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ABSTRACT
The main goal of the work is to study a strongly y-regular rings,
which was introduce by Mohammad A. J. and Salih. S. M. in (2006).
That is, a ring R is said to be strongly y-regular if for every
ac R there exists beR and a positive integer n#1 such that a = a’b".
We will study some basic properties of those rings. Finally, we
show the relation between strongly y-regular rings and other rings.
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1. INTRODUCTION

Throughout this paper R denotes an associative ring with identity
and all modules are unitary right R-modules. Recall that; (1) A right R-
module M is called right principally injective (briefly right P-injective) if
for any principal right ideal (aR) of R, and every right R-homomorphism
of aR into M extends to one of R into M. This concept was introduced by
[6,1]; (2) A ring R is said to be regular if for every aeR, there exists b eR
such that a=aba; (3) A ring R is called strongly regular if for every aeR,
there exists beR such that a=a’b; (4) A ring R is called strongly n-
reqular, if for every acR there exists ne z* and element beR such that
a"=a""! b(a"=ba"""); (5) For any element a in R we define the right
annihilator of a by r(a)={xeR : ax=0}. And likewise the left annihilator I
(a@). In 2006 Mohammad A. [4] defined y-regular rings, that is, a ring R
with every aeR, there exists b in R and a positive integer n#1 such that
a=ab"a. Also, the definition of strongly y—regular ring was introduced in

[4].

2. Strongly y-Regular Rings
In this section, we study some basic properties of strongly
y—regular rings.

Definition 2.1 : [4]

An element a of a ring R is said to be stronglg/ y-regular if there
exists b in R and a positive integer n # / such that a=a’b".
A ring R is said to be strongly y-regular if every element in R is strongly
y-regular element.

Hence, in a strongly y-regular ring R, a=a’b" if and only if
a=b"a% see[3].

Remark 2.2 : [4]

We see that every strongly y-regular ring is strongly regular ring,
however the converse is not true in general, for example, the ring (Q,+,.)
of rational numbers, the rational (real) Hamilton Quaternion and a
quadric field are strongly regulars, but not strongly y-regulars.

Proposition 2.3 :

If R is a reduced ring such that for each non zero element aeR

there is a unique beR such that a"=a®'b, a positive integer n#/, then b is
strongly y-regular element.
Proof: Since a"=a?"b for each aeR, thenwe shall prove that R has no
divisor of zero. Let a. b=0, Then a"=a*"b=a’"" a.b=a""*.0=0. So a=0 (R
is a reduced ring). Then cancellation low holds. 1=a"b=b=a"b’.
Therefore b is strongly y-regular element by [3]. [
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Lemma 2.4: [5]
If R is a reduced ring, and if a is a non-zero element in R. then
r(a)=r(a?), and I(a)=r(a).

Theorem 2.5 :
Let R be a reduced ring. If R/r(a) is strongly y-regular ring for all

aeR, then R is strongly y-regular and y-regular ring.
Proof: Suppose that R/r(a) is strongly y-regular ring, then for any
a+r(a)eR/r(a), there exists b+r(a)eR/r(a) and a positive integer
n#1 such that a+r(a)=(a+r(a))? (b+r(a))"

= (@’+r(a)) (b"+r(a))

= a’h" + r(a)
Then a-a’h"e r(a). So a(a-a’h")=0. that is a’(1-ab™=0. Then
(1-ab") er(@®)=r(@) [Lemma 2.4]. So, a(l-ab™=0. Hence a=a’b".
Therefore R is strongly y-regular ring. Also, since (1-ab")&l(a)=r(a),
then (1-ab") a=0. So, a= ab"a. Therefore, R is y-regular ring. [

Proposition 2.6 :

If y is an element of a ring R such that a—a® y“ is strongly
y-regular element then a is strongly regular element, where 1#« is a
positive integer.

Proof: Suppose that a—a’ y“ is strongly y-regular element, then there
exists an element b € R and a positive integer n # 1 such that:
a— aZya — (a . aZyOt)Z bn
now a-a¥y*=(a-a%y% (ab"—a%y°b")
— aan . aZyaabn . aZyOtabn + aZyaaZyabn

Then a=a%“+ a’h"— a’y“ab” — a’y“ab” + a’y“a’y’b"

— a2 (ya + bn . yaabn . yaabn + yaaZyabn) — aZZ
where z =y“+ b" — y“ab" — y*ab" + y“a’y’b". Therefore a is strongly
regular element. []

In the following; For any ring R, let P(R) be the prime radical of R
and N Dbe the set of the nilpotent elements of R. [4]

Theorem 2.7 :

Let R be a commutative ring, if R/P(R) is strongly regular ring then
for each a <R there exists a positive integer n#1 such that a" is strongly y-
regular element.
Proof: Since R/P(R) is strongly regular ring, then for each a+P e R/P (R)
there exists y+P eR/P (R) such that a+P=(a+P)?
(y+P)=(a*+P)(y+P)=a%+P, then a-a%y eP(R). So a—a’y eN. Hence there
exists ne z* such that (a —a%)" =0
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Now, (a—a%)"=a"-c]a"™" y+cja"™ y*..... .+(-1)" a*y"=0, then
a'=a""'z, where z=cly+chay*-......+(-1)"a""y" So a"=aa"z=aa"'zz=
an+2 22= :aZn Zn

Therefore a" is strongly y-regular element. [

Definition 2.8: [7]

A ring R is said to be a semi-commutative ring if every idempotent
element in R is central.
Hence every reduced ring is semi-commutative ring. [7].

Theorem 2.9:

Let R be a ring. If R is semi-commutative strongly
y-regular ring, then R/N is y-regular ring.
Proof:

Since R is strongly y-regular ring, then from (Theorem 5.6, [4]) R is
y-regular ring. So R/N is strongly y-regular ring (Theorem 5.10, [4]).[]

3. Strongly y-Regular Rings With Condition (*)

The following condition (*) was introduced by Mohammad A. J.
and Salih S. M. in [4].

(*): let R be a ring such that for every 1#a<R and b eR, there exist
a positive integer m >1 such that ab=b"a.

In this section we discus the connection between strongly y-regular
ring with the other rings which they are commutative, reduced or satisfies
condition (*).

Theorem 3.1 :

Let R be a reduced ring. If R is strongly m-regular ring satisfies
condition (*). Then R is strongly y-regular ring.
Proof: Since R is strongly w-regular ring, then for every aeR there exists
me z* and element beR such that a™=a™'b. Now since R satisfies
condition (*), then for every a,beR, ab=b"a for some positive integer
n>1. Then a™=a"b"a. So (1-b"a)er(@™). By 4.8 [2], r(@")=r(a). By
[Lemma 2.4] r(a)=I(a), whence (1-b"a)a=0. then a=a’b". Therefore R is
strongly y-regular ring. [

Theorem 3.2 :

If R is a reduced ring satisfies condition (*), and for all aeR there
exists unit element d eR and some idempotent e eR such that a=de. Then
R is strongly y-regular ring.
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Proof: Let aeR, and a=de for some unit d eR and some idempotent e eR.
Hence e=xa, where x is the inverse of d. Now
ae=axa=dexa=dee=de’=de=a. Therefore a—ae=axa. Since R satisfies
condition (*), then ax=x"a with a positive integer n#1 for every a,x eR.
Then a=axa=x"aa=x"a’. Therefore R is strongly y-regular ring. [
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