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Abstract
In this paper, we have discussed and investigated two nonlinear
extended PR-CG method which use function and gradient values. The
two new methods involve the standard CG-methods and have the
sufficient descent and globally convergence properties under certain
conditions. We have got some important numerical results by comparing
the new method with Wu and Chen PRCG-(2010) method in this field.
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1. Introduction.
This paper considers the calculation of a local minimizer x* say, for
the problem:

Min f (x); where f:R" >R (1)
Is @ smooth nonlinear function (of n variables) and its gradient vector
g, =Vf(x, ) is available are calculated but the Hessian matrix is not
available. At the current iterative point x,, the Conjugate Gradient (CG)
method has the following form:
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Xgyp = X +o, e (2a)
— Oy, k=0

d, :{ Do E=R (2b)
— 0+ 6d, ;. k=1

where «, Is a step-length; d, is a search direction; S, Is a parameter.
Standard algorithms for solving this problem include CG-algorithms
which are iterative algorithms and generate a sequence of approximations
to minimize a function F(x) and their very low memory requirements.
However, this paper considers a more general model than the usual
quadratic function

F(x)=%xTGx+bTx+c ...... 3)

Some well-known formulas for g, are the Fletcher-Reeves (FR),

Polak-Ribiére (PR), Hestenes-Stiefel (HS), Descent-Dixon (DD) methods
which are given, respectively, by:

T T T T
ﬂkFR _ nggk ;ﬁkPR _ Y Tyk—l ;ﬁkHS _ Ok Yva -ﬂkDD __ nggk (4)

Ova Ok Ok 9k dey Yia de 9
where y,, =0, -9,

Another important issue related to the performance of CG-methods
Is the line search, which requires sufficient accuracy to ensure that the
search directions yield descent. Common criteria for line search accuracy
are the Wolfe-Powell conditions:

=

......

f(x, +ad)-f(x,)<da0r.d, ... (5a)
g.d,,>0c9, d.,, . (5b)
f(x_,+ad,)-f(x_,)<ée09id,, .l (6a)
‘gldk_l‘ <-og,d., . (6b)

where 0<85<05<o<1

Equations (5) and (6) are called the “Standard Wolfe” and “Strong
Wolfe” conditions, respectively. When ,quadratic functions and exact line
searches are used, all the above formulas in (4) are equivalent. However,
these formulas very according to general functions. For general functions,
[22] proved the global convergence of PR method with exact line search.
On the other hand, the PR and HS methods perform similarly in terms of
theoretical property. Nevertheless, [16] showed that the PR and the HS
methods can cycle infinitely without approaching a solution, which
implies that they do not have globally convergence.

In this paper, we have proposed, two new special formulas
ol p for pl,p.°, respectively, from this formulas we can conclude

the o, pi*? and two new formulas gM,p.** for B, applying the
rational non-quadratic model .Moreover, g ", 3" keeps the property
of PR method, namely, if a very small step is generated the next search
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direction tends to the Steepest Descent (SD) direction, preventing a
sequence of tiny steps from happening. Furthermore, finite quadratic
termination is retained for the new methods. Since the sufficient descent
condition is a property of great importance for the global convergence
analysis of any CG-method, we have modified the conjugacy parameter
of [21] to implement the non-quadratic rational model which satisfies the
sufficient descent property and the modified Wolfe-Powel conditions
introduced by Andrei [6] we illustrate this condition in section 4. In
addition, the global convergence property of the new proposed CG-
method is discussed and a set of numerical results presented show that the
new proposed method is efficient.

2. Materials and Methods.
2.1 Extended CG-Methods For Non-Quadratic Models.

Over years, various authors have published works in this area, In
this paper, a more general model than quadratic one is suggested as a
basis for a CG-algorithm. If g(x) is a quadratic function, then a function
F(q(x)) is defined as a non-linear scaling of g(x) if the following

invariancy condition holds:
df

Minimize f (x) = F[q(X)]; Whered—qz f >0 and g0 ... (7)
where, x” is the minimizer of g(x) with respect to x for more details see
[19] and f is monotonic increasing, may be better to represent the

objective and thus it gives an advantage to method based on this model.
In order to obtain better global rate of convergence for minimization
methods when applied to more general functions than the quadratic.

