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ABSTRACT

In this paper, we study the comparison among many methods to solve a
system of linear equations based on the principle of wavelet- methods as a
Daubechies wavelet, Haar wavelet, Meyer wavelet, Symlet wavelet, Mexijcan Hat
wavelet, Morlet wavelet.

As a result, the Haar wavelet method can be considered the best method to
solve the linear equations compared with the other methods especially for the
dense and sparse matrix. For the three diagonal matrices the Meyer wavelet gave a
good results. Other conclusion was found that the Symlet wavelet needs a long
time to solve this system of equations and for all types of the matrix.

Keywords: Daubechies Wavelet, Haar Wavelet, Meyer Wavelet, Symlet Wavelet,
Mexican Hat Wavelet, Morlet wavelet
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Wavelet Methods Used to Solve a System of Linear Equations

INTRODUCTION :
Sparse linear equation Ax = b, where 4 being a square matrix of dimension
n, are the common model of many contemporary engineering systems, and
extensive efforts have been made to design efficient schemes to solve them. One of
they well known computing methods, which deserve considerable attention, is the

wavelet method. .

Wavelet Analysis

Wavelets are new family of basis function that can be used to approxmaite
general functions [4]. Wavelet is a waveform of effectively limited duration that
has an average value of zero. Compare wavelets with sine waves, which are the
basis of Fourier analysis. Sinusoidal do not have a limited duration, which can be
extend from minus to plus infinity, where sinusoids are smooth and predictable,
wavelets is irregular and not symmetric.

Fourier analysis consists of breaking up a signal into sine waves of various
frequencies. Similarly, Wavelet analysis is the breaking up of a signal into a shifted
and scaled versions of the original wavelet or mother wavelet [2].

Daubechies Wavelet

Ingrid Daubechies, one of the brightest stars in the world of wavelet
research, invented what are called compactly supported orthonormal wavelets, and
this making discrete a wavelet analysis practicable.

The names of the Daubechies family wavelets are written db/N, where N is

the order, and db the “surname” of the wavelet. The dbl wavelet, as mentioned
above, is the same as Haar. In db/N. Some authors use 2N instead of N. This family
includes the Haar wavelet, written dbl, the simplest wavelet imaginable and
certainly the earliest.

These wavelets have no explicit expression except for dbl, which is the
Haar wavelet. However, the square modulus of the transfer function of 4 is explicit
and fairly simple.

N-1 . "
1. Let, P(y)=> C/ ™" y*, where C"** denotes the binomial coefficients, then:
k=0

mo(@) = (g) p[(.g))

where:
2N-1

1 -iko
m, (®) = ‘E ;hke
2. The support length of ¥ (Y is a wavelet function) and ¢ ( ¢ is a scaling
function) is 2NV - 1. The number of vanishing moments of  is N.
3. Most dbN are not symmetrical. For some, the asymmetry-is very pronounced.
4. The regularity increases with the order, when N becomes very large, y and ¢
belongs to C*since p is approximately equal to 0.2. For sure, this asymptotic
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value is too pessimistic for small order N. Note that the functions are more
regular at certain points than at others.
5. The analysis is orthogonal [2].

Haar Wavelet [1]
Haar wavelet (y ) defined as .
1 for 0sx<y
yy(x)=4~-1 for 1<x<«l

0 otherwise.

Following Fourier, ahy wavelet y(x) could be used as a basic block to build any

wave [ (x),
S = Yciv ()

Jok=—c0
where
W () =2y x~ k), forall jkez.
The coefficients ¢,, are computable from:
Cjk =<fa\l’j,k>-
Also the following idea of Fourier transform, wavelet transform w, of any wave
J{x) can now be defined as follow: | '

o N0, =laf? [ 70w s

The coefficients ¢, are now computable from the relation

ko1
cjk = (W\yf)('z_fa'z—;)'

Meyer Wavelet [2]

Both y and ¢ are defined in the frequency domain, startmg with an
auxiliary function. The Meyer wavelet and scaling function are defined in the
frequency domain by:

