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Abstract:

This study tackles the relationship between the alternating group A,

and young’s diagrams concerning standard rows. The study has been divided
into two stages... First, even permutations have been found depending on

the conception of partition p through formulating an algorithm for this
purpose. Secondly, the relationship between the cycle length and partition p
has been found.
& .1 Introduction:

Let n be a non-negative integer, a composition 1 of n is a
sequence 1= (py, Mo, 1) Of non-negative integers such
that |u| = Z};l w; =n, [5]. For example, if n = 4, the following sequences

are compositions:
(4),(3,1),(2,2),(1,3),(2,1,1),(1,2,1),(1,1,2),(1,1,1,1)

I



The Relation Between the Alternating Group and Standard ...

A composition p is said to be a partition for n if 1 = .4, [5]. In
this case of the above mentioned example n = 4, the following sequences
realize the condition of partition: (4),(3,1),(2,2),(2,1,1),(1,1,1,1).
young’s diagrams [5] for partition = (py ,ps, -~ 1) of nis:

W={x,y):1l=y=pn, x =1} ENXN

The elements of [u] are called nodes for partition p of n, and these
nodes are elements from N X N, it is represented by a diagram in the form of
a system of adjacent square boxes, where p,of squares are included in the
upper row followed by p, boxes in the row that follows and so on.
for example, young diagrams for partition pin case of n = 2 is

n=(2)= ED ; n, =(1,1) = H

In case of n = 3:

L=@=O011 ., L=02D- |,mﬁlﬂﬁﬁ

It is said that the rows of young diagram are standard if the numbers 1
to n are included in each row increasingly [7]. For example, the

permutations realized in the case of partition (2,1) are only:
and o1 3

1] 2

3 1

[1] If f €5, then f issaid to be an even (odd) permutation if and only if
the multiplication output is:

w: { 1 then f is even Vik=123 . n

i—k —1 then f is odd
ik
: 1 2 3 4 : :
For example, the permutation f = (2 3 1 4) € 5, is even because:
f@O—fU) _
i—k

=k
(FBO-fR\(fD - @)\ (A - FD\(FB —F@)\(fB)—f1)
\ 4-3 4—2 4—1 3-2 3—-1
fﬂﬁ—fﬂ)_l

. 2—-1 /)
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The alternating group A, is defined as the group of all even
permutations on a finite group, and it is a subgroup of a symmetric group S,

with % elements. [6]
The following algorithm has been formulated to find the even cases in S,,.

Algorithm (1.1)
Begin
s < size of group
h <1
N < factorial (S)
Prod < 1
Repeat for x1=[1 to s]
{ Repeat for x2=[1 to s]
a=[x1 x2]
if (a has no equal elements)
{ Repeat for x3=[1to s]
a=[x1 x2 x3]
if (a has no equal elements)
{ Repeat for x4=[1to s]
a=[x1 x2 x3 x4]
if (a has no equal elements)
{ Repeat for x5=[1 to s]
{ a=[x1 x2 x3 x4 x5]
if (a has no equal elements)

Repeat until: a=[x1 x2 ... xs]
if (a has no equal elements)
{ Prod <1
Repeat for c=s to 1 steps(-1)
{ Repeat for d=c-1 to 1 steps (-1)

{prod € prod * —a{ci:{d]
}
}

if (prod >=0)
add a to alt matrix at row h
h € h+1

}
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}

}
End

[2] The permutations that can be written as a cycle of length 2. Such
cycles are called transpositions, that is:
(a,az,,a,) = (a,a,)(a,a,;) - (aya;)(a;,a;).

[2] A permutation of a finite set is even or odd according to weather it can
be expressed as a product of an even number of transposition or the product
of an odd number of transpositions.

The following facts can be used:
1)  The product of two of even or odd permutations will be even permutation.
2)  The product of odd and even permutation will be odd.(similarly if it is
even permutation and odd permutation, it will be odd).
Example: permutations f; = (15342), f, = (23)(45) € 5. are even and

belong to A, because:
fi = (15342)

= (12)(14)(13)(15)
Since the number of transpositions is even, therefore f; permutation is even.

f2 = (23)(45)

It is obvious it is even permutation, it is also possible to benefit from the
facts stated in the previous definition.

