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Abstract :-

In this paper a new preconditioned Extended Conjugate Gradient
with self-scaling Variable Metric method is proposed for unconstrained
optimization. This method is based on the inexact line searches and it is
examined by using different nonlinear test functions with various
dimensions. '
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1. Introduction

conjugate Gradient (CG) methods are some of the most useful
algorithms to solve large problems for unconstrained optimization
problem: ~ .
min f (x), (1.1)

xeR"

when f is twice continuously differentiable function and its domain
contains a bounded level set L
L={xeR:f{(x)<f(x1)}; (1.2)

where X, is an initial point. Then the minimum point of f is to be found at
each subsequent point x4 ; k>1 and derived by searching along a decent

direction dy such that d; g, <0; g=Vf (x,) so that

Xk+1=Xk+)\,kdk , k>1 . (13)
where A =arg min f{ x+Aidy) (1.4a)
A

and Xy satisfies line search conditions such that

lgrady| <c/jerd,); 0<c, <1/2. (1.4b)
and
f(xy,) S 1x, ) +c,0,8,d, 5 0<ecy <172, (1.4c)

We consider that
V=X "Xk - (1.5)

Yk=8k+178k - (1.6)
We know that (CG) method is one of the few practical methods for
solving large dimensionality problems because it does not require matrix
storage and its iteration cost is very low. Usually the initial direction is
given by

di=-g;. _ (1.7)
Then the search direction for the next iteration has the form

der1=-k+1 Pk, (1.8)
Where Py is a constant parameter determined by the conjugacy condition
d;, G, d, =0;k>1, (1.9)

Any CG-method is a conjugate direction (CD) method where the vectors
di is also satisfy .
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d, €|dy,d,,..ndy 58] for k=0,1,2,...n-1;  (Al-Bayati, 1996).

that has the properties:

(a) d,...,dx are conjugate with respect to f, (1.10a)
) gid, =0i=12,... k, (1.10b)
(c) g & =0i=0,1,..., k-1, » (1.10c)

Thus Dixon, (1975) seeks a direction d,,;that is conjugate to the

member of the set d,and is a linear combination of k+| directions
described in (1.8).
Then is By defined either by

T
B, =%;§ﬂ,k21or (L1l a)
k Bk
T p—
Bk — gk+](§¥+g] gk);kZI (lll b)
k Sk

Then definition of Byin (1.11 a) is due to (Fletcher-Reevrs, 1964)(FR)

and Py in (1.1l b)is due to (Polka-Ribiere 1969)(PR). Extensive numerical
experience has shown that the PR algorithm is more efficient than the
original FR algorithm.

2. Generalized CG-Methods

CG-algorithm usually requires more function evaluations than the
variable Metric (VM) method to solve small dimensionality problems.
Therefore many extensions and modifications have been proposed in this
field Liu and Storey (1991) introduced a generalized PR algorithm. They
studied the effect of the inexact line search on conjugacy in unconstrained
optimization, and they show that their algorithm has global convergence
for twice continuously differentiable functions with a bounded level set.

Before we give the algorithm by Liu and Storey (1991), we first
established the general convergence theorem.

2.1 Theorem
Let the line search direction be

dpy = [(ukg}fﬂdk = tkgfﬂgm )2 + (ukngng - Skg:ﬂdk ), Vw,,
where ty,uy, Sk , Wy satisfy

tk>0 ’ Sk> 0 5
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1-ui/(t,s,)=1/(4r,), 0<r<oo,

W, =t,8, —u;
(Sk/gz+lgk+l )/(tk/dgdk ) < rk ’ O<rk<w3

_ e T
or =1, u=s=0, Wy =88 # 0,5, =0.

g'krdk <0,
Then, the following descent property holds:

if in addition there exists pi> 0 such that

(%) — f(x,) <-p, (gldk )z/d:dk'
Then if

D p/(1+ 1) =,
k=1

it follows that
lim inf g:+lgk+l =0;
and1f .
lim inf p, /(1+12)> 0.
Then Wwe have the convergence property
l](i_l)gggﬁt-xgm =0.

