ == for £ =0 is not
&

continuous in the sense of nonstandard analysis for this take x=1+¢,and y=1,
its clear that x = y, but f(x)= f(y) since f(x)- f(y)=3=0.

Theorem 2.8
If fis a standard continuous function at x €[e, #]then fis a limited function

for all x e[a, B]

Proof:
First Method A .
Suppose  that fis unlimited for somex € (a, ), that is there exist x" € (a, /)

such that f(x") >k for all & standard.

Since f is continuous then Vxsuch that x=x" we get f(x)= f(x"), take k = f(x)
= f(x")=k is limited since any standard number is infinite close to a limited
number (or because only limited numbers can be infinite close to a standard
numbers)

Second Method
Suppose that f is unlimited for some x e («,f) , since for all k there exist

x such that f(x)>k, then there is a sequence of elements of x, corresponds to the

values of k. , .
Sincex, €(a, B) Vk, sox,is a bounded sequence and there exist a convergent

subsequence of x, in(a,f)say x, which has a limit 4in (a,8), ie xkp = A for
peN. ' | |
But f'is a standard continuous function at A = f (x, )=/()aspe N.

Note_ that peN means that n, eN, by our assumptation £ is unlimited, so

f(x,,)is unlimited = f (1) is also unlimited, which is contradiction.

Remark: - : _ -
The above theorem tell us that if fis not standard then f may be continuous

and is not bounded function. For example f(x)= 1 on [0,1]st =0,
x+e :

so f'is not standard but continuous for all x €[0,1] and not limited at 0.
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