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ABSTRACT

Since the representation theory start, the mathematics science especially in
algebra began to open many new researches such our this one, we start from Schur
algebra in his new representation described by Green [6], ‘passing through his
relation with semi-standard tableaux according to Green.

The number of these tableaux still unknown, so we tried hardly to find the
mathematical rule for this problem, but as these tableaux become great, the
counting of them become difficult. Therefore, we tried to write an algorithm and a
program to do so. As a result, we find the appropriate mathematical rule.
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INTRODUCTION

Let n and r be any positive integers. k an infinite field and I'=GLy(k) of all
non-singular nxn matrices over k. Let p,v en={1,2,...,n} and c,,ek[I'] be the
function which associates to each geTI its (u,v)-coefficients g,,. The k-subalgebra
of k" generated by the function c,, is denoted by A or Ax(n). The elements of A are
the polynomial function on I'. Since k is infinite, the c,, are algebraically
independent over k, so that A can be regarded as the algebra of all polynomials
over k in n* indeterminates. For each r>0 we denote the subspace of A consisting
of the elements expressible as polynomials which are homogeneous of degree r in
the ¢,y by Ai(nr). In particular Ay(n,0)=k.15 , where 1, denotes the constant
function 15:g— 1y (gel).

For the integers n,r>1, we write

I(n,r) = {i=(i},....ir)|i,en and 1<p<r}.
The symmetric group G, act on the right on I(n,r) by
irm= (i,’n,...., i, ,) where neG,.
Also G; act on the set I(n,r)xI(n,r) by (i,j) - n=(i-7,j 7).
We write i~] to indices that the elements ijel(nr) are the same
G;-orbit. Similarly for (i,j)~(e,I), with this notation

A (n,r)= <ci,j = C; 5, Cij, o Cij, | LIE I(n,r))k

- where c¢;j=c.; if and only if (ij)~(e,l). Ai(n,r) has as k-basis the set of distinct

monomial c¢;; and these are in bijective correspondence with the G.-orbits of
I(n,r)xI(n,r). Then
r

dim, (A, (n,1))= [nz i r—1].

The Schur algebra defined by S, (n,r) = A, (n,r)" = Hom, (A, (n,r),k).
For i,jel(n,r), &; is the element of Sy(n,r) given by

Uit ~(p.q)
51i(Cpq) = {O if not }

We have &;;=&. if and only if (i,j)~(e,]). Also we have
2 —
dim, (S, (n,r))= (n o 1}.
r

Mahmood in [8] designed a program in GAP (see [9]), for this dimension of
Sk(nar)' ' ‘
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Green in [6], give the following result:

8ijGe) = ZZ(i,j,e, Lp. )&, ,

(p.9)el(n,r)
where Z(i,j,¢.1,p,q) =[{s € I(n,1)| (1, ) ~ (p,s) and (e,]) ~ (s,9)} -
\

Mahmood in [8] designed another program in GAP to find Z(i,j,e,l,p,q) for
the @U cEelr

The standard modules of S,(n,r)

A composition p for r is a sequence (W, W, ...) of non-negative integers
such that |p|= Zpi =r. The integers ;, for i>1, are the parts of p; if u;=0 for
i

i>m, we identify p with (u;, o, ..., Hm). A composition p is a partition if p; >
for all i>1. :

The diagram of Young of a composition p is the subset

[nl={x,y)[1<y<p, and x>1}of NxN.

The elements of [p] are called the nodes of p; more generally, a node is any
element of NxN. It is useful to represent the diagram of p as an array of boxes in
the plane. For example, if n=(2,3) then [u]= |

If p is a composition of n then a p-tableau is a bijection
t [u] —» {1,2,...,n}

A p-tableau t is row standard (resp. row semi-standard) if the entries in t
increase from left to right in each row (resp. if the entries in each row in t are non-
decreasing), t is standard (resp. semi-standard) if p is a partition and the entries in
t increase from left to right in each row and from top to bottom in each column
(resp. uis a partition, t is row semi-standard and the entries in each column of t
are strictly increasing). We denote Std(p) be the set of standard p-tableaux and
SStd(p) be the set of semi-standard p-tableaux.

Since [p] has r elements, we denote r={1,2,...,r}. Then there exists at least
one bijection T:[p]—r, we shall arbitrarily choose one such bijection and we call it
the basic p-tableau T=T". If i=(iy,...,i;) €I(n,r), we denote the p-tableau i, T":[pn]—n
by T:. :
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For ijel(ny), an element (TiT))eAx(nr) is defined by

~ bi-determinant (see [1]). For the partition p, let T be the tableau such that

T,(xy)=x V() elnl.