Proofs: see (Liu and Storey, 1991

A NVNA . LJA\)‘ i L J, £ S

)
J

2.2 Generalized CG-algorithm (Liu and Storey, 1991)
Step 1:let x; be an initial point of the minimizer x* of f.

Step 2:set k=1 and dy=-gx
Step 3:do a line search: set Xy.;=x,+Aidy , set k=k-+1.

Step 4:if |g,, | < € where e=5x10, take x* as x4 and stop; Otherwise
go to step 5.
Step 5:1f k+1>n>2,g0 to step 9; otherwise go to step 6.

Step 6:let t, =d,G,,d,,5y =8¢ Cruigy-and u, = g:-»-leHdk'
Step7: if t,>0, 5,>0, 1—ui/t,s,)>1/(4r,),and
(5, /200 (L /ded, ) <1, 1>0 then go to step 8;
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Otherwise go to step 9.
Step8: let

dy,, = [(ukggﬂdk - tkgzngkn )8t (ukgzﬂgkﬂ - SkgIﬂdk)dk ws
where wi= tisi-u? go to step 3.

Step 9:set xk+; =X; and go to step 2.

In practice, this algorithm was compared with currently available
standard routines and their results demonstrate a general efficient
GPR algorithm.

Usually CG-algorithms are implemented with restarts, In order to
avoid the effects of an accumulation error. Fletcher (1987) in his
standard method suggested to restart his algorithm with the steepest
descent direction every n or n+l iteration, where n is the dimension of
the problem, Another restarting direction was suggested by (Powell,
1977). They developed a new

procedure for starting CG-methods. Powell checked that the new
search direction dy.; will be sufficiently downhill if there inequalities
o 2
dL{+1gk+l < _0'8”gk+l ”
is satisfies.

3. Quasi-Newton Methods

Let Hy+ be an approximation to G,:, . Satisfying the Quasi-

Newton condition
Hy+ yx=Vk (3.1)
a family of Hy., satisfying (3. 1) is

T T
H,,=H, - Hk}v}(yk Hy + V¥Vk +¢(ykTHKyk)WkaT (3.2)
YWHeye o v
where
Ve H, y,
Ve Ve  YeHey,
and ¢, is a free parameter. Quasi-Newton methods are quite efficient

but need to store Hy and require O (n*) multiplication per iteration to
update Hy (Fletcher and Powell, 1963).

W, = (3.3)
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It is generally agreed that the best member of Broyden family is the

BFGS algorithm obtained by taking ¢, (Hu, Y.F. Khoda, K.M. Liu,
Y. Storey, C and Touati-Ahmed, D. (1995)).

3.1 Self-Scaling VM Methods

To alleviate the family of VM updating, it useful to multiply each Hy
by some scale factor p> 0 before using the update formula. with exact
line searches, this can be shown to present the conjugacy property in the
quadratic case, although we may no longer have He. G . However, the
focus here is to improve the single-step rather than the n-step
convergence behavior of the algorithm. Methods that automatically
prescript scale factor in a mamaner such that, if the function is quadratic
then the eigenvalues of dy HyGy4; tend to be spread above and below are
called self-scaling methods (Bazaraa, 1993).

In 1970's the self-scaling VM algorithms were introduced showing
significant improvement in efficiency over standard VM-methods. In
particular, in a series of papers by (Oren, 1979), (Al-Bayati, 1991),
(Nocedal, 1993) and (Al-Bayati and Al-Salih, 1994). Algorithms for
minimizing an unconstrained nonlinear function f (x) were developed.

Now we summarize the scaled BFGS algorithm due to (Al-Bayati,
1991).

3.2 Self-Scalin algorithm (Al-Bayati, 1991)
Start with an initial point x;,
Step 1:Set k=1 and choose H;=I, wheré [ is the identity matrix.
Step 2:determine the step-size Ay that minimizes f (x,+Ady) wh‘ere
d=-Hygx and obtain Xy, =xx+Ady.