P(w)=0 if Imlﬁ[

2n 8n}
3

A -1/2 iw/ . 3
J(w) = (2rn) e 2sm(§v(———|co|—lj) if —3—<| |< 3

i) = @26 cof 2o 1) if 4R <}

where .
v(o) = a’ (35 - 840 + 70a* - 200, o € [0,1]
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d(@) = 2n)™"? if |wls-2-3f,
h®) = 2™ cod Tof -fo|—1]]if 2=l <2F
o(w) =(27) cos(zv( 2nlm] lle 3 lo] < T

@) =0 if ]m]>4—;‘

By changing the auxiliary function, one gets a\ family of different wavelets,
for the required properties of the auxiliary function v, see the list of references.
This wavelet ensures an orthogonal analysis and the function y does not have a
finite support, but \ decreases to 0 when x—w, faster than any inverse
polynomial:

Vne N,3C, alw(x)| < (1+]x")™
This property holds also for the derivatives:

Vke N,Vke N,3C,,, such that [y*x <C,, (1 +]xf")

The wavelet is infinitely differentiable.

Symlet Wavelets [2]

General characteristics: compactly supported wavelets with least asymmetry
and highest number of vanishing moments for a given support width. Associated
scaling filters are near linear-phase filters.

Symlets with short name (sym) for order N, N = 2, 3, and orthogonal,
biorthogonal and compact support width 2N-1. Filters length 2», regularity
symmetry near from number of vanishing moments for psi V.

The symlets are nearly symmetrical wavelets proposed by Daubechies as
modifications to the db family. The properties of the two-wavelet families are
similar.

In symN, some authors use 2/ instead of V. Symlets is only near symmetric;
consequently some authors do not call them symlets.

Daubechies proposes modifications of her wavelets such that their symmetry
can be increased while retaining great simplicity. The idea consists of reusing the

function myg introduced in the dbN, considering the ]mo(m)lzas a function W of
z=¢"., Then we can factor W in several different ways in the form of

W(z)= U(z)U(—l-). The roots of W with modulus not equal to 1 go in pairs. If z;=1,
z ,

then z, is a root.

e By selecting U such that the modulus of all its roots is strictly less than 1, we
build Daubechies wavelets dbN. The U filter is a “minimum phase filter.

e By making another choice, we obtain more symmetrical filters; these are
symlets. The symlets have other properties similar to those of the dbNs.
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Mexican Hat Wavelet [2]

This wavelet has no scaling function and is derived from a function that is
proportional to the second derivative function of the Gaussian probability density
function.

_\V(x)=(‘%”—”4 J(l _x?)e \

Morlet Wavelet [2]

The classic example of continuous time wavelet analysis uses a windowed
complex exponential as the prototype wavelet. This is the Morlet wavelet, as first
proposed in Goupillaud, et al, 1984/85) for signal analysis, and is given by

\V(t) — _\/_%_;e“!-(oole—zl’/Z’ (1)

(o) = e—(m—mo)ZIZ
The factor 1/¥2r in (1) ensures that |y(r)] =1. The center frequency o, is usually
chosen such that the second maximum of Re{y(r),1},# > 0, is half the first one at f =
0. This leads to
Wy =T 2 =5.336
In2
It should be noted that this wavelet is not admissible since [‘P(w)mo #0, but its

value at zero frequency is negligible (~7.107), so it does not present any problem
in practice. The Morlet wavelet can be corrected so that ¥(w)=0, but the
correction term is very small [5].