The following properties for f(x) are immediately derived from the
above condition:
 Every contour line of g(X) is a contour line of f(x)

 If X is a minimizer of q(x), then it is a minimizer of f(x)
« If x” is a local minimizer of q(x), then it is a local minimizer of f (x)

Boland et al. (1979) was the first who observed that g(x) and F[q(x)]
have determined the same search directions so that the finite termination
property for their algorithm was satisfied. Many authors have proposed
special models as follows:

a) A conjugate method which  minimizer the function

Fla()]1=(a(x))?;p>0 and xeR"
in at most n step has been described by Fried [11].

b) The special polynomial case, F[q(x)]=glq(x)+%gz(q(x))2

where ¢,, &, are scalars, has been investigated by Boland et al, [9].
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c) A rational model has been developed by (Tassopoulos and Storey)
[20] where: F[q(x)]:LX)Jrl
£,9(X)
d) Al-Bayati introduced several non-quadratic rational models; see for
example [2]; [1]; [4] and [3].

; &, <0;andq(x) >0

2.2 ERCG-Method (Tassopoulos and Storey ,1984). [20]
Tassopoulos and Storey,1984 non-quadratic model is defined as:
£,9(x) +1,

Fla(X)] = ; &, <0;andgq(x)>0 L. (8a)
£,9(x)
From Boland theorem [10] they get the parameter:
2
s _ 5 rfi)w)z ; where n=-(4.,9/,d.)/2 and w=f —f,

Where they defined the direction as:
dk+l :_gk+1+pll—sﬂkFde; k :1,2 .....

2.3 ERCG-Method (Al-Bayati,1993). [2]

Al-Bayati's, 1993 non-quadratic model is defined as the quotient of
two quadratic functions and so belongs also to the class of rational
functions , Al-Bayati's rational function model was considered by:

F[q(x>]=%; £ <0, & >0 r.(8D)
Where q(x) = %(x— X.in) Q(X—X...) eee(9)

Is the quadratic function then it determines the solutions x_. in a finite
number of iterations not exceeding (n), and F[q(x)] satisfy the property
(7). He get the parameter:

T 2
5 _ (S,-1941) : (10)
4( fk—l o fk)
Where they defined the direction as:
Aea =i + 2 B s k=12,...

2.4 The Special Cases.

In this paper ,we introduced the two special cases of AL-Bayati's
(1993) and Tassopoulos and Storey (1984) extended CG-method which
are invariant to nonlinear scaling of quadratic rational functions are
proposed. The first investigated model is defined as the quotient of two
guadratic functions and so belongs also to the class of rational functions a
special of AL-Bayati's rational function model was considered by:

q(x) .
Fla(x)] o0 e (11)
From (7) We can rewritten (11) as:
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q(x) .
f(x) - q()’
Where the function f is defined as nonlinear scaling of q(x) and the
invariancy property to nonlinear scaling (7) holds and q(x) is defined in
(9) is the quadratic function then it determines the solutions x . in a finite
number of iterations not exceeding (n). It is shown the one-dimensional
problem (min, f(x, +«d,)) and d, is a search direction that the following

updating process by the Boland theorem [10] to convert the quadratic
model to a non-quadratic model in (12) :

d, =-g, e (122)
Ay =0y + 2B, k=12,... L. (12b)
P = fkl/fklﬂ ...... (12¢)
B = g;+1(gk+l _gk)/g;gk (12d)
. df
frf=on 12
> (12¢)
we can write:
f=—d o f_fq=q=f=(f+1)q
1-q
=—— 13
=4 f+1 (13)
Since from the (12c) we have:
1-0 + 0y ,
L-gs)’ 1-q,
= =l  Liiees 14
pk 1_qk +qk pk 1_qk71 ( )
(1_Ch<)2
If substituting (13) in (14) we get:
TR | foer—f £ 1)
o= M R P e A
fo,+1
f,+1 ’
Pl L= 15
= P ( f, +1] (15)