Step 3:Update Hy by Hy+) by using Al-Bayati’s update as follows

T T T
mge g, (1= g, )
Vi Y VieYx ViYx

(3.2.1)

T

Y Hyy,

where ¢, ==
- Vi Yk
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and wy is vector defined by

H
Vi Yk } (32.2)

wk.-—-<y;fHkyk>V2{ .
ViYe Yl

Step 4: Set k=k+1 and go to step 1.

4. Preconditioned CG-Methods

In applications of the general functions, the CG and QN methods
each have particular advantages and disadvantages. In general a CG-
method normally requires more iterations than a QN or VM method to
obtain an equally good minimum point but a CG-method requires less
storage for implementation per iteration. CG-methods have proved to be
valuable when n is large because at each step a few n vectors have to be
stored and hence the computational costs and storage requirements are
affordable, even for large problems.

Therefore new class of CG-methods has been developed, termed
preconditioned conjugate gradient methods (PCG); the idea of the
preconditioning is to transform the problem so that the Hessian of the
transformed problem has clustered eigenvalues and is well conditioned.

The aim of PCG Method is to keep the storage requirements of order n
while improving the convergence properties, (see Nazareth 1979).

It will be seen that Quasi-Newton inverse Hessian approximation has
desirable properties as preconditions.

The idea of preconditioning has been extended directly to nonlinear
problems. The standard CG method is not always effective, but
preconditioning using an appropriate matrix can accelerate convergence
of the CG method by a transformation of variables while keeping the
basic properties of the method.

The preconditioning matrices described in this paper are based upon
the inverse Hessian approximations generated in a Quasi-Newton
method. Therefore, the main idea behind this method is the use of the
Quasi-Newton or Variable Metric updates to accelerate the CG methods.

4.1 New Preconditioned Generalized CG-algorithm
Step 1:let x; be an initial point of the minimizer x* of f and H;=I where I

is the identity matrix.
Step 2:set k=1 and d=-Hygx
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Step 3: do a line search set X=X+ dy .

Step 4: if g, [ <e, where £=5x107, take x* as X, and stop; otherwise go
to step 5.

Step 5: if k+1>n>2 , go to step 9; otherwise go to step 6 .

Step 6:Let t, =d{G,,d, s, =g1.G,.8-and u, =g,,,G,,d,.

Step7: if t>0,5>0, 1—ul/(t,s,)>1/(4r,),and
(s, /g1, &)t /d}d,) <1, ,1>0 then go to step 8;otherwise goto
step 10.

Step8: let

dyy =[(ukgz+1dk —tkg:ﬂHkng)Hkng +(ng:+|Hkgk+1 ~Skg:+ldk)dk]/wk
where wi= tis-u? .

Step 9:Update Hy by Al-Bayati (1991) formula as given in (3.2).

Step 10: set xy+1 =X, , k=k+] and go to step 3.

4.2 The Derivation of the New PCG Search Direction

Let H be any symmetric positive-definite preconditioned matrix,
then (By Nazareth, 1979) with Choleski Factorization H can be factorized
as:

H=LL' (5.1)

where L is a real lower triangular matrix and non-singular matrix.
Let f be the strictly quadratic function

f (x)=x"Gx/2+b"x+¢ (5.2)
- then the gradient is

g(x)=f'(x) =Gx+b (5.3)

Let x=Lz (5.4)

where z defines a new vector spaces and is defined as:

h (z)=f (Lz)=(Lz)"G(Lz)/2+(Lz) b+c (5.5)

which implies that
h'(z) = f(Lz)=L"GLz+L"b
= L"(GLz+b)=L'g (x).