Note: the identity element is considered even because it could be written as
the product of p transpositions, i.e

id =1, T,..T, Where piseven.

In this way it is possible to find all the even permutations in the alternating
group A,. For example in

2!
A,=—=1
22
= {2}
That is, the identity element only
3!
A, =—=3
2

={(1)(2)(3),(123),(132)}
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41
A, =—=12
9

_ {(1)(2)(3)(4}.(1)::234).(1)::243).(12)::34).(123)(4).(124)(3).}
(132)(4), (134)(2), (13)(24), (142)(3), (143)(2), (14)(23) S

& .2 The Alternating Group and Young Diagram
In this section, we detected the number of even permutations from
A, which corresponds the partition p to n relate to young diagrams in the

case of standard rows through an algorithm for counting the number as well
as showing all the cases for each partition. Here, two cases appear: the first
is called general and the second will be tackled in specific cases as
illustrated below:
Algorithm (2.1)
Begin
s < size of group
h <1
N < factorial (S)
Prod < 1
Repeat for x1=[1 to s]
{ Repeat for x2=[1 to s]
a=[x1 x2]
if (a has no equal elements)
{ Repeat for x3=[1 to s]
a=[x1 x2 x3]
if (a has no equal elements)
{ Repeat for x4=[1 to s]
a=[x1 x2 x3 x4]
If (a has no equal elements)
{ Repeat for x5=[1 to s]
{ a=[x1 x2 x3 x4 x5]
if (a has no equal elements)

{

Repeat until: a=[x1 x2 ... xs]
If (a has no equal elements)
{ Prod < 1

Repeat for c=s to 1 steps(-1)

)
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{ Repeat for d=c-1

{ prod € prod*

h
¥
if (prod >=0)

to 1 steps (-1)
alc)—a(d)

c—d

add a to alt matrix at row h

h €< h+1

}
}
}

/l Set initial variable values:
AS € 0, A(S-1)(1) € 0, A(S-2)(2) €« 0, A(S-2)()(Q) €« 0
(1) <0.

Repeat for [i=1 to
{

I/ Checking if rows that have values (1 to s) are sorted
if Alt (row i) is sorted

add Alt (row i) to ArS matrix at row AS

AS &< AS+1

/Il Checking if rows that have values (1 to s-1) are sorted
if Alt (row I, columns 1 to s-1) is sorted

add Alt (row i) to Ar(S-1)(1) matrix at row A(S-1)(1)
A(S-1)(1) € A(S-1)(2)

factorial (s)

2

]

A ...

/I Checking if both rows that have values (1 to s-2) and (s-1 to s) are sorted
if Alt (row I, columns 1 to s-2) is sorted and Alt (row I, columns s-1to s) is

sorted
add Alt (row i) to Ar(S-2)(2) matrix at row A(S-2)(2)
A(S5-2)(2) € A(S-2)(2) +1

}
End
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Proposition (2.2): the number of even permutations o(u) in A, for any

partitioning i = (1y , 1y, - 1) iS:
n!
AQURNIPURI )
Proof: According to [7], the law in a symmetric group is:

MK — n!
Myl pp! !

Since the relationship between the symmetric and the alternating is 52—“ :

o) =

therefore
n!

AQURNIPURI )

o) =

Proposition (2.3) exceptional cases

Building on using the general rule (2.2) and comparing the results that
appeared with the computer program, certain exceptional cases are detected
that rule (2.2) cannot be applied on it, because if it is used, it will not yield
accurate results that result in correct solution and due to some reasons like
the possibilities of computer and an electricity system in the country which
does not allow the program to continue to work until the end without turn
off. Hence we worked until A., so we could not find a suitable base to

work on it. Therefore, we presented them as exceptional cases as follows:
(2.3.1) if n is odd; we will have the following cases:

a)(n—1,1)
b) (29,1) where q=1,2, ...
c) (n—3,3)

d) (4,3,1) where [ =0,1,2,...
e)(z291) wherez=2], I =20 5 q=1,2,..
(2.3.2) if nis even; we will have the following case:
(29) where q=1,2,...
(2.3.3) if n is even or odd, the following will be the case:
(n—2,2)

To illustrate this, we will take the cases A, to A,, all other cases can

be found in the computer program. A;, is used to indicate the realization of

'
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the alternating group conditions and the standard rows of young diagram as
well.