Similarly the special case of the rational function of Tassopoulos and
Storey [20] in (8a). In this paper we shall state the rational function of
AL-Assady and Shakory [18] considered by:

F[q(x)]:q(x—)+1:> f :q_+1:> fg=q+L= fg-q=1
q(x) q

RN

Since from the (12) we have:
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Ox1—1-0y )
(Gs)’ i
_ —| Sk e (17
pk qk _1_qk :>,Ok qk_l ( )
(@) .
If substituting (16) in (17) we get:
1 2
f -1 fo, -1
po=| | =P =[—;k1_1] ...... (18)
f, -1

The (18) and (15) are called the special case of rational function model of
Tassopoulos and Storey (1984) and AL-Bayati's (1993) ,respectively.

2.5 Two New Combined of Rational Functions.

A. We introduce the combined of two rational function as a convex
combination of the special case of Tassopoulos and Storey in the equation
(18) and the rational function AL-Bayati's (1993) in the equation (10)
non-quadratic model to be investigated here is considered by :

pet =Apl +1-2) p

2 2
Newl S:—lgk—l fk—l -1
=A| — 1-A).|—— ...
P 4 [z(fk_fk—l)j +( /1) ( fk _l] (19)

Where 0< 1 <1, we take the suitable value in the numerical result; 4 = %

B. We introduce another combined of two rational function as a convex
combination of the special case of AL-Bayati's in (15) and the and AL-

Bayati's in (10) non-quadratic model to be investigated here is considered
by :

New?2

pt = APl +(L=2) p°

T 2 2
f. . +1
New?2 :ﬂ« Sk—lgk—l 1_/1 . kA 20
P (Z(fk_fk—l)] + ) ( fk +1j ( )

Where 0< 4 <1, we take the suitable value in the numerical result; 4 =%

3. Wu and Chen (2010) CG-Method.

In this section, we are going to present the recent work of the two
well-known Scientist Wu and Chen in (2010). They introduced several
well-known CG-formulas. The conjugacy parameters of these CG-
methods are given by; g., B¢, respectively by making use of the Powell’s

restarting criterion and the Armijo-type line search defined by:

1 ws o 2(F = f)+ g:—lsk—l
= R R e 21
ﬂk ﬁk d;—_lyk_l ( )
2(f, . —f.)+4qg/.s
,Bk2 :ﬂkPR + (f ”gk)”29k1 k-1 (22
k-1
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They proved that all the above CG-methods satisfy the sufficient
descent condition and have the global convergence property for more
details see [21].

4. A New Extended CG-Method.
4.1 Transform Quadratic model to Non-quadratic.
Consider the following quadratic model we proceed as in [21]:

f(x):%xTAx+bTx+c ...... (23)

where A<R™ is a symmetric positive definite matrix,. ceRand beR"
Wu and Chen in (2010) obtain the new formula of conjugate gradient
method in (22) which based on the quadratic model, in this paper we
expand the conjugate coefficient (22) by add p, using (19)-(20) to get

two new extended CG method whose conjugacy parameters are defined

by:
’ S, ? £ -1)’
2( fk—l - fk)"‘{ﬂﬂ{z(fklgkfl)J +/12'( k_l_l ] \](g-krlskl)
k k-1 k

IBkNer :ﬂkPR + ||g ||2 (24)
k-1
ow 8(f - f)° +24.(90,5.)° (f —D%(9e4541)
ﬂkN 1:ﬂkPR+ k-1 k 121 k12k1 +ﬂvz- k-1 - k1k21 ______ (25)
4( fk—l - fk) ”gk—l” (fk _1) ”gk—l”
- 2 2
2(f - f )+ 4. Sl + 4. M (g-kr—lsk—l)
New2 PR 2( fk - fk_l) fk +1
BT =p0 + ”g ”2 ...... (26)
K=
New2 PR 8( fk—l - fk)3 + ﬂl'(gz—lsk—l)s 1 (fk—l "‘1)2(91715#1)
B =P+ 2 2 +4,. p 2 e (27)
4(fk—1 - fk) ”gk—l” (fk +1) ”gk—l”

where 1> 4,4, >0.

