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لاصةخال  

 )مثالي ايمن غير منفرد( لكلإذا كان  تقريبا   WJCP –غامرة من النمط  بأنها Rيقال لمحمقة  
. في هذا البحث أعطينا              بحيث أن   مثالي أيسر في يوجد  ،      

تعميم لمحمقات الغامرة من  هو والذي تقريبا   WJCP –مميزات وخواص الحمقات الغامرة من النمط 
ن ـــامرة مــــات الغــــــامية الحمق. كذلك درسنا انتظتقريبا   AP - والغامرة من النمط WJCP –النمط 

ن ــــرة مـــــامـــــات الغــــــحمقـــة في الـــــروفــج المعـــــــتائــض النـــع بعــــاليمنى وتوسي تقريبا   WJCP–مط ــــالن
 اليمنى. تقريبا   WJCP –إلى الحمقات الغامرة من النمط اليمنى  WJCP –النمط 

ABSTRACT 

Let R be a ring. The ring   is called right almost WJCP-injective. If for 

any       , (right non singular) there exists a left ideal    of   such that 

             . In this paper, we give some characterization and 

properties of almost WJCP-injective rings, which are proper generalization of 

JCP-injective ring and almost AP-injective ring. Then, we study the regularity 

of the right almost WJCP-injective ring and some important results which are 

known for the right JCP-injective rings to be hold for the right almost WJCP-

injective rings.  
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1- Introduction  
In this paper,   will be an associative ring with identity and all modules 

are unitary right  -modules. For subset   of  , the right (left) annihilator of   

in   is denoted by            . If      , we usually abbreviate      

and     for any a  R. We write                          for the Jacobson 

radical, the set of nilpotent elements,  and right (left) singular ideal of    
respectively. 

At first, we recall that a ring   is called right principally injective [4] (or 

P-injective for short), if every homomorphism from a principally right ideal of 

  to   can be extended to an endomorphism of    or equivalently 

  (    )     for all    . The notion of the right P-injective rings has been 

generalized by many authors see ([2], [5]). In ([12], [14]) the right P-injective 

rings are almost principally injective rings, a ring   is said to be almost 

principally injective (or AP-injective for short), if for any      there exists a 

left ideal    such that              . 

Von Neumann regular rings have been studied extensively by many 

authors (for example [3]). It is well known that a ring   is regular  if for any 

   , there exists     such that       . 

 In [7] JCP-injective rings are studied. A ring   is called a right JCP-

injective, if for any right nonsingular element   of   and any 

 -homomorphism         there exists     such that           for all 

   . Cleary, the right P-injective rings are right JCP-injective rings. The nice 

structure of JCP-injective rings draws our attention to define almost WJCP-

injective rings (or the right AWJCP-injective rings), and to investigate their 

characterizations and properties.  

A ring   is called reduced, if       . A ring   is said to be a 

biregular ring if for any    ,     is generated by central idempotent [11]. In 

[8] the module   is called almost principally a small injective (or APS-

injective for short) if for any       , there exists an S-submodule    of   

such that                as left S-module. If    is an APS-injective 

module, then we call   a right APS-injective. 

2- Characterizations of Right AWJCP-Injective Rings 

 In this section, we shall study characterizations of right AWJCP-

injective rings. 

 Definition 2.1 

Let    be a module with            The module   is called right 

almost WJCP-injective (AWJCP-injective), if for any         , there exists 

an S-submodule    of   such that               as left S-module. If 
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   is almost WJCP-injective, then we call    a right almost WJCP-injective 

ring.  

Every AP-injective ring is AWJCP-injective but the converse is not 

true. [Example 2.4, 7] 

Theorem 2.2  

Let         be an index of left ideal}, then the following are equivalent:  

1) If         , then              . 

2) If       ,    , then  (       )            with           

and                  for all     , where                if 

    . 

Proof:  

The proof is similar to that of (Lemma 3.1, ]5[ ) ■ 

An element     is called a right regular if        [8]. 

Theorem 2.3  

Let   is a right AWJCP-injective. Then:  

1) Any right regular element of   is left invertible. 

2)           . 

3) If   is a reduced principal right ideal of    then      where 

        and        is an ideal of  . 

Proof: 

1) Let       such that       . Then        and so 

               where    is a left ideal of   (  is AWJCP-injective). 

Hence               since          thus there exists          

such that       ,         ,                    so 

             . Therefore      and hence   is a left invertible. 

2) If        and    , then,           implies that           

for some     by (1). Hence       . 

