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المخلص 
والتي .  –الهدف الرئيسي في هذا البحث هو دراسة الحمقات المنتظمة القوية من النمط

تسمى حمقة  Rالحمقة . 2006في  (.Mohammad A. J. and Salih. S. M)ادخل تعريفها 
  وعدد صحيح موجب  R  في  b  يوجد  R  في  a  كان لكل إذا   -منتظمة قوية من النمط 

n ≠ 1  بحيث ان   a = a
2
 b

n  .
لاقة بين الحمقات أخيراً وضحنا الع. كذلك درسنا بعض الصفات الرئيسية لهذه الحمقات

.  وبعض الحمقات الأخرى  –المنتظمة القوية من النمط 
 

 

 

 

ABSTRACT  
The main goal of the work is to study a strongly -regular rings, 

which was introduce by Mohammad A. J. and Salih. S. M. in (2006). 

That is, a ring R is said to be strongly -regular if for every  

a R there exists bR and a positive integer n≠1 such that a = a
2
b

n
. 

We will study some basic properties of those rings. Finally, we 

show the relation between strongly -regular rings and other rings.    
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1.  INTRODUCTION  
Throughout this paper R denotes an associative ring with identity 

and all modules are unitary right R-modules. Recall that; (1) A right R-
module M is called right principally injective (briefly right P-injective) if 
for any principal right ideal (aR) of R, and every right R-homomorphism 
of aR into M extends to one of R into M. This concept was introduced by 

[6,1]; (2) A ring R is said to be regular if for every aR, there exists bR 

such that a=aba; (3) A ring R is called strongly regular if for every aR, 

there exists bR such that a=a
2
b; (4) A ring R is called strongly -

regular, if for every aR there exists n z
+
 and element bR such that  

a
n
=a

n+1
 b(a

n
=ba

n+1
); (5) For any element a in R we define the right 

annihilator of a by r(a)=xR : ax=0. And likewise the left annihilator l 

(a). In 2006 Mohammad A. [4] defined -regular rings, that is, a ring R 

with every aR, there exists b in R and a positive integer n≠1 such that 

a=ab
n
a. Also, the definition of strongly regular ring was introduced in 

[4] 

 

2. Strongly -Regular Rings  
In this section, we study some basic properties of strongly 

regular rings. 
 
Definition 2.1 : [4]  

An element a of a ring R is said to be strongly -regular if there 
exists b in R and a positive integer n ≠ 1 such that a=a

2
b

n
. 

A ring R is said to be strongly -regular if every element in R is strongly 

-regular element. 

Hence, in a strongly -regular ring R, a=a
2
b

n
 if and only if  

a = b
n
a

2
,  see [3]. 

 
Remark 2.2 : [4] 

We see that every strongly -regular ring is strongly regular ring, 
however the converse is not true in general, for example, the ring (Q,+,.) 
of rational numbers, the rational (real) Hamilton Quaternion and a 

quadric field are strongly regulars, but not strongly -regulars.  
 
Proposition 2.3 :  

If R is a reduced ring such that for each non zero element aR 

there is a unique bR such that a
n
=a

2n
b, a positive integer n≠1, then b is 

strongly -regular element. 

Proof: Since a
n
=a

2n
b for each aR, thenwe shall prove that R has no 

divisor of zero. Let a. b=0, Then a
n
=a

2n
b=a

2n-1 
a.b=a

2n-1
.0=0. So a=0 (R 

is a reduced ring). Then cancellation low holds. 1=a
n
bb=a

n
b

2
. 

Therefore b is strongly -regular element by [3].  
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Lemma 2.4: [5]  

If R is a reduced ring, and if a is a non-zero element in R. then 
r(a)=r(a

2
), and l(a)=r(a).  

 

Theorem 2.5 : 

Let R be a reduced ring. If R/r(a) is strongly -regular ring for all 

aR, then R is strongly -regular and  regular ring.  

Proof: Suppose that R/r(a) is strongly -regular ring, then for any 

a+r(a)R/r(a), there exists b+r(a)R/r(a) and a positive integer  

n≠1 such that a+r(a)=(a+r(a))
2
 (b+r(a))

n
 

    = (a
2
+r(a)) (b

n
+r(a)) 

            = a
2
b

n
 + r(a)  

Then a–a
2
b

n r(a). So a(a–a
2
b

n
)=0. that is a

2
(1–ab

n
)=0. Then              

(1–ab
n
)r(a

2
)=r(a) [Lemma 2.4]. So, a(1–ab

n
)=0. Hence a=a

2
b

n
. 

Therefore R is strongly -regular ring. Also, since (1–ab
n
)l(a)=r(a), 

then (1–ab
n
) a=0. So,  a= ab

n
a. Therefore, R is -regular ring.  

