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 :-الملخص
ي هذا البحث، استطعنا إيجاد الحل التقريبي لمعادلة فريدهولم التكاممية التفاضمية الخطية، ف

بعض الأمثمة العددية قدمت لبيان . باستخدام طريقة اتكن وذلك بالاستعانة بطريقة التعاقب التكرارية
.  الدقة لهذه الطريقة

 
Abstract:- 

In this paper, we found an approximate solution for solving linear 

Fredholm integro-differential equation, by using Aitken's method with the 

help of the successive iteration method. Some numerical example were 

presented to show the accuracy of this method. 

 
1.1 Introduction:- 

The objection of this study is the numerical treatment of equations of 

the form: 
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where  

 )1,....0(),(),,....,0(),,(  nmxpLryxk mr  and )(xf  are given 

functions,  
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and )(xu  is an unknown function, )()( xu r  denote the thr  derivative of )(xu , 

and   is a scalar parameter. 

In our work we will consider the following form of higher order linear 

Fredholm integro-differential equation (FIE's)of order, n , integer number, 

0n , the kernel is degenerate,  1   and  0L . 
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with boundary condition 
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 In [2] Delves &Mohamed deals with non linear integro-diffrential 

equation. In [3] Mustafa Khiralla used simplex and dual simplex methods to 

find the optimum solution for first order FIDE’s2
nd

 kind. In [4] Fatima Al-

Hammeed used spline function to find the numerical solution for higher 

order FIDE’s2
nd 

kind. In [5] Roger Alexander applied Aitken extrapolation 

to certain sequences. In [6] Sepandar &Taher &Christopher &Gene present 

novel algorithm (Aitken extrapolation) for the fast computation of 

PageRank. 

 
1.2 Aitken Elementary Approximation :- 

 This method deals with the linear Fredholm integral equation (FIE's) 

of the second kind having approximate solutions ,)(),(),( 321 xuxuxu  we can 

extrapolate (elementary) to an improve and estimate, this can be done by 

considering the following formula [1]: 
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1.3 The Basic Technique:- 

 Our intention is using Aitken elementary approximation method on 

successive approximations for solving FIE’s. Published codes of algorithms 

for the treatment of various types of integro-differential equation including 

equation (2) 
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successive approximation method with the first iteration gives: 
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substituted the primary initial condition cyu )(0   into (4) 

 dycyxkxf
xd

xud
b

a

n

n

 ),()(
)(1                                             

c   is constant then 
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after integrating equation (6) n-times with respect to x ,from a  to b , yield  
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by using the boundary conditions in equation (7) to obtain the constants ia ’s 

and substituting in equation (7), we get )(1 xu , then substituting the first 

approximation )(1 xu  again in equation (2) to obtain second approximate 

)(2 xu . 
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as before and after using the boundary conditions, we have )(,)( 21 xuxu  and 

)(3 xu  substituted them in Aitken elementary formula. 

 
1.4 Numerical Results:- 

 We test some of the numerical examples performed in solving this 

linear integro-differential equation. The exact solution is used only to show 

the accuracy of the numerical solution obtained with our method. 
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Example (1): 

 Consider the problem which 2
nd

 order linear FIDE: 
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where  
 381773.08414709.0)cos()(  xxxf     
 

and boundary conditions         1)0(,)1cos()1(  uu  

while the exact solution is         )cos()( xxu  . 

 The successive elementary approximations methods are used to solve 

this example. 
 

Successive approximations method with the first iteration gives: 
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substituted the primary initial condition )1cos()1(0 u , 
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integrating above equation 2-times with respect to x  and using the boundary 

condition we get the first approximation 

 xxxxxu 106005.0055811.0050195.0)cos()( 23
1   

substituted the first approximation into the above example to obtain the 

second approximation  
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integrating this equation with respect to x , and using boundary condition, 

yields 

 xxxxxu 009313.00056716.0003642.0)cos()( 23
2   

 

again substituting second approximation to get the third approximation  
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integrate this equation, we get  
 

 xxxxxu 000788.0000479.0000309.0)cos()( 23
3   

 

now use  )(),(),( 321 xuandxuxu and substituting them in Aitken formula 

(3). 
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Example (2): 

 Consider the 3
rd

 order linear FIDE: 
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with boundary conditions 
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and the exact solution is  
32)( xxxu  . 

 

By using the primary initial condition   0)0(0 u    to get first iteration  
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integrating above equation 3-times with respect to x and using the boundary 

condition we get the first approximation 
 

 xxxxxu 209236.005208.014444.1)( 243
1   
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the same way we obtain 

 xxxxxu 2000268.00000212.000048.1)( 243
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and  

 xxxxxu 200000056.000000048.0000001.1)( 243
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then using Aitken formula equation (3) 
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Conclusions: 

 Some numerical methods were used to find an approximate solution 

for higher order linear Fredholm integro-differential equation. 

 A comparison between these methods depending on least square 

error(L.S.E), which was calculated from the numerical solution against the 

exact solution. 

 Successive method and Aitken elementary method were used to treat 

the higher order linear Fredholm integro-differential equations and perfect 

results are presented and comparison is done as follows: 

 Tables (1-2) show a comparison between the results obtained form 

solving testing examples (1-2) respectively by using successive method and 

Aitken elementary method. 

 

X Exact Successive method 
Aitken elementary 

method 

-1 0.54030231 0.54030231 0.54545732 

-5/6 0.67241224 0.6722697 0.67240983 

-4/6 0.78588726 0.7866627 0.78588567 

-3/6 0.87758256 0.87734684 0.87758337 

-2/6 0.94495695 0.94475887 0.94496003 

-1/6 0.98614323 0.98602659 0.98614668 

0 1.00000000 1.00000000 1.00000000 

L.S.E 1.7834111e-7 2.657419e-005 
 

Table (1) 
Comparison results between exact solution and numerical solutions 

(Successive and Aitken) 
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X Exact Successive Method 
Aitken elementary 

method 

0 0.00000000 0.00000000 0.00000000 

1/6 0.33796296 0.33796295 0.33796297 

2/6 0.70370370 0.70370367 0.70370371 

3/6 1.12500000 1.24999959 1.25000009 

4/6 1.62962963 1.62962959 1.62962964 

5/6 2.24537037 2.24537035 2.24537037 

1 3.00000000 3.00000000 2.999973 

L.S.E 4.252821e-015 7.452902e-010 
 

Table(2) 

Comparison results between exact solution and numerical solutions 

(Successive and Aitken) 

 

 The comparison between the solution by successive methods and 

Aitken elementary method with the exact solution for some test examples 

have been illustrated in tables (1-2). Figures (1-2) show a comparison 

between the analytic and numerical solution of higher order linear Fredholm 

integro-differential equations which was presented in test examples (1-2) 

respectively. 
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