4.1.1 An Acceleration Scheme of the Line Search Parameter.

In the CG-methods the search directions tend to be poorly scaled
and as a consequence the line search must perform more function
evaluations in order to obtain a suitable step-length «,. In order to

improve the performances of the CG-methods the efforts were directed to
design procedures for direction computation based on the second order
information. Jorge Nocedal [14] pointed out that in CG methods the step
lengths may differ from 1 in a very unpredictable manner. They can be
larger or smaller than 1 depending on how the problem is scaled.
Numerical comparisons between CG methods and the limited memory
QN method, by Liu and Nocedal [13], show that the latter is more
successful [8]. Here, we have pointed out Andrei's [7] acceleration
scheme; basically, this modifies the step length in a multiplicative manner
to improve the reduction of the function values along the iterations [5, 6].
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4.1.2 Outline of The Two New Extended CG-Method.
Step 1: Given x, eR"; (¢>0); (k) is an index of the algorithm
Step 2: Setk=1; d, =—g,
Step 3: Using the modification WP line search conditions which fully
described by Andrei (2009) determine the step length «,, such
that, compute: z,,, =x, +a.d,, ¥, =0, —9,, 9, = Vi (2).
Acceleration scheme, compute , a, =«,9,d,,b, =—«,y,d,. If

b, =0, then compute A, :—Z—k and update the variables as
k

X, =X +4ad,, oOtherwise update the variables as
X = X + o, dy .
Step4: Computef, ,,q,,.Usey, =g, —-9g.and s, =x., —X,.
Step 5: If Powell restarting, |gfg,,|>0.2g,| . satisfied then set:
dy.=-0,,.6elsesetd,,, =-g.,+p."d, (B, B **Is defined in

(25), (27)), go to Step 2.
Step 6: If |g,.[<e, stopelse set k=k+1 goto Step 3.

4.2 Theoretical Properties for the Two New Extended CG-Method.
In this section, we focus on the convergence behavior on the
Bl ple? methods with inexact line searches. Hence, we make the

following basic assumptions on the objective function.

4.3 Assumption.[21]
f is bounded below in the level set L, ={xeR"|f(x)< f(x)}; in

some neighborhood U of the level set L,, f is continuously
differentiable and its gradient Vf is Lipschitz continuous in the level set
L,, » namely, there exists a constant L> 0 such that:

IVf(x)-VE(y)|<L|x-y| forallX,yer, ... (28)

4.4 Assumption.[21] The level set L, is compact.

4.5 Lemma. [12]
Consider a general CG-method, and suppose that 0<y <|g,|<»

holds. We call a method has Lemma 4.5 if there exist two constants b>1
and p>0 such that for all k, |5,|<b and

1
Bl<o=lal<s L (29)

4.6 Lemma. (Zoutendijk Condition).[22]
Suppose that Assumption 4.3 holds. Consider any CG-type method
in the form of x_, =x +a,d, Where d, is a descent direction and ¢,
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satisfies the Wolfe-Powell line search conditions in (5)-(6). Then we have
that:

id,
Z(g )

i ||d, ||

4.7 Lemma.
Suppose that the Assumption 4.3 and 4.4 hold. Consider the CG-
algorithm 4.1.2, and «, is obtained by the strong Wolfe-Powell (6) and

for all k>0, there exists the positive constant » such that y <|g,|, then

the new algorithm (4.1.2) has the Lemma 4.5.
Proof.
It follows from the definition of g in (25), and by the compactness of

the level set L, , there exist three constants M, >0,M, >0, >0 such that:
% <My FxOI<M, g <7 % e L,
Under Assumption 4.3 and 4.4, we know there is a constant L >0
satisfying :
(%) = F )] < Lfxe =X % X € Ly

(s = )+ A (0080, (fy~D*(9L:5,)

ﬂNer ﬂPR +

| ‘ A1) g’ C(-De |

‘ Newd ‘,BPR‘ |8(fk L, f ) + 1. (gk _15g 1) |+ ﬂz.(fkl_l)z(gglskzl)| ...... (30)
o= 0o | (-0e) |

The third term from the last equation can be simplified as:
[((Fs =D (fiy =D| _ (fa+D* (M, +D?
| (f -D(f, -1 | (f]+D? (M, +1)?