 

Proposition 2.6 :  

If y is an element of a ring R such that a–a
2
 y


 is strongly 

-regular element then a is strongly regular element, where 1≠ is a 

positive integer.  

Proof: Suppose that a–a
2
 y


 is strongly -regular element, then there 

exists an element b  R and a positive integer n ≠ 1 such that:  

a – a
2
y

 = (a – a

2
y

)

2
 b

n
  

now      a – a
2
y
= (a – a

2
y

) (ab

n
 – a

2
y

b

n
) 

         = a
2
b

n
 – a

2
y

ab

n
 – a

2
y

ab

n
 + a

2
y

a

2
y

b

n
  

 

Then     a = a
2
y

 + a

2
b

n
 – a

2
y

ab

n
 – a

2
y

ab

n
 + a

2
y

a

2
y

b

n
 

                = a
2
 (y


 + b

n
 – y


ab

n
 – y


ab

n
 + y


a

2
y

b

n
) = a

2
z  

 

where   z = y

 + b

n
 – y


ab

n
 – y


ab

n 
 + y


a

2
y

b

n
.  Therefore a is strongly 

regular element.  
 

In the following; For any ring R, let P(R) be the prime radical of R 

and  N  be the set of the nilpotent elements of R. [4] 

 

Theorem 2.7 :  

Let R be a commutative ring, if R/P(R) is strongly regular ring then 

for each aR there exists a positive integer n≠1 such that a
n
 is strongly -

regular element.     

Proof: Since R/P(R) is strongly regular ring, then for each a+P R/P (R) 

there exists y+PR/P (R) such that a+P=(a+P)
2 

(y+P)=(a
2
+P)(y+P)=a

2
y+P, then a-a

2
yP(R). So a–a

2
yN. Hence there 

exists n z
+
 such that (a – a

2
y)

n
 = 0  
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Now, (a–a
2
y)

n
=a

n
– n

1c a
n+1

 y+ n
2c a

n+2
 y

2
-……+(-1)

n
 a

2n
y

n
=0, then 

a
n
=a

n+1
z, where z= n

1c y+ n
2c ay

2
-……+(-1)

n
a

n-1
y

n
 So a

n
=aa

n
z=aa

n+1
zz= 

a
n+2 

z
2
= …..=a

2n
 z

n
.  

Therefore a
n
 is strongly -regular element.  

 
Definition 2.8: [7] 

A ring R is said to be a semi-commutative ring if every idempotent 

element in R is central. 

Hence every reduced ring is semi-commutative ring. [7]. 

 

Theorem 2.9:  

Let R be a ring. If R is semi-commutative strongly  

-regular ring, then R/N is -regular ring. 

Proof:  

Since R is strongly -regular ring, then from (Theorem 5.6, [4]) R is 

-regular ring. So R/N is strongly -regular ring (Theorem 5.10, [4]).    

 

3. Strongly-Regular Rings With Condition (*) 
The following condition (*) was introduced by Mohammad A. J. 

and Salih S. M. in [4].  

(*): let R be a ring such that for every 1aR and bR, there exist 

a positive integer m 1 such that ab=b
m

a.  

In this section we discus the connection between strongly -regular 

ring with the other rings which they are commutative, reduced or satisfies 

condition (*).  

 
Theorem 3.1 :  

Let R be a reduced ring. If R is strongly -regular ring satisfies 

condition (*). Then R is strongly -regular ring. 

Proof: Since R is strongly -regular ring, then for every aR there exists 

m z
+
 and element bR such that a

m
=a

m+1
b. Now since R satisfies 

condition (*), then for every a,bR, ab=b
n
a for some positive integer 

n>1. Then a
m
=a

m
b

n
a. So (1–b

n
a)r(a

m
). By 4.8 [2], r(a

m
)=r(a). By 

[Lemma 2.4] r(a)=l(a), whence (1–b
n
a)a=0. then a=a

2
b

n
. Therefore R is 

strongly -regular ring.  

 

Theorem 3.2 :  

If R is a reduced ring satisfies condition (*), and for all aR there 

exists unit element dR and some idempotent eR such that a=de. Then 

R  is strongly -regular ring.  

 



Baida S. Abdullah 

 131 

Proof: Let aR, and a=de for some unit dR and some idempotent eR. 

Hence e=xa, where x is the inverse of d. Now 

ae=axa=dexa=dee=de
2
=de=a. Therefore a=ae=axa. Since R satisfies 

condition (*), then ax=x
n
a with a positive integer n≠1 for every a,xR. 

Then a=axa=x
n
aa=x

n
a

2
. Therefore R is strongly -regular ring.  
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