(5.6)
Eq. (5.6) gives a relationship between the gradients in x-space and z-pace,
i.e
g=Lg (5.7)
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where g is the gradient in z-space while g is the gradient in x-space, so
that if h (z* )=0, then g (Lz* )=0.

set  z=zcta, d, (5.8)
multiplication of Eq. (5.8) by L we get

Lzg=Lzto,Ld, . (5.9)
using Eq. (5.4), then Eq. (5.9) becomes

X 17Xt o, dy (5.10)
herefore,

d=Ld, | (5.11)
which implies that

d, =L'd,. (5.12)
Set Yy =8 — 8¢ (5.13)

where g,,,,g, are the gradients of h (z) at the point z.zy. respectively.
by_using Eq. (5.7), Eq. (5.13) becomes ‘

y kL' gorL gLy, | (5.14)
now consider applying the conjugate gradient method,

- -7 = -T — - ~T - -T — =
disr = [(Uy 8rar k= b B Brt )8 + (U B Bt — Sk B di)di VW

By using Egs. (5.4), (5.7), (5.12) and (5.14) we get
L'd,, =[(u,gy, LLd, —t gy LL g, )L gy, + (U8, LL g, —
s, 8r,LL7d, )d, Vw,
(5.15)
multiply (2.23) by L and using (2.9) and LL'=I where I is the identity
matrix we get:

dyyy =[(ukg;\-r+ldk - tkg:HHng JHE, +(ukg:+ngk+l -
Skgzﬂdk)dk 1w,
(5.16)

equation (5.16) is called CG Method with Metric update H, where H
is any positive-definite symmetric matrix, or the preconditioned CG
Method (PCG). Thus the search direction (defined in Eq. (5.16)) is a
new preconditioned Hestens and Stiefel PCG-method.

The relative advantages over current algorithms of this type are
they require less storage and computation time, they are not so
sensitive to the exactness of the line searches, and the extension to
minimize the general function in a finite number of steps, i.e. this

~ PCG algorithm, has a quadratic termination property.

96




Abbas.Y.Al-Bayati & Abdulghafor M. AI-Rozbayani

S. Numerical Results

In this section we will show that our algorithm is better than
GCGStore's algorithm. Using self-scaling VM update (Al-bayati,
1991) as an acceleration” tool to the Generalized CG-Storey's
algorithm to decrease the number of iterations (NOI) and number of
function evaluations (NOF). The comparison tests involve twenty-five
well-known test functions with different dimension (see Appendix).
All the results were obtained using double precision on the (Pentium
II Computer). Using programs written in Fortran. The algorithms .
terminate whenever |g, .| <5x10° with Powell's restart |gf, g,| > 0.2]g,.|

and the .

algorithms are using the cubic line search strategy, which uses
function and gradient values and it is” adaptation that published by
Bunday (Bunday, 1984).

The comparative performances of the algorithms are evaluated by
considering both the total numbers of iterations (NOI) and total
number functions evaluation (NOF). .
Indeed, all our numerical results, the GCG-algorithm and new
algorithm are presented in table (1).

In this table we have compared our new proposed algorithm with
General CG algorithm by using (25) cases and for dimension (2<n
<1000). It is clear that the new algorithm outperform the standard
Storey's algorithm as a result of this comparison.
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9.Generalized Penalty (1) Function:

f(x) = i[(xi ~1)? +exp(x? - 0.25)%], xg=(1,2,....n)".

10.Generalized Penalty (2) Function:

f(x) = ;‘:[exp(xi -1+ (x? - 0.25)2], x=(1,2,....n)".

11.Generalized Powell Function:

nl4l:(X4i_3 + le,ﬁ_z)2 +5(X 4, —

f(x)=2%

i=l

X i)2 +
B ; o x0=(3,-1,0,3;..)".
(X4i—2 2X4i—l) + 10(X4i—3 — X4i)

12.Generalized Powell 3 Function:

w3 1 X Xsiy XX 02
f(X):E{:;—ljm:I—Sln(T) exp[ (——-——~X2i 2) j!},

x0=(0,1,2;.. .)T.
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