2,° | 64M; +84,M3) L 2% M,

Newl
‘lgk < 7/2 16M2 2 ]/2
‘ﬂNer 2(4M27 +8M; + 4. L\/Ilzy +44, M sz) =b .. (31)
4M ] y
Define
4M 2 52
2y (32)

2b@AMZ5 +8MI+ AL MI 142, MM 2 )
we obtain from the Lipschitz continuous that if ||s,|< p, for all k>0 then

_rLisd, 8ils +8ar s | Ao 7lsil

ﬁNer <
A y? 4L2||sk|| y:
o 4yLL%+8L + +42, L2 1
‘ﬂkN 1 p( /4 4sz/127 17/) 2_b ...... (33)

Therefore, for b and p defined in (31) and (32) respectively, it follows
that the relation (29) hold, and similar if we want to proof that g.*** has

the Lemma 4.5
@ )
I= =l
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4.8 Theorem.
Suppose that Assumption 4.3 and 4.4 holds. Consider the new
extended CG-method defined in (25) , (27) with g, g'** if «, IS

obtained by an exact line search. If |s,| -0, then:  liminf|g|-o

Proof:
We now prove the theorem by contradiction and assume that there
exists some constants y > 0 such that |g,|>» for all k>0. The

compactness of the level set L, implies that there exists a constant y >0
such that [g,[<y. Since [s—0, we know that there is a k, for
all k>k suchthat k<|s,[ < p, where p is the same as in Lemma 4.6. Then,
for all k >k, we have:

[ <lad+[ 9 (34)
_ 1, _ 1
37““%(7 +_||dk—2||)
1._
= (1"‘%)7"‘ (Zb) (” k- 2”)
1

1
<o) 7e———(d]

2b
Such that

is a geometric and the lim ———
-1 0 (20)<*

2b
_(m)y+”d \=z .. (35)
Furthermore, we know
4

z(gkd) z”gk” Z ...... (36)

" =] =
we know using Lemma 4.6 together with (36) ,yields

0 4

T o< 37)
o d.|

Which contradictions (35). Therefore, we conclude the truth of the
theorem.

4.9 Theorem.
Suppose that Assumption 4.3 holds. If there exists a constant »> 0

such that |g,|>y, for all k>0. If &, is obtained by modified Wolfe-
Powell conditions and d, is defined in (2b) of the new B, . ** CG-
method and 0 <4,< 1, then the new extended method has sufficient
descent directions i.e.,

dig, <—clg,|; c>0 ......(38)
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Proof:

For initial direction we have:

d,=-g,=d/g, =g,[°’<0 L. (39)
which satisfies (35). Now let the theorem be true for all k-1, i.e.
dey=-01 =0di 10,4 =_||gk—1||2 <0 ......(40)

Since our function f is uniformly convex function either in the

quadratic or in the non-quadratic regions, then there exist a Lipschitz
constant L>0 and a constant, » >0 such that:

(VEQ)-VEW) (x=y) 27 [x—y[ forallx,y eL, e (41)
Or equivalently:
YaSia 2 77”51(—1”2 and 77||Sk—1||2 < YeaSes < L||Sk—1||2 e (42)

A. Multiplying the search direction of (25) by g, yields:
8(f s~ f)’ + 4 (9e,8c0)’

:
47 0 =0l + (L) 5T g, + ( o)
O G e O
T
1 d- fk—l)(sk—lgkz—l) (5[_1gk)
(1- fk)”gk—l”

