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Abstract

Following Villena in [9] and Mohammed and Ali in [4], we introduce
partially defined (g, h) - ¢ - double derivation and generalized (g, h)-c-
double derivation on a semisimple complex Banach algebra whose domain
Is not necessarily closed, essential ideal and we prove that they are closable.
In particular, we show that every (g, h)- ¢ -double derivation and generalized
( g, h)-c-double derivation defined on any nonzero ideal of aprime
C "- algebra are continuous.
Keywords: automatic continuity, double derivation, ultraprimness,

sliding hump sequence.
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0. Introduction

Throughout this paper, A is a semisimple Banach algebra over
complex field and g,h : A — A are linear mappings. If g and h are
the identity maps and if <A with or without identity we may conclude
that g and h are continuous by Johnson and Sinclair in [1]. As a
consequence, we can assume that g and h are continuous. So, we
defined our derivation in this paper as in [5] and [7] as follows : A linear
map D;: A — Ais said to be (g,h ) - ¢ - double derivation on
A if D;(ab) = Dy(a) b + a D,(b) + g(a) h(b) + h(a) g(b), Va,b € A.
Similarly, we defined our derivation in this paper as in [8] as follows:

A linear map D,: A — A is called generalized ( g, h) - ¢ - double
derivation on A if thereexists (g, h) - c - double derivation

D;: A — A such that D,(ab) = D,(a) b + a D,(b) + g(a) h(b) +
h(a) g(b), Va ,b € A. Recall that, a nonzero ideal I of A is called
essential if for any nonzero ideal | of A we have I nJ # {0}. Note that, if
A is prime then any nonzero ideal of A is essential. By essential defined
(g, h)-c-double derivation we mean a linear map D, : I - A such
that I is essential and for all a, b€l, D;(a b) = Di(a) b +
a D;(b)+ g(a) h(b) + h(a) g(b). Clearly if g or h or both are the zero
maps then D, is the usual derivation, so (g,h) - ¢ - double derivation is a
generalization of derivation. Similarly, by essential defined generalized
(g .,h )- c - double derivation we mean a linear map D, : I — A such
that I is essential and for all a,b € I, D,(a b) =D,(a) b + a D;(b) + g(a)
h(b) + h(a) g(b).

Clearly if g or h or both are the zero maps and D, = D,, then D, is
the usual derivation, so generalized (g ,h)-c- double derivation is a
generalization of derivation. Also if D; = D,, then generalized (g , h)
- ¢ - double derivation is ( g , h)- ¢ - double derivation.

Automatic  continuity of derivations are studied by many
researcher, we mention some of them of our present work see [1], [2], [5],
[6] and [7].

In this paper, we will follow the same lines of [4] and [9]. We will
use D = D; or D, when the results are true for both D; and
D,, otherwise we will use only D; or D,.

Let P denote the set of primitive ideals P of A such that I ¢ P.
The primitive ideal P can be obtained as the kernel of a
continuous irreducible representation of A on a complex Banach
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space Xp, actually the irreducible representation of A is defined by the
following mappings:
¢ : A — BL(Xp) definedby ¢(a) =L, and L, :Xp, — Xp defined by
L,(x) = ax and the ker(¢) = P satisfying llax |l < llall Il x|, for all
a€A, x€Xp.

Recall that the separating subspace S(D) of D is defined to be the
set of those a in A for which there is a sequence {a,} in A with
lima, =0 and limD(a,) = a. Itiswell knownthat D is closable if

n—-oo n—-oo

and only if S(D) = 0, and it is easy to show that I S(D) +
S(D) I < S(D).

Let P. ={ P e€eP :SD)cPland Ps={PeP:SD)¢P}
Note that S(D) € Npep P = P.. We will show that D is closed if P. = 0.

1. Main Results
We begin this section by the following fundamental results :

Proposition1:[9]
Let P € P and J any non necessarily closed ideal of A satisfying
J ¢ P. Then one of the following assertions holds :

1) The ideal of those elements be J with dim bX, < oo acts irreducibly on
Xp. Accordingly, given x, y € Xp with x # 0 thereis b € J with
dimbX,=1and bx=y.

2) There exist sequences {b, } in J and {x,} in X, satisfying
b, ...byx, #0 and b,,; ... byx,, =0 forevery n € N.