Wavelet Algorithm

The wavelet algorithm to solve Ax = b is show below:

A matrix could conveniently be considered as row-wise or column-wise
arrangement of discrete signals, as such it is amendable to transform analysis. If
such an operation is performed on a matrix equation Ax = b, a transformed
equation WAx = Wb is obtained. From this, one could write (WAW')(Wx) = Wb.
Choosing, for instance, orthogonal tran#, a relation (WAW')Wx = Wb, similar to
block triangularization operation - which avoids costly inversion operation is now
on hand to proceed with the computation of the desired numerical solution. An
mterestmg common property of this method is that a Wavelet transform of a dense
matrix gives rise to a sparse matrix [1]. Hence an O(V° ) cost of computing could
be reduced into much cheaper operatlon

There are six common ways in which wavelets can be used to transform
values within a matrix. Each of these transformations is a two-dimensional
generahzatlon of one-dimensional wavelet transform described previously. We
gives a brief presentation on wavelet and wavelet transforms [3].
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Numerical Results
Dense Matrices: ‘
We generate five dense matrices 4y, 42, A3, A4 and As of size 8, 16, 32, 64

and 128 respectively as follows:
[10 20 30 90 8 7 6 6

6 6 6 12 23 56 8 66
30 64 9 8 7 12 34 45
8 21 6 98 76 12 9 8
7 6 8 8 9 41 34 32
6 6 12 11 21 12 11 90
6 21 8 9 27 11 21 12
|11 34 21 87 6 7 8 8
Al Al+2]

Al 5% Al
(42 A243]
|42 3*A42

.

A2 =

A3

A3 2*43]
| A3 A3+3]
(44 3*44]

A5= .
A4 A4+3]

Running similar experiments on five values of », the following results are

obtained:
Table (1) Ther results of experiments on five values of n.
Methods of Wavelet Orde of Dense Matrices
8x8 16 x 16 32x32 64 x 64 128 x 128
Haar Time 0.3800 0.0600 0.3800 1.5400 6.6400
Flops 5083 32662 228127 1699220 13085855
Meyer Time 0.2800 0.3800 0.4500 0.5300 Failed
Flops 4825 31499 224137 - 1682681 Failed
Symlet Time 5.0500 9.0700 106.6200 Long Long
Flops 33791 178424 997916 Great number | Great number
Mexican Time 0.0000 0.0500 0.0600 0.0500 Failed
Flops 4825 31483 224223 1683273 Failed
Morlet Time 0.1700 0.2600 0.3000 Failed Failed
' Flops 4825 31499 224179 Failed Failed
Daubechies | Time 0.0500 0.0600 0.0800 0.1100 Failed
Flops 4697 30987 222171 1674769 Failed
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Three diagonal Matrices:
A three diagonal matrix 4

Tridiagonal Matrix Orde 16 x 16

N
LN
LI I
LI
LN )
LI AN )
LR IR
¢ o0
L2 BN ]
[ 2% BN J
s 00
e s o
¢ o0
L AN
LN J
LN )
LR J

5

10

nonzero = 46

Fig (1) Three diagonal matrix (16 x 16).

Running similar experiments on five values of n, the following results are

obtained:
Table (2) Ther results of experiments on five values of n.
Methods of Wavelet Orde of Three diagonal Matrices
8§x8 16 x 16 32x32 64 x 64 128 x 128
Haar Time 0.06 0.11 0.39 1.37 5.3200
Flops 5145 32420 223499 1639936 12455271
Meyer Time 0.05 0.13 0.20 0.31 0.39
‘ Flops 4589 27225 176049 1231713 9127617
Symiet Time 1.43 4.50 22.52 179.16 Long
Flops 7735 27829 108021 439936 Great number
Mexican Time | 0.1700 0.0500 0.0600 0.0600 0.4300
: Flops 4829 31507 224043 1682199 13019175
Morlet Time | 0.0000 0.0000 0.0000 0.1100 0.3900
Flops 4813 31449 223921 1681761 13017793
Daubechies | Time | 0.0600 0.0500 0.0000 0.0500 0.3300
Flops 4589 30233 219191 1664327 12950521
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We Running similar experiments on a large values of », the following results are

obtained

Methods of Wavelet

Orde of Three diagonal Matrices

256 x 256 512 x 512
Haar Time 23.4500 128.4700
Flops 96673684 760125373
Meyer Time 2.9600 20.7600
Flops 70077825 548772609
Symlet Time Long Long
Flops Great number Great number
Mexican Time 4.1700 40.910
Flops 102027043 812270625
Morlet Time 4.2900 33.1700
Flops 102407175 812284893
Daubechies | Time 41700 32,1900
Flops 102137435 811206919