For inexact line search using Wolfe-Powell conditions (5) and (6) we
have:

s, -85°(9,,5.4)° c1Siea)’
T <o + Gy g, [+ (200 TR GSAy g
||gk,1|| 46 (gk—lsk—l) ”gk—l”
.
4,0 (Sk_1gk—21) (S:-lgk)
|| 9 1||
¢ 9y S_”gk” +(——5 Sl 1)(” k” )+ ( /112 )( e19:)(9¢ 15 1)
[P 45”9 o (83)
+ﬂ~2 é/l ( k_lgk_zl) (Sl—lgk)
i

(4, —85°)

dy g <—ou]” + Ll )9e ] — s CE2)(51100) — i ba(si10i) ... (44)

452
Powell and criteria which are defined as:
0 0 > vo’s v ey ... (45)
From [17] Powell restarting criterion (45) we have:
g-krsk—lzak—l g:dk—l:_ak—l g:gk—l (46)
Using (45) and (46) in (44):
85°
479, = ol + L) o + vy (B2 Dlg L
+‘///12/;1(05k71) ”gk”

-85°

(d; gk)/(”gk”2) <-1+ L(ak—l)z +lr//(ak—l)2 (M) +l//ﬂ“241(ak—1)2 ceree (48)

45°
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@90 /(a]) <~ A= yplay)’ (%45825)

@l g0 /(o ] <-c c>0 for
0<0<05 O0<ay,L,A<1

)= Ll )’ =y Al (@,)®) e (49)

...(50)

B. Multiplying the search direction of (27) by g, yields:
8(f = f)’ + 4 (9¢,S4)°

0} Vi ‘
T gy = o] + () (6T Lg,0+ ( USSR
oo G e o
PRCERMYICH 1gk_1)( sT.9.)
1+ f, )”gk 1"

For inexact line search using Wolfe-Powell conditions (5) and (6) we
have:

~85%(9r18c4)° + 4 (94 451)°

<o + ey (ig, )+ (2GS + A GLSL) o g
l9]” 45 (9x 15c1) |9k
+12§2%(Sglgk)
Tg, <o, (”k 1yﬁl)(|| 0.[)+ (ﬂg” ”)>< SRR
I It o (51)
L4, (”k 1gk”-1)( 1,0,
(1, ~85")

40 <ol + L) o] - s (260100 — @i 804194 -+ (52)
From Powell restarting criterion (45) , and (46) in (44):

(2, ~85%)
dy g, < ”g ” +L(e )’ ”gk” +y() 45° )” k” .....(53)
+W/12§z(ak—1) ”gk”
@7 90 /(9. ]") € -1+ Ll )? +y (e y)? (“%f)) YA (@)?) . (B4)
@ g0 /(g ) <= A pla ) (289 458;5 )) L) vl 1)?) oonn(55)
@d7g) /(o )<-c; ¢>0 for 0<5<05;0< a,p,L,A<1 ......(56)

Thus our new proposed extended CG-method has sufficient descent
directions using inexact line searches under the condition that Powell
restarting condition must be used.

4.10 Theorem
Suppose that Assumption 4.3 hold. Consider the method (2)-(3)
with the following three properties:
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(i) B =0 forall k;

(i) the line search satisfies the Zoutendijk condition, and the sufficient
descent condition (38);

(ili) Lemma 4.4 holds.
Then Liminf|g, | =0, for more details see [12].

Therefore, the method has a global convergent property by satisfying the
conditions of Zoutendijk theorem and the line search satisfy the strong
Wolfe condition then from Gilbert and Nocedal in [12] these method is
global convergent.

5. Numerical Results
The main work of this section is to report the performance of the
new method on a set of test problems. The codes are written in Fortran
and in double precision arithmetic. All the tests are performed on a PC.
Our experiments are performed on a set of case 35 nonlinear
unconstrained problems that have second derivatives available. These test
problems are contributed in CUTE and their details are given in the
Appendix.
In Case are divided in three branches according to the numerical
experiments with their number of variables:
1- 10 numerical experiments with n = 100, 200, . ..., 1000.
2- 5 numerical experiments with n =100, 300, 500, 700, 900.
3- 4 numerical experiments with n =100, 400, 700, 1000.