Proof : see[9, lemma 1]
Let { P, } beasequencein P. Asequence{ b, } in I issaid to be
a sliding hump sequence for { P,} if for every n € N there exists x, € Xp_

suchthat b, ... by x, #0 and b,.q ... by x, =0 (see[9]).

Proposition 2 :

If there exists a sliding hump sequence for a sequence { B,} in P, then
there is a natural number n for which
i) S(D;)c P,. Inparticular, S(D,) c P if B,= P forevery n€N.
i) S(D,)<c PB,. Inparticular, S(D,) ¢ P if B,= P forevery n €N.
Proof :
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Let {b,} be a sliding hump sequence for { P,} then for every

n €N, there exists x, € Xp such that b, ... b;jx, # 0 and
bpiq ... byx, = 0.
We can certainly assume that 1| b, Il = llgll = IThll = llx, Il = 1

for every n € N. We claim that there exist n € N and a nonzero x € Xp_,
such that the map a +— D(a)x from I into Xp_is continuous. If the claim
fails, then all the maps a — D(a) b, .. b; x, from I into X, are
discontinuous and we can construct inductively a sequence {a,} in I
satisfying :
I D(a,) bp.. by x, | = n + I X721 D(ag by ... b)) x,, |

+ I D(cpy1) bpgr - b1 xp I e (1)
and ||l a, II < 2" min{(1+1ID,(by .. b)) :k=1,..,n}
Now, we consider the element ¢ € A givenby ¢c= },-, a, b, ... b; and

forevery n € N, wewrite ¢, = a, + Xi-—n+1 Q br - bpiq.
Now we will follow the same way of [4] and [9], then we have
c = Z;% ak bk b1 + an bn b1 + C’Yl+1 bn+1 b1 .

Currently, we will prove the first part of this proposition :
(i) Di(c) = ZQ;% Di(ayby ...by) + Di(an) by ...by + an Dy(by ...by)
+9g(ay) h(by ...by) + h(ay)g(by ... by) + Di(Cny1)bpsq - by
+ ¢ny1 Di(bpyr o b))+ g(cnyr) h(bpyq..by)
+ h(cpy1) g(bpiq...by). Now,

I Dy()xn Il = 11 Dy(an) bp.by xu Il — W ERZT Dy(agby ..by) x|l
— Il ayDy(by ..by) X I = Il g(ay) h(by..by) Xy |
— h(an) g(bn ---bl)xn = Dl(cn+1) bpi1 by Xyl
— I cn41D1(byyg - b)xn | = 11 g(€piq) h(bpyq - by) Xy |l
— |l h(cpy1) 9(byyq --by) x4 Il, then by (1) we have
| Dy(c)x, Il = n — I a,D;(b,..by)x, I =1 g(a,) h(b, ...by) x, |l
— |l h( An ) g(bn bl) Xp I = Il Cpyq Dl(bn+1 bl) Xn |l
— |l g(cn+1)h(bn+1 ---bl)xn [l h(cn+1)g(bn+1 ---bl)xn | (2)

As a consequence, || a, Di(by, ...by) xp I < lla, I |l Dy(by ...by) |
<1 T )
Also, Il g(an)h(by ..b)x, I < N glillag NHAT Wby Il oo by Ty I
<la, I = 1 N C))
Hence, | h(a,) g(by ...b)xy I< T AT a, I g by I ol by Iy I
<la, I =< 1 A ()

Now, we will follow the same way of [4] and [ 9], then we have
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I cher I < 2 1l apyq |l S ()]
S0, Il cuy1 D1(bpy1 - b)xXp I < I gy | 1 Dy(bryy - by) NI, then by (6)
<21l apss Ml Dy(bpyq ... by) I

<2 R )
Also, | g(cni1) R(bpyq b)) xo Il < gl Nepgr I WAT I Bpgq I .
I by Il I x, Il, then by (6)
< 20l apgq |l
<2 )
And, || h(cps1) Gbpyr by) X IS WA Ncpea I g I Il Bppgq Il ...
I by 1l x, I, then by (6)
< 20l apyq |l
< 2 e (9)

Then by putting (3), (4), (5), (7), (8 and (9) in (2) we get that
I Di(c)x, I = n—9 VneN,then [[D;(c)ll = ID;(c)x, Il = n—9
v n € N. This contradiction proves our claim.