As the following example shows:

tTrfardafrge].... 11]
Ti= 2222 ... 2
3] . 3

We define a subspace D, xcAx(n,r) by
D, =((T,:T;)liel(n,n), .

Then D,y is a left Sx(n,r)-submodule of A\(n,r); (see [6, p.54]), where the operation
is defined by

E-(T:Tj)= D &(ci;XT;: T,), for EeSi(n,r) and jel(n,r).

iel(n,r)
Theorem 1: [Green, (4.5a)]

D,.x has k-basis consisting of all (T):T;) such that T; eSStd(u). In particular
dimy(D,, x)=|SStd(w)/.

Theorem 2: [Mahmood]

Let peA’(n,r) consisting of all partitions of r into at most n parts, and
Eij€Sk(n,r) where i,jel(n,r). We have explicit the formula for the action of &;; on
D, x. We have ) ‘

B, = {(Ti:Ty) | hel(n,r) such that Ty is a semi-standard p-tableauy}.

By the theorem 2.1, B, is the basic of Dy, then we have

E.vi,j (T, :Tq):' z&:’,j(cp,q)(Tl 1T

pel(n,r)

= Y (T,:T,) by therelation (1.1)
pel(n,r)
iL.)~(p.9)

Mahmood in [8] with the help of Appendix of Geck in [5] proved that the
modules D, are the standard modules for quasi-hereditary structure in Sy(n,r).
Green in [6] proved that, “D,x has a unique minimal submodule”, while the
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standard module has a unique maximal submodule; (for more details with the
quasi-hereditary structure in Si(n,r), see [8]).

Numeration of semi-standard tableaux

In this section, we shall find the number (rule) of semi-standard tableaux for
some n. We start case after case, because it is not simple to find the rule if n is
large and the computation will be difficult, therefore we attempt to solve this
problem next section.

If n=2: we have two cases as the following:

case 1: p=(11;,0)=( 11)
Young diagram for this case will be as follow:

[u]= (I [ T 1
The p-tableau can easily counted and represented as:
R [1T1]
EREN [1T2]
[T Lo 217 ]
[TT2T...... [272]
[[20]72 [ swiansa [2[2]

case 2: p=(py, K2)
For counting the p-tableau, the Young diagram will be as follow:

Hi
g it =
[p] - ...I ......... l—]
\_—‘V_—_J Hi-H2
Ha

By the definition of the tableaux, we should put 1 at the beginning of p, of
the boxes in row 1 from the left, and put 2 in row 2. The rest of boxes (i;-H2) in
row 1, we shall apply the same way as in case 1 of 3.1. So
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T T e, [1]
- 2
T N 121
2 ... 2
] e 112 ) s la]
7] 2

Then the rule will be
+1
(”‘ Ha ] ......... (3.1.2)
i —Ha

If n=3: we have three cases as the following;:

case 1 1: “:(P'l, 03 0) = (}‘ll)
This case is not totally different from casel in 3.1, except that we are going
to deal with 1, 2 and 3 to fill the boxes as below:

[0 e [ Lags] )
R RN EN
N | A T
P E TN Fif202]
CT T s |1|2|3J>A|
i e [1]3][3]

R [3]37T3] )
22w [21212] )
{2002 | s ..]212[3]
X [3]3]3]
EREIS [3]3][3] )

By conjugating A; with A,, the rule for this case will be:
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case 2: p=(l1, M2, 0) = (W1, H2)

The same approach in case 2 of 3.1, we shall divide Young diagram into two
partitions, the first part which has p,-boxes in row 1, and p,-boxes in row 2. From
the tableau definition, the boxes will be filled as:

Ha \
- s Y
T 1777
2. 212
N K
72 . 2131\ B,
R B
303 ... 313
1117 ... 172])
N 213
ic
2120 . 212
33 ... 33 |/
N
~"
H2

The second part remained of this case that is (u)-py)-boxes, we will follow
the same way as in case 1 of 3.2 for each diagram in its first part. Any case of B,
will take all possible cases of A; and A,, while any case of B, will take the possible
cases of A; only.