In order to assess the reliability of our new proposed method, we
have tested it against the standard Wu & Chen's modified PRCG-method
(Wu and Chen, 2010) using the same set of test problems. All these
methods terminate when the following stopping criterion is met:
lg,]|<107° e (B7)

Tables 5.1, 5.3 and 5.5 compare some numerical results for the
modified PRCG method of Wu & Chen and the two new extended PRCG
method for 35 test functions. In all these tables (n) indicates for the
dimension of the problem; (NOI) indicates for the number of iterations;
(NOFG) indicates for the number of function and gradient evaluations;
(TIME) indicates for the total time required to complete the evaluation
process for each test problem.

In Tables 5.2, 5.4 and 5.6 we have compared the percentage
performance of the two new extended PRCG-methods against the
standard Wu & Chen PRCG-method taking over all the tools as 100%. In
order to summarize our numerical results, we have concerned only on the
Total of n different dimensions for all tools used in these comparisons.
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WITH n=100, 200, ...,1000
New Extended 1

Table (5.1)
COMPARISON BETWEEN THE NEW 1 &2 AND (WU & CHEN) METHODS
FOR THE TOTAL OF DIFFIRENT DIMENSIONS OF (35) PROBLEMS

New Extended 2

M. L e 20N PRCG/2012 PRCG/2012
'NOI NOFG TIME NOI NOFG TIME NOI NOFG TIME
100 | 169 | 206 | 003 | 164 | 201 | 002 | 167 | 204 | 0.01
1 [ 800 | 317 | 347 | 03 | 278 | 327 | 041 | 278 | 327 | 0.5
1000 | 182 | 212 | 021 | 127 | 157 | 007 | 127 | 157 | 0.14
2 | 200 | 19 | 39 0 19 | 39 0 19 | 39 0
3 | 100 | 7 9 0 7 9 0 7 9 0
4 | 300 | 110 | 124 | 004 | 110 | 124 | 002 | 110 | 124 | 003
5 | 100 | 95 | 103 | 002 | 95 | 103 0 | 95 | 103 0
100 | 385 | 38 | 001 | 34 | 37 0 | 34 | 37 0
300 | 36 | 39 | 002 | 24 | 26 0 | 24 | 26 0
6 | 40036 | 39 | 001 [ 3 | 38 [ 0013 | 38 [ 003
500 | 37 | 40 | 003 | 29 | 31 0 | 20 | 31 | 001
800 | 37 | 40 | 005 | 36 | 39 | 001 | 3 | 39 | 0.05
1000 | 37 | 40 | 007 | 36 | 39 0 | 3 | 39 | 007
100 | 524 | 544 | 002 | 15 | 18 0 15 | 18 0
200 | 575 | 602 | 001 | 14 | 17 0 | 27 | 30 0
300 | 226 | 228 | 002 | 9 12 0 15 | 18 0
7 | 700 [ 457 | 460 | 007 | 301 | 303 | 002 | 18 | 21 | 002
800 | 536 | 539 | 009 | 41 | 44 0 | 91 | o4 0
900 | 227 | 230 | 003 | 71 | 74 0 | 109 | 112 | 002
1000 | 481 | 485 | 009 | 29 | 32 0 | 215 | 238 | 005
8 | 900 | 17 | 20 | 005 | 17 | 20 0 17 | 20 | 003