Let m € N such that map a — D;(a)x from [ into Xp_ is continuous
for some nonzero x € Xp_and let X be the set of all x € Xp_satisfying this
property, X is anonzero /-submodule of X, ; therefore, we conclude that
X = Xp_.Leta € 5(D,) then Ylll_T)”I;LO D, (a,) = a for a suitable sequence {a,, }

in I with lima,, = 0, then ax = lim D;(a,)x = 0, forevery x € Xp and
n—-oo

n—-oo

therefore, a € P,,. That means S(D;) < P, .

(i) The proof is similar to the proof of that of first part of this
proposition. |

Proposition 3 : [9]
Let P € P and J any subspace of A satisfying IJ+JI cJand | &
P .Then | x = X, for every nonzero x € Xp.

Proof: see[9,lemma3]

Proposition 4 :

Let P € P and J any non necessarily closed ideal of A contained in 1.
If there isanelement b € J suchthat b € P, and dimbj/b< .
Then S(D,) € P and S(D,) c P.
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proof :
Note that, since dim b/b < < then the map a — D(b/b) is continuous,
let a € S(D), then there exists a sequence {a,} c I suchthat lima, =0

Nn—aoo

and limD(a,) =a. Thus limb a,b =0 and lim D(ba,b) = 0. Since
n—oo n—oo

n—-oo

g and h are continuous linear maps, then limg(a,,) = 0 and limh(a,) = 0,
n—-oco Nn—aoo
also lim ba,=0 thus lim g(ba,) = 0 and lim h(ba,)=0.
n—oo n—-oo

n—oo

Firstly, we will prove S (D,) € P. Now, forallb € I,{ a,} c I,
we have:
limD,(b a, b) = lim [D,(ba,)b+ ba, D;(b) +g(ba,)h(b) + h(ba,)g(b)]
n—-o0 n—-oo
= lim[D,(b) a,b+bD;(a,) b+ g)h(a,) b + h(b)
n—oo
g (ay) b+ bay, Dy(b) + g ay,) h(b) +h(ay,) gh)]
=bab=0 VaeS(D;) hence b S(D;)b=0
Since b ¢ P then b Xp # 0, if we assume that S(D,) ¢ P then by
Proposition 3 we have S(D;) b Xp = Xp thus bS(D;) b Xp = bXp =0
Which gives b € P this is contradiction; therefore, S(D,) c P.

Secondly, we will prove S(D,) c P. Since lim D, (a,) = a ; therefore,

n—ooo
lim b D,(a,) = b a this implies that [lim D,( b a,) = b a,
n—-oo n-—-ow
Now, forall be I, {a,} ],
we have:

lim D,( banb) = lim [Dy(bay)b + ba,D, (b) +g(bay)h(b) + h(ba,) g(b)]
n—-oo n—-oo
= lim Dy(ba,) b+ limba, D;(b) + lim g(ba,) h(b)
n—-oo n—oo n—o0
+lim h(b a,)) g(b)
n—oo
=bab=0VaeS(D,)hence b S(D,) b = 0
Since b ¢ P then b Xp # 0, if we assume that S(D,) ¢ P then by
Proposition 3 we have S(D,) b Xp = Xp then bS(D,)b Xp = bXp =0
that means b € P this is contradiction; therefore, S (D,) c P. ||

The proof of the following result may be obtained in the same way as
in[ 9, theorem 5 ] applying the above propositions 2 and 4.
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Proposition5: D, and D, are closable.
Proof : Obvious.

A Banach algebra A is said to be ultraprime if there exists a
positive constant K > 0 suchthat Kllall ll bl < My, Il Vabe
A, where M, , is the tow - sided multipliplication operator on A
defined by:

M, , (x) = axb (see[9]).

In [ 3, proposition 2.3 ] it was proved that every prime C* - algebra is
an ultraprime Banach algebra, where K = 1.