3) Let   be a nonzero reduced principally a right ideal. Then      for 

some      since                           for some a left 

ideal     of  . Hence            shows that 

        (    )   (     )           ,        . Then there 

exists               such that         ,              
                      ,           
                   , which implies that       (  is reduced), 

where   is generated by the idempotent     . Also for any     , 

            implies       , where          . Therefore 

            . ■ 

Lemma 2.4 [8] 

Let   be a right APS-injective ring, then            ■ 

The following corollary follows immediately form Lemma 2.4 and 

Theorem 2.3. 
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Corollary 2.5 

If   is a right AWJCP-injective and right APS-injective ring, then  

            ■ 

3. Regularity of Right AWJCP-injective Rings 

A ring   is called PP, if for any    ,    is projective and   is a right SPP, 

if for any       ,    is projective. Every PP ring is SPP. A ring   is called 

quasi regular, if       for all       [ ]  
 A ring R is called a strongly regular, if for every      there exists 

     such that         . [10]. 

Remark 1: [7] 

  is regular if and only if    is a right nonsingular and a right quasi regular. 

Proposition 3.1 

The following conditions are equivalent for a ring  :  

1)   is a quasi regular ring. 

2)   is a right JCP-injective and a right SPP ring . 

3)   is a right AWJCP-injective and a right SPP ring. 

Proof: 

Obviously: 1 → 2 → 3. 

3 → 1, Suppose that    is a right AWJCP-injective and right SPP-ring. For 

any           , there exists a left ideal   of    such that  
              Since   is a right SPP, then         with  
      . Let         Then          , and        , and so 

     and         for some      and       .  

Thus     =     +    ,                 , this shows that 

     , and so   is aquasi regular. ■ 

Corollary 3.2 

Let   be a ring. Then   is a regular ring if and only if   is a right 

nonsingular,a right SPP, and an AWJCP-injective ring. 

Proof: 

It Follows from Proposition 3.1 and Remark 1. 

Lemma 3.3 [14] 

Suppose   is a right R-module with          . 

 If   (            , where    is a left S-submodule of   . Set 

        a right R-homomorphism,  then           with    , 

    . 

A right R-module   is called almost nil-injective [13], if for any 

      , there exists an S-submodule    of   such that               

as left S-module (        ). If    is almost nil-injective, then we call   a 

right almost nil-injective ring. 
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Theorem 3.4 

Let   be a right SPP ring. Then   is a right AP-injective ring if and only if   

is a right AWJCP-injective and every simple singular right R-module is almost 

nil-injective. 

Proof: 

First, we show that       . Suppose that      ≠ 0 , then there exists  
         such that     . We claim that              Otherwise, 

there exists a maximal right essential ideal   of   such that  
           . Thus     is almost nil-injective and  

                    , for some a left ideal    of    . Let  

         be defined by           . Then   is well defined  

R-homomorphism so there exists           such that 

           (Lemma 3.3),                     . 

Hence         Since              then    , which is a contradiction. 

Therefore             . Hence       for some        and       . 

Thus              . Since             [Theorem 2.3 (2)],       

is invertible. Thus    , which is a contradiction. Hence       . By 

Corollary 3.2   is a right AP-injective. 

The converse is clear.  ■ 

Lemma 3.5 [5] 

If   is a right AP-injective ring, then              ■ 

By Theorem 3.4 and Lemma 3.5 we get: 

Corollary 3.6  

Let   be a right SPP ring. If   is a right AWJCP-injective and every 

simple singular right R-module is almost nil-injective, then            .  

Theorem 3.7 

Let   be a right AWJCP-injective ring and right PP. Then   is regular. 

Proof: 

Let      . Then        [Theorem 2.9, 7]. Since   is a right 

AWJCP-injective, then                for some left ideal    of  . Since 

  is a right PP-ring                 .  

Thus                       . Therefore        for some      

and    . So                               , and 

     . Hence   is regular.  ■ 

Following [1], a ring   is called a left pseudo-morphic if for all     

there exists     such that          Every regular rings is pseudo-morghic.  

From Theorem 3.7 have: 

Corollary 3.8 

Let   be a right AWJCP-injective ring and a right PP. Then   is a left 

pseudo-morphic. 

A ring   is called a left   duo, if    is an ideal of   for all        [6]. 
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Lemma 3.9 [6] 

1) Let   be a semiprime left   duo ring. Then   is reduced. 

2) If   is a reduced, then            . 

Proposition 3.10 

Let   be a semiprime left   duo ring, every simple singular right  

R-module is AWJCP-injective. Then   is a biregular ring. 