AL =
(@)=1—> [1]> and (1,1} —3 z }
AL =
@3=1—> [I-Js] en=2 —[2]2] aa |2
1 3
1 3 2
2 , 11 and] s
(1I1I1]=3 3 2 1 }
A, = |
1] 2| 3 1] 3| 4
(=11 23l4 . @BHD=2—" y and > ,
(2,2) =4 1l 2] |34l L4 and 2| 3
3| 4 1] 2 2] 3 1] 4
(2,1L,L1)=6 1] 2 , 3| 4 , 1] 3] , 1] 4 | 2] 4lnd
—> |3 1 4 2 3
4 2 2 3 1
. SN 1 4 2 3 1 1 3 2 4
(1,1,1,1) =12 - N 1 B 3 4 1 3 1
3 2 4 1 4 2 2 1 3
4 1 3 2 2 3 4 4 2
and }
2 4 3
4 2 2
3 1 4
1 3 1

To count the number of even permutations in the partition (3,1) and
(2,2) concerning the alternating group A, by using (2.1) and (2.2), the
permutation will be:

)
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°GY=3Gm
—2
!
°22 =5
=3

As illustrated o(2,2) is considered one of the specific cases according to
(2.3).
& .3 Compute the Even Permutations by Using the Length of
Cycles and Partition

First, we will refer to the concept of conjugation classes in general.

The row of conjugate is defined as follows, if we have the two elements x,y
in a group G, then x = g~*yg for each g € G is an equivalence relationship

on G, hence the rows of equivalence are called rows of conjugates for G [3].
Its a fact that each two elements in S, are conjugates if they have the same

proposition or length of the cycle as A, . The construct cycle represents a
series of non- negative integers symbolized {u, } where r = 1,2,...,1, u,
represents all the non- interlinked symmetric cycles, where X%i—; u, = n,[4].
The length of the cycle can be defined as follows, if we have € §,, , we say f
is a cycle and its length (K- cycle), f = (n,,n,,---,ng) if f(n,) =n,,., for
l=i<Kand f(ng) =ny also f(n) =nwhen n=*n;,n,, -, ng.[1]
As an illustration, we will provide all the lengths of the cycles in A,
to A,, and later we will provide tables showing the lengths and number of
young diagrams that appropriate each length until A, .
A, ={(1)@)) T KA =12
A; ={(D@)(3),(123),(132)} — > KA ={1® , 3, 3}
This means we have only two types of conjugate rows in which the
permutations are even and they are 3— cycle and 1 - cycle

A {(U(ZJ(SJHJ.(11(234).(IJ(2431.(1231(4J.(124}{31.(132J(4J }
* (134)(2),(142)(3),(143)(2), (13)(24), (12)(34),, (14)(23)

K(A,)={1*,13,13,13,13,13,13,13,13,2%}

<
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Here in the case of A, we have three types of conjugate rows in which
the permutations are even and they are (3- cycle)( 1- cycle), (1-cycle) and
(2-cycle)( 2- cycle).

Now we will offer some rules that account for the number of even
permutations in A,,.

Rule (3.1): If nis odd, the cycle length n = (), however if n is even, the
cycle length is n = (1)(r — 1) for any partition p= (py , s, 1,.), the
number of even permutations that are symbolized £, will be:

‘ n!

Or— Dty po! !

If niseven

B1=1

n!

O gt gt e !

if nisodd

This use is illustrated in the following tables, the last column in
each table.

Rule (3.2): In the case of partition (1,1,...,1,) and all case of length

indicated in white color in the last row of each table in the following tables,
the relationship will be symbolized 5, as pointed out by [4] as in:
n!

JBE - l_[r rur u‘r!

