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ABSTRACT \
In this paper we present a theoretical framework and numerical
comparisons for a wavelet-based algorithm associated with both method of
lines and wavelets for solving some partial differential equations. In
particular, we consider a wavelet-based algorithm using Method of Lines
(MOL) analysis. The advantage is in the simplicity of the boundary
modification, and relatively simple and small representing the differential
operators, in contrast to other wavelet-based algorithms. The time of
calculations and number of flops were reduced using Haar wavelets, and as

a demonstration, an example for solving the diffusion equation. '
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1. Introduction:

During the past years, wavelet-based algorithms have been proven to
be optimal efficient numerical schemes for solving system of the linear
equation[1],[6] ,[7] and [8]. This means that the resulting linear systems of
equations can be solved with an overall amount of work, which is of the
order of the number of unknowns. In particular, this implies that introducing
Haar wavelets can reduce the number of iterations, which possesses small
dimension extracted from the original dimension of a matrix. Discretizations
allowing us to use new methods, such as Method of Lines (MOL), as
powerful tools to convert the complex theoretical systems of equations into
simple and direct numerical schemes. This availability of direct numerical
schemes together with additional analytic properties provide a powerful tool
to prove the theoretical asymptotically optimality of the resulting numerical
schemes for a whole range of operator equations, including parabolic partial
differential equations.

Therefore, we aimed at designing a wavelet-based algorithm that
realizes all promising features of wavelet-based algorithms for this class of
problems. In this paper we describe new ideas that we have implemented
during the last year and which might be helpful as a new attempt in the area
of this kind of problems. We have a solving system of the linear equation in

- papers [1],[6] and [7] . Then we continue the work with solving parabolic

differential equations using wavelet also.

2. Method of Lines: |
Let us consider a partial differential equation defined on 2: 0 <x,t< 1,
Subject to the boundary conditions:
' : u, =gl tuu, u,)

u(x,0) = ¢,(),
u(x,l) = 9 (%),
u(0,) = B1en ()
U(LD) = G (),

Limiting our scope to’the method of lines (MOL), we introduce n
equally spaced lines in Q parallel (in our case) to the x-axis, separated by
distance

h = 1/(n+1). Along particular line k, we replace u,, is replaced by up iy
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by ug , and we also replace the derivatives in the normal direction is also
replaced by a finite difference approximation, e.g.

— Ukl —Uk-1 +0(h2)

“ 2h
u —2up +ug_
uyy = Ll ]2k k=1, ooy,
7
uy =u, =k "*'Z‘h“ “+o(h?)

Under this arrangement, the partial differential equation is now
approximated by a system of n second order ordinary differential equation in
U,,k=1.. n, with x as the independent variable,

U = g (tuy 'y Wy Ui W'y ) -
Subject to the boundary conditions

u, (0)= Pren (1 )5 .
uk (1) = ¢righl (tk );

For simplicity we call it the MOL-model of partial differential
equation. Note that now u, =¢,,(x) and u,,, = ¢,,(x) are now function .For our
computational purposes we convert this system into a system of the first
order equations by introducing new variables Vy =U'x , rearrange the
variables so that it is transformed into the set of 2n first order equations:

-~ - ~ -

U, 4
U, Y,
U, v,
a|n|_|
dx| V, 5>
Vn~| f;l—l
V.l LS

S = U ViUV U Vi) > k=12,..n,
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The boundary conditions are adjusted accordingly. It is well know that
at any value of n, the solution of the MOL-model would be O(h%)
approximation to the exact solution of the original partial differential
equation, and we have used this fact to decide on the correctness of the
computed solution. In terms of solving the partial differential equation, large
value of n is desirable. However, as n increases, the computed solution of
the MOL-model becomes more sensitive to rounding error, as will be shown
below. Within the limited range of practical values of n, this scheme allows
us to create a large set of problems.

3. Parabolic PDEs:

Some very simple types of PDEs are common that were assigned
special names. Given the following PDE in two variables x and ¢:

Asn 0 T scusn s fees 2,220 e

Which characteristic of filed problems. In physics. x and ¢ can be
either spatial or temporal variables and A,B,C and f can be arbitrary function
of x, t, gﬂand QE. Such a PDE is called quasi-linear, since it is linear in the

X
highest derivatives.

Depending on the numerical relationship between A,B, and C Eq(1) is
classified as either being parabolic hyperbolic, or elliptic. The classification
is as follows

B?-4AC>0 —PDE is hyperbolic
B%-4AC=0 —PDE is parabolic
B’-4AC<0 —PDE is elliptic

The classification makes sense, the numerical methods most suitable
for these three types of PDEs are vastly different. In this paper, we shall deal
with PDEs of the parabolic type exclusively. Parabolic PDEs are very
common.. For example, all thermal problems are of that nature. The simplest
example of a parabolic PDE is the one —dimensional heat diffusion problem,
where K is the thermal diffusivity.