Theorem 6 :

Let D, and D, be closable (g,h) -c- double derivation and generalized
(g ,h) - ¢ - double derivation respectively defined on a nonzero ideal I of an
ultraprime Banach algebra, then D; and D, are continuous.

proof :
Since g and h are continuous; therefore, there are positive constants
g8 =0suchthatll g(y)lI<ellylland lh(z)I<Slzll Vy z€A.

Firstly, we will prove D, is continuous. Fix a € I, with |l a ||I= 1 and
consider the following mapping fi: A - A defineby f,(x) = D;(xa)
vx € A, we will follow the same way of [ 4] and [ 9], then we have f; is
continuous; therefore, there is apositive constant ¢t > 0, such that
Il )1 <t llxll Vx € A Let lxll=1wehave || f(x) Il <t
thus |l f;(x) I = Il D;(xa) I < t. Now, for bel, x €A wehave:
D;,(bxa) =D;(b) xa + bD;(xa) + g(b) h(xa) + h(b) g(xa), then
D;(b) xa = D;(bxa) — b D,(xa) — g(b) h(xa) — h(b) g(xa); therefore,
Mp, ),a(x) = D;(bxa) — b D;(xa) — g(b) h(xa) — h(b) g(xa), thus
Il Mp,),a(X) I < I Dy(bxa) I + Il b Dy(xa) I + I g(b) h(xa) I
+ I h(b) g(xa) |l
t+lIbllt+ cllbll dllxal +6Ubllellxal
4teSlblllal.

By taking supremum for both sides we have | M p )4 II < 4t 11 b Il a I

Since A is ultraprime Banach algebra, then there exists a positive constant

o
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K > 0 suchthat K llall Ibll <1l Mg, Il, forall a, b € A. Then
K 1D llal = IMpmyall < 4ted bl llall, hence

I Dyb) I < 2228

Ibll, V b €l. Thisimpliesthat D, is continuous.

Secondly, we will prove D, is continuous. Fix a € I, with a ll=1
and consider the following mapping f,: A — A define by:

fo(x)= D,(xa)Vx €A,

we will follow the same way of [ 4] and [ 9], then we have f, is
continuous; therefore, there is apositive constant r > 0, such that
G0 <rllxll Vx € A. Let Ixll =1 wehave || fL,(x) Il < 7,
thus Il ,(x) I = IDy(xa)ll < r. Now, for b eI, x € A we have :
D,(bxa) = D,(b) x a + bD;(xa) + g(b) h(xa)+ h(b) g(xa), so
D,(b) x a = D,(bxa)— bD;(xa) — g(b)h(xa) — h(b)g(xa); therefore,
Mp,p),a(x) = Dy(bxa) — b Dy(xa) — g(b) h(xa) — h(b) g(xa), thus
Il Mp,p),a(X) 1< 1Dy (bxa)l + 1I1b Dy(xa)ll + Il g(b) h(xa)

+ I h(b) g(xa) Il

4te§
Sr+||bIITgllxaII+8I|bII5IIxaII+6IIbII€IIxaII

< 7rtedlbllllall.
By taking supremum for both sides we get | M p o IS 7rte6 I b 11l a Il

Since A is ultraprime Banach algebra, then there exists a positive constant
m = 0 suchthat m llall Ibll <1l Mg, |l, forall a, b € A. Then
m [ D,()Il lal < IMpgyall < 7rted bl llall hence

" Dz(b) " < 7 rted

m

I bll, Vbel Thisprovesthat D, iscontinuous.

Applying proposition 5 and theorem 6 we can prove the following result :

Corollary 7 :

Every essentially defined ( g,h ) - ¢ -double derivation and generalized
(g, h) - c-double derivation on a nonzero ideal of prime C ~- algebra is
continuous.

Corollary 8 :

Every essentially defined derivation on a nonzero ideal of prime C~ -
algebra is continuous.
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Proof:

1) By corollary 7, taking g or h or both in D; to be the zero maps.

i) By corollary 7, let D, = D, andtaking g or h or both in D, to be the
Zero maps.

Remark 9 :

The above results of this paper are also true for the following derivations:
(1) D3 : 1 - A such that D;(ab)= Ds(a) g(b) + h(a) D;(b), for all a,b € I.
(2) D, : 1 - Asuchthat D,(ab)=D,(a) g(b) + h(a) D5(b), for all a,b € I.
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