Proof: 

For any                            . If           , 

then there exists a maximal right ideal   of   such that           . If 

  is not essential in  , then              . Therefore     . Since R 

is a reduced     . Hence           , which is a contradiction. So   is 

essential in  . Since   is a reduced (Lemma 3.9)       . Thus     is 

AWJCP-injective, then                             . 

Let          be defined by          . Note That   is well 

defined.  

So                ,    ,                       ,  

      . Since        ,    , which is a contradiction. Hence  
           and so       ,       . Since   is an abelian ring,   

is a biregular ring. ■ 

  is called a right CAM-ring, if for any maximal essential right ideal   

of   (if it exists) and for any right subideal   of   which is either a 

complement right subideal of   or a right annihilator ideal in  ,   is an ideal 

of   [10]. 

The right CAM-rings generalize semismple artinian. [10]  

In [10] , shows that semiprime right CAM-ring   is either a semisiple artinian 

or a reduced. 

 A ring is called right MERT ring, if every maximal essential right ideal 

  of   is an ideal of  . [6] 

The Following theorem is generalization of [Theorem 5.8, 7] 

Theorem 3.11 

The following are equivalent for a ring   which is SPP 

1)   is either a semisimple artinain or a strongly regular ring. 

2)   is a semiprime, a right AWJCP-injective, a right CAM-ring. 

3)   is a semiprime, a right CAM-ring, a MERT ring every simple  

singular right R-module is AWJCP-injective. 

Proof: 

1→i , i=2, 3 are obvious. 

2→1, if   is not a semiprime artinian ring, then   is reduced. By Corollary 

3.2 ,   is a regular ring. Therefore   is a strongly regular ring. 

3→1, if   is not semisimple artinain ring, then   is reduced. Let       . If 

         . Then          for some maximal essential right ideal 
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  of  . Since   is a reduced, then         By a assumption, then simple 

singular right R-module     is AWJCP-injective,  

thus                    ,      . Let           be defined by 

           
Note that   is well defined. Thus there exists            , such that 

               ,  

then                    ,        . But       then     , 

because   is a MERT ring and   is an ideal. It is a contradiction. Hence 

          and then   is a strongly regular ring. ■ 

 

REFERENCES 

[1] Camillo, V. and Nicholoson, W.K., (2015), ”On rings where left 

principal ideal are left principal annihilators”, Inter Electronic J. of 

Algebra. Vol. 17, pp. 199-214. 

[2] Chen, J.L. and Ding, N.Q., (1999), ”On general principally injective 

rings”, Comm. Algebra, Vol. 27, pp. 2097-2116. 

[3] Goodearl, K.R., (1979), ”Von Neumann regular rings”, Pitman 

(London). 

[4] Nicholson, W.K. and Yousif, M.F., (1995), ”Principally injective 

rings”, J. Algebra, Vol. 174, pp. 77-93. 

[5] Page, S.S. and Zhou, Y.Q., (1998), ”Generalization of principally 

injective rings”, J. Algebra, Vol. 206, pp. 706-721. 

[6] Subedi, T., (2012), ”On strongly regular rings and generalizations of 

semicommutative rings“, Inter. Math. Forum, Vol. 7, No. 16, pp. 777-

790. 

[7] Wei, J.C., (2009), ”JCP-injective rings”, Int. Electron. J. of Algebra, 

Vol. 6, pp. 1-22. 
[8] Yang Xiang, (2011), ”Almost principally small injective rings”, J. Kor. 

Math. Soc., Vol. 48, No. 6, pp. 1189-1201. 

[9] Yue Chi Ming, R., (1976), ”On annihilator ideals”,  Math. J. Oka. 

Univ., Vol. 19, pp. 51-53. 

[10] Yue Chi Ming, R., (1983), ”On quasi frobeniusean and artinian rings”, 

Pub. De Linstitut. Math. matique, 33(47), pp. 239-245. 

[11] Yue Chi Ming, R., (1999), ”A note on biregular rings”, Kyngpook. 

Math. J., Vol. 39, pp. 165-173. 

[12] Zhao, Yu-e and Du Xia, (2002), ”Some studies on AP-injective rings", 

J. of Anhui Un.,Vo1. 26(1), pp. 7-11. 

[13] Zhao, Yu-e and Du Xia, (2011), ”On almost nil-injective rings”, Inter 

Elec. J. of Algebra, Vo1. 9, pp. 103-113. 

[14] Zhao, Yu-e, (2011), ”On simple singular AP-injective modules”, Inter. 

Math. froum. Vol. 6, No. 21, pp. 1037-1043.  