Rule (3.3): Here some exceptional cases appeared as it is the case in the
second section that will displayed in details. This case has been treated by
using even permutations in A, till A- as follows:

(3.3.1) if u = (n), the standard rows illustrated in the following tables in
yellow will be according to the length of the cycle as follows:

L if ()"

{D if 1=4 22 or 1°-3)3

(3.3.2) if u=(r,1), the standard rows in light orange in the following
tables will be according to the cycle length as follows:

1 if (™  or 1-2) 3

{D if 10-3) 22

'
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(3.3.3) if u = (1, 2), the standard rows in light blue in the following tables
will be according to the cycle length as follows:
{1 if (D or 1022

2 if 1-1 3
(3.3.4) if u = (7, 3), the standard rows in dark green in the following tables
will be according to the cycle length as follows:
{1 if (1™ or 10r=1) p2

2 if 13
(3.3.5) if u=(r,1,1), the standard rows in light green in the following
tables will be according to the cycle length as follows:
{ 1 if (D or 10722

4 if 1-1 3
(3.3.6) if u = (r,2,1), the standard rows in light purple in the following
tables will be according to the cycle length as follows:

1 if ("
3 if 1(r-1) 92
6 if 103

(3.3.7) if u = (r,3,1), the standard rows in light brown in the following
tables will be according to the cycle length as follows:

1 if ek
3 if l{r] 22
6 if 10+1) 3

(3.3.8) if u = (r,1,1,1), the standard rows in dark orange in the following
tables will be according to the cycle length as follows:

1 if ("
6 if 10122
11 if 10 32

(3.3.9) if u = (1, 2,2), the standard rows in dark blue in the following tables
will be according to the cycle length as follows:

1 if ek
6 if 1(1*] 22
8 if 10+1) 3

(3.3.10) if u = (1, 2,1,1), the standard rows in dark purple in the following
tables will be according to the cycle length as follows:

)
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1 if ("
10 if 1% 22
14 if 10+1) 3

(3.3.11) if p = (r,1,1,1,1), the standard rows in red in the following tables
will be according to the cycle length as follows:

1 if ("
21 if 1% 22
24 if 10+1) 3

(3.3.12) if u = (r,2,2,1), the standard rows in dark grey in the following
tables will be according to the cycle length as follows:

1 if ("
15 if 1% 22
17 if 10+1) 3

(3.3.13) ifu=(r2,1,1,1), the standard rows in dark brown in the
following tables will be according to the cycle length as follows:

1 if ("
28 if 10922 op 104D 3

(3.3.14) if p=(r,1,1,1,1,1), the standard rows in pink in the following
tables will be according to the cycle length as follows:

1 if ()"
55 if 1(:r+1] 22
45 if 10r+2) 3

Hereafter, the tables A, to A, are sequenced where all the previously
mentioned cases are illustrated, each case is given a specific color:

o
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A,
Partition ; 1
2 1
(1,1) 1
(3-4)
Ag
Cycle type 13 3
partition
(3) | 0
(2,1) |
(1,1,1) 1 2
(3-3)
Ay
Cycle type
1* 22 13
partition
(4) 1 0 0
(3.1) 1 0 1
(2,2) | | 2
(2,1,1) | | 4
(1,1,1,1) 1 3 8
(3-6)
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AS

partition R ° 12° 1°3 >

(9) | 0 0 0

(4,1) 1 0 1 1

(3.2) 1 1 2 2

(3,1,1) | 1 4 4

(2,2,1) 1 3 6 6

(2,1,1,1) 1 6 11 12

(1,1,1,1,1) 1 15 20 24

(3-7)
Aﬁ
Cycle type
1¢ 1222 133 24 32 15
partition

0 0
0 1
1 3
1 6
3 12
6 24
1 4
6 18
10 36
20 72
40 144
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A;
cle type

" 17 1322 13 223 321 421 517 7
partition
(7) 1 0 0 0 0 0 0 0
(6,1) 1 0 1 0 0 0 1 1
(5:2) 1 1 2 0 1 1 3 3
(5,1,1) 1 1 4 0 1 2 6 6
(4,2,1) 1 3 6 2 5 8 14 15
(4,1,1,1) 1 6 11 3 9 18 27 30
(4,3) 1 1 2 1 2 2 5 5

e

24 |44 |90 96 120

2
e 7 11 18 |20
5

21 36 66 7 90

e 1

MEROTERNNINNSSINEN o4 140 301 264|360

LLLI)L(LL |1 105 |70 [210 |280 [630 |504 [720
(3.9

9)

o
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