By this approach, the main rule for the semi-standard tableaux for p is:

+1Y 1y —py +2 1)y -y +1
| (Mz )[Hr M2 ){“Z )[“' H2 ) ......... (32.2)
Ha M~ Hy My =LA =y

case 3: u=(p,, to, 13)

We know that Young diagram for this case is:

W=

We shall use here the same case 1 and case 2 of 3.2 to find the main rule, as
we know and from the definition of semi-standard tableaux we shall put 1 in the
first p3-box in row 1, then 2 in the first p3-box in
row 2, then 3 for row 3. It means that we can write the rule for these cases as:

T (TIRTPRTIY B TEY (TR TR TR TIN )

&4

|
e ——
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As we did in case 2 of 3.2, the main rule will be:
(uz -l +1J(u. — s — (4, —u3)+2]+.[u2 ~ i +l][u, ~ By = (1, -u3)+1]
Ha—Hs By — By = (1 — 1) My~ -1 By~ s — (1, — 1)
_ [Pz ~ s +1J[u1 ~ +2) +[H2 ~ My +1][u1 -}, +1J _________ (32.3)
Hy—H; K —H, Hy—Hy—1A By —1,

If n=4

There is no differences between this case and the previous cases of 3.1 and
3.2 except that there is sub cases in each four cases for n=4. These cases will be
mentioned with no need for explanation because they use the same way that used
in 3.1 and 3.2 by considering that the boxes will be filled with 1, 2, 3 and 4.

We will explain now some special cases when n=4:

a) If p=(w,, 0, 0, 0), then the number of semi-standard p-tableaux is:

[”' +3) ......... (3.3.1)
Ky ‘

b) If..u::(”ls Ha, 05 0)

We should consider the following table:

L(Ln,) L(’).u,) L(.‘.)n,)
—H,+3 —, +2 -, +1
0,00 1 (u. B ) o (u, M, J o 0 (ul By )
Ky — U, By K, Ky —H,
(u,1,0,0)| 3 +] 2 +1 1
(1,2,0,0)| 6 +| 8 +| 6
(1, 3,0,0) 10 + 1 20 + 20
(u1,4,0,0) | 15 +| 40 +] 50
(u,-uzﬂ) + (uruzﬂ) N (u.—uzﬂ)
' Hy— Ky i Ky —H, ' )

The main rule here is:
+2 +3 +2Ypy F gy +2 L =p, +1
(Hz J(p]+“2 ) +2[u2 ‘ J[u; B ) +Xp2[u. Ky ).”(3.3‘2)
M) My — Ky Ha =1 Wi~ Ry B~ Ky
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3
where X, = dZ;L(d,uz-l)

¢) If p=(u;, My, p3) and py=u3, then the number of semi-standard
p-tableaux is: '

(“3 " 2)[;1, ~ 1, +3)+(u3 + 2)(»; —Hpt 2) . (33.3)

d) If p=(, pa, H3), Ha#M3 and py-ps=1, then the rule is:

[M +1)[P«3 +3)(P«1 ) +3)+ 2(“3 "'3)[}11 - H‘z + 2]+
My AM3+20 W =M, M3 M=y

..(3.3.4)
+(P«3 + 3)(“1 —H +1]
H3 Hy —H,
e) If p=(pu, Mz, M3), Mo#M3 and py-p3=2, then
{uz +1)(u| ~ i, +3]+[u2 +1)(u3 +4J(ul -y +2j+
o 43 i
29 M~ Ho Ha A M Ky — Ko .(3.3.5)

+(H2 ‘HIM +3J(P'| —Hy Tt 1)
My AM3+20 W —h,

From the above, we see the complexity of finding the rule whenever n is
large, and for this reason we will stop, and go to the next section which supports us

with the program that we wrote, to count the exact number of semi-standard of p-
tableaux. ‘
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Semi-Standard Tableaux Algorithm:

Semi-Standard Tableaux Algorithm
Begin {Algorithm}
Define Condition Conl: Current element in one dimensional Array should
be less than or equal to the previous.
Define Condition Con2 : Every element Should be greater than to the
corresponding one in the Previous Array.
SetN=0
Repeat
L  Enter Element S; to the set S
If S; does not satisfy Conl
Begin
Discard S;
Goto L
end
Set N =N+1
Until End of Input
Create Array |, Arrayy ,.............. Arrayy Such that the length of them are
S1,82,0cnnin. ,SN respectivly
Set Array;, Arrayy,............... , Arrayy with 1's, 2's, .......... ,N's
As initial values and it is consider as
a first (Ideal) tableau.
Set Tableau no =0
While there is new Case do
Begin
If current Case satisfy con2
Begin
Consider the current case as a new tableau.
Add 1 to Tableau no
Print tableau
End
Get Next Case
End {while}
Print " number of Tableau is=", Tableau_no
End {Algorithm}

87




Ammar S. Mahmood, Ayad H. Abdul Qader and Yahya K. Ibrahim

CONCLUSION

We conclude after applying the program that the results were accurate and
the relations for the cases (n=2,3 and 4) were sufficient.
By using this program, we could find exactly the number of semi-standard
tableaux speedily and accurately whenever the size of n get greater and whenever p
A\

vary.