K— Y +G(xt) )

u(0,0)=do(t)  u(1,H)=di(t) G)

u(x,0)=(x), 0<x<1,t>0. 4)
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The notion u, and wuy refers to partial derivatives with respect to t and
X, respectively. Then unknown function u(x,t) depends on the time t and a
spatial variable x. The condition (3 ) are called boundary condition ,and (4)
is called an initial condition. The solution u can be interpreted as
temperature of the an insulated rod of length 1, with u(x,t) the temperature at
position x and time t; thus( 2)is often called heat equation . The functions
G,dg,d;,and f are assumed to be given and smooth. For a development of the
theory of ( 2)-(4 ),See [9] or any standard introduction to partial differential.
We gave the method of lines for solving for u, a numerical method that has
become much more popular in the past ten to fifteen years. It will also lead
to the solution of a stiff system of ordinary differential equations. Let n>0 be
integer, and define h=1/n.

xx=kh, k=0.12...n.
We discretize Eq.(2 ) by approximating the partial derivative. Using
the following this,

_uCxys ) = 2ux D +u(x, .0 b 3'u(g, 1)

U 2 ] s k=l,...,n-1
h 12 ox
Substituting into (2)
ll,(xk,l)=Ku(xk+],t)_221(;2/‘,{)+u(xk_l,t) +Gx,,0)— _i_ga‘_ua(%ﬁ’ 1£k<n-1 ( 5)
X

Equation is to be approximated at each interior node point x,. The
unknown ¢ € [X.1,Xx+1].Drop the final term in (5 ),the truncation error in the
numerical differential. Forcing equality in the resulting approximate, we
obtain :

u; (f) =K Upy) (t) - 21’;:2(0 + Uy (t) + G(xk ,t) (6)

k=1,2,...n-1.The function u(t) are intended to be approximations of
u(Xy,t), 1<k <n-1 .This is the method of lines approximation to (6), and it is
a system of n-1 ordinary differential equation. Note that ug(t) and u(t),
which are needed . For k=1 and k=n-1,are given using ( 3 ):

(1) = dy (1) (7a)

U (1) = dy (1) (70)
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The initial condition for (6 ) is given by ( 4):
uj(0)=r(x;), ®

where 1 £j<m-1

The name method of lines comes from solving u(x,t) along the lines
(x,0) t20, 1<) <m~- 1, in the (x,t)-plane.

Under suitable smoothness assumptions on the functions dod;,G and f,
it can be shown that :

Max f U(xj,t)—uj(t) 'S CT/12 9)

0sj<m
0st<T

Thus to complete the solution process, we need only to solve the
system (6 ). It will be convenient to write ( 6) in matrix form. Introduce

u(t) = [y Doty OF wg =[G S @D

g(n) = [hi<~d (1) + G(x,,)G (X, )ror G (3, ,r>,—,§d1 )+ G(x,,,*.,o}

-2 1 0 0 0]
-2 1 0
0 1 =21
K
—27 ;
1 -2 1
0 0 0 1 -2

The matrix A is of order m — 1. In the definitions of u and g, the
superscript T indicates matrix transpose, so that u and g are column vectors
of length m — 1.Using these matrices, Egs. ( 6)-( 8) can be rewritten as

u (1) = Au(t) + g(t)
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Uy ju [ uy,; +ou,
Uy jn Uy

Us jn Uz,

n-=2,j+1

‘un-l,j+l | _un—l,j + aun_j

n=2,j

vil. Then
| Ax=b
WAx=WDb
WAW' Wx=Wb
WAW'Wx=Wb
A,X=byw

where
A =WAW'
b=Wb
Xw=WX

Not that uy and u, are the known boundary condition, assumed to be
independent of time .

4.2 Haar wavelet

1 for OSxSl

N

vH =|-1 for—é—ﬁxsl

0 otherwise

Haar wavelet is defined as
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Following Fourier, any wavelet could be used basis block to build any wave
With

W, (=2 x-k), forall jkez

The coefficients c;; are computable from :

Cik :<f:‘1”j,k>

Also following the idea of Fourier transform W wof any wave f{x) can now
be defined as following

O, Nba)=la7 [FwE=E)

a

The coefficients c; are now computable following relation [3]

¢ =<rVu,f>(§—§,~.]

S. Numerical Result

Here the algorithm we built is applied to an example, namely heat
equation, and to show the time consumed by the calculations, a comparison
with the MOL is given.

Example

A brick wall with 0.3 m thick, is initially at a uniform temperature of 100°C
and its thermal conductivity, K=5*10"7 m%s. If the temperature of the both
surfaces is suddenly lowered to 20°C and kept at this temperature. Plot the
temperature distribution of the wall after 7.33 min (440s).

To study this problem we will use a mesh with 15 subintervals of x and 50
subdivisions of #. This corresponds to 0=0.55. See( figure.1)

MOL Algorithm by using wavelet
Flops 1632819 32940

Time 5.4900 0.2000
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Figure .1 solving parabolic by using wavelet

S. Conclusion

The principle of wavelet is used to a speed the MOL for solving parabolic
differential equations, the new Technique examined by solving well know
problems and results are compared with result obtained by MOL. From the
table in our discussions we can conclude that. The accuracy of both methods
are the same Wavelet method is able to solve parabolic differential equations
in shorter time and fewer flops.
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