General Sparse Matrices:

As an example of general sparse matrices, we consider a matrix A1, A2, 43,
A4 and A5 of size 8, 16, 32, 64 and 128 respectively as follows:

1

20000

9000 6

00000

00000
a2=

00000

00700

00950

0 700 3

[41 a3
R

a2 a4

[2* 42 42
A3=

|42 A2+1

(A3 2% 43
Ad= :

| A3 A3+1

A4 2% 44
A5=

[A4 A4 ]

(== I~ - B = =]

1 0

Al

i

[ 38
S O O © O O

a3

S O O OO0 O o C
W W O O O © O
n

10 20

0

S O O O N W

[0

S O o o 0o o

SO WO

0

S OO OO

(=R e e 2 = T - T o B R ]

0 6

S O W o v o oo
\OOU'OOOOJ

S O O N OO
(= BV, B I = I - i )

N
fu

S O OO O o

S O O N OO
S O O v O NO
S O o OO OO
O O O O 0 o O

101

1

ad =

S O O O v o O N
o 0O X O WO
S O OO W N W

S O O T OO

S O O O ONO

S N A O O 0o O O

S O OO0 O O

c o oo o o x

wn




Riyad M. Abdullah and Kais L. Ibraheem

[ o . - I3 . »
N o Ses ¢« o 3lee P
1 . . 2 . . . 5ls :-:- . e HYY .
. . . . . 0 . .
2k . . e vess .o i 1 4
. T . or o
. . 01 ¢ %Te T . %
3 . 6 . . o 3% . %2
. o*% ot
« e . . o
4 . . . . . 8 15 1] o .. . . -
ot * 0 e’ * 3 .
o . . . Coee s DRI
107 e . . . 20e Seee ve v Ssee v
6 . ' . TNt « Nt .
12 . v 1 H 14
7 L g | L T L AL
" M i . 0 . 3%
N .« . .o o . . *% %
w ot . . L N D N A D A
9 j . . .. H .
] 2 4 6 [) [ 5 10 15 6 5 10 15 20 25 30

nz=20 nz =58 . nz=232

R o
. . . .
F YN AT AN lﬁ\ AT R n
0 10 20 30 40 s0 &0 0 20 40 80 80 100 120
nz=9828 nz=3712

Fig 2: Dots show the number of nonzero elements in a five kind of sparse matrices.

Running similar experiments on five values of », the following results are

"obtained:

Table (3) Ther results of experiments on five values of n.

Methods of Wavelet ) Orde of Sparse Matrices
8x8 16 x 16 32x32 64 x 64 128 x 128
Haar Time 0.0600 0.1100 0.4400 1.6000 5.4400
Flops 5115 32688 228485 1699674 13089937
Meyer Time Failed Failed Failed Failed Failed
Flops Failed Failed Failed Failed Failed
Symlet Time 1.5900 5.8700 41.8500 585.9400 Long
Flops 10230 60182 310579 1533949 Great number
Mexican Time 0.0000 0.0000 0.0500 0.0600 Failed
Flops 4861 31527 224121 1683325 Failed
Morlet Time 0.0600 0.0500 0.0000 Failed Failed
Flops 4851 31467 223999 Failed Failed
Daubechies | Time 0.0000 0.0000 0.0500 Failed Failed
Flops 4731 31019 222163 Failed Failed
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CONCLUSIONS

From this paper, we conclude that:

i) Haar wavelet is the best method for dense and sparse matrices.
ii) Meyer wavelet is the best method for three diagonal matrices.

Generally, we can see that Haar wavelet is the best one. This method is
convenient for matrices with even element only (2" x 2") where n =1,2,3,..., N, but
not for odd element. The Symlet wavelet is convenient for all kind of matrices and
all kind of element (even or odd).
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