Program Results:

Ex 1: Enter the Set S such that S1>=82>=...>=Sn
300

Sample number 1

1 1 1

Sample number 2

1 12

Sample number 3

1 1 3

Sample number 4

1 2 2

Sample number 5

1 2 3

Sample number 6

1 3 3

Sample number 7

2 2 2

Sample number 8

2 2 3

Sample number 9

2 3 3

Sample number 10

3 3 3

Number of tableaux is 10
There are no other tableaux
Press any key to continue
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Ex 2: Enter the Set S such that S1>=S82>=...>=Sn
421

Sample number 1

1 1 1 1

2 2

3 AY
Sample number 2
1 1 1 2
2 2

3

Sample number 3
11 1 3
2 2

3

Sample number 4
1 1 2 2
2 2

3

Sample number 5
1 1 2 3
2 2

3

Sample number 6
1 1 3 3
2 2

3

Sample number 7
1 1 1 |
2 3

3

Sample number 8
1 1 1 2
2 3

3

Sample number 9
1 1 1 3
2 3

3

Sample number 10
1 1 2 2
2 3

3
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B o o]

Sample number 11
1 1 2 3

2 3

3

Sample number 12
1 1 3 3
2 3

3

Sample number 13
1 2 2 2
2 3

3 =

Sample number 14
1 2 2 3
2 3

3

Sample number 15
1 2 3 3
2 3

3

Number of tableaux is 15
There are no other tableaux
Press any key to continue

Ex 3: Enter the Set S such that S1>=82>=....>=Sn
3221

Sample number 1

1 1 1

2 2
3 3
4
Sample number 2
1 1 2
2 2
3 3
4
Sample number 3
1 1 3
2 2
3 3
4
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ey S S s
R R R R R R e ————

Sample number 4

1 1 4

2 2

3 3

4

Sample number 5
11 1

2 2

3 4

4

Sample number 6
1 1 2

2 2

3 4

4

Sample number 7
1 1 3.

2 2

3 4

4

Sample number 8
1 1 4

2 2

3 4

4

Sample number 9
1 1 1

2 3

3 4

4 .

Sample number 10 .
1 1 2

2 3

3 4

4

Sample number 11
1 1 3

2 3

3 4

4
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Sample number 12

1 1 4

2 3

3 4

4

Sample number 13 .
1 2 2

2 3

3 4

4

Sample number 14
1 2 3

2 3

3 4

4

Sample number 15
1 2 4

2 3

3 4

4

Number of tableaux is 15
There are no other tableaux
Press any key to continue

92




el

A

[ —

Semi-Standard Tableaux of Young Between Algebra and...
]

REFERENCES

[1] Désarménien J., J. P. S. Kung and G. C. Rota, "Invariant Theory, YOung
Bitableaux and Combinatorics", Adv. In Math. 27, 63-92 (1978).

[2] Dipper R. and S. Donkin, Quantum GL,, Proc. London Math. Soc. 63, no. (3),
165-211 (1991). \

[3] Donkin S., “The q-Schur Algebra”, London Math. Soc. Lecture Notes Series
253, Cambridge Univ. Press, (1988).

[4] Fulton W. and J. Harris, “Representation Theory”, Graduate texts in
Mathematics 129, Springer, (1991).

[5] Geck M., Kazhdan-Lusztig cells, q-Schur algebras, and James’ Con)ecture J.
London Math. Soc 63, no. (2), 336-352 (2001).

[6] Green J. A., “Polynomial Representations of GL,”, Lecture Notes in Math.,
830, Springer-Verlag, (1980).

[7] Green J. A., Combinatorics and the Schur algebra, J. of Pure and Applied

Algebra, 88, 89-106 (1993).

[8] Mahmood A. S., “Le Radical Quasi-Héréditaire des q-Algébres de Schur”,
Ph.D. thesis, Université Claude Bernard Lyon 1, Lyon-France, no.(74), (2003).

[9] Schonert M. and et.al., GAP-Groups, Algorithms and Programming. Lehrstuhl
D fiir Mathematik, RWTH Aachen, Germany, fourth ed., (1994).

93




	vol18_2_p78_93_E111 1
	vol18_2_p78_93_E111 2
	vol18_2_p78_93_E111 3
	vol18_2_p78_93_E111 4
	Doc4 1
	Doc4 2
	vol18_2_p78_93_E111 5
	vol18_2_p78_93_E111 6
	vol18_2_p78_93_E111 7
	vol18_2_p78_93_E111 8
	vol18_2_p78_93_E111 9
	vol18_2_p78_93_E111 10
	vol18_2_p78_93_E111 11
	vol18_2_p78_93_E111 12
	vol18_2_p78_93_E111 13
	vol18_2_p78_93_E111 14