o |30 [ 39 | 51 0 27 | 38 0 | 26 | 37 0
900 | 27 | 39 0 26 | 38 | 002 | 26 | 38 0
100 | 19 | 27 0 16 | 23 0 16 | 23 0
o 20021 34 002 [ 20 | 22 0 | 20 | 22 0
700 | 22 | 30 | 001 | 21 | 23 0 | 21 | 23 0
800 | 21 | 23 | 002 | 19 | 27 0 19 | 27 | 001
L 200 [ 51 | 62 0 49 | 60 0 | 34 | 43 | 002
700 | 40 | 52 | 001 | 38 | 50 | 002 | 38 | 50 | 0.2
12 | 600 15 | 23 | 002 | 15 | 23 0 15 | 23 0
13 | 1000| 3 6 002 | 3 6 0 3 6 0
14 | 500 | 149 | 157 | 002 | 149 | 157 0 | 149 | 157 | 001
15 | 900 | 490 | 498 | 012 | 490 | 498 | 0.03 | 490 | 498 | 0.11
16 |1000| 8 11 0 8 11 | 002 | 8 11 0
17 | 900 | 9 12 | 005 | 9 12 0 9 12 | 001
18 | 200 | 11 | 14 | 002 | 11 | 14 0 11 | 14 0
19 | 600 | 130 | 139 | 003 | 130 | 139 | 0.02 | 130 | 139 | 0.01
20 | 900 | 7 9 001 | 7 9 0 7 9 0
21 | 100 | 92 | 99 | 002 | 92 | 99 0 | 92 | 99 0
,, | 200 36 | 45 0 34 | 43 0 | 36 | 45 0
300 | 43 | 45 0 38 | 47 0 | 43 | 45 | 002
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400 [ 50 | 52 0 49 52 0 50 52 | 0.01
700 | 95 | 97 | 005 | 53 55 | 001 | 95 97 | 0.05
800 | 98 | 100 | 0.05 | 44 | 46 0 94 96 | 0.05
900 | 94 | 9 | 004 | 70 72 | 002 | 94 96 | 0.04
1000 90 | 92 | 007 | 47 | 49 [ o002 | 71 73 | 0.05
200 | 152 | 164 | 0.03 | 73 80 0 | 136 | 149 | 001
400 | 169 | 185 | 0.05 | 80 | 96 0 | 143 159 | 0.05
23 | 800 | 148 | 165 | 009 | 124 | 144 | 001 | 92 | 122 | 0.6
900 | 145 | 163 | 012 | 87 | 105 | 0.02 | 65 69 | 0.03
1000 | 136 | 155 | 011 | 50 | 52 | 001 | 40 | 42 | 0.05
24 600 ] 13 | 25 [ 002 | 13 25 0 13 25 | 0.01
25 | 600 24 | 35 0 23 25 0 23 25 0
100 | 96 | 106 | 001 | 95 | 100 | 0.01 | 74 79 | 001
o | 600 [ 123 | 145 | 004 | 107 | 129 | 001 | 49 71 | 002
800 | 109 | 119 | 004 | 43 | 45 0 60 62 | 0.03
900 | 65 | 67 | 0.05 | 58 60 | 0.01 | 45 47| 0.03
27 | 500 | 13 | 23 0 12 21 0 12 21 0
28 |1000] 8 16 | 002 | 8 16 0 8 16 0
29 [300] 9 11 | 002 | 9 11 0 9 11 0
30 | 900 | 4 8 002 | 4 8 0 4 8 0
s |70 [ 22 [ 30 [ o001 | 21 23 0 21 23 | 002
800 | 21 | 23 | 002 | 19 27 0 19 27 | 001
100 | 106 | 116 0 | 104 | 114 0 | 104 | 114 0
32 | 200 | 144 | 153 0 | 134 | 156 0 | 134 | 156 0
300 | 128 | 141 0 | 128 | 143 | 002 | 80 92 | 0.02
33 | 100 | 1 4 0 1 4 0 1 4 0
34 | 900 | 8 11 | 002 | 8 11 0 8 11 0
100 | 18 | 27 0 16 25 0 15 24 0
200 | 20 | 30 0 16 25 0 15 24 0
300 | 20 | 29 0 16 25 0 15 24 0
400 | 20 | 29 1 18 27 0 17 26 0
a5 | 500 [ 20 [ 29 0 18 28 0 17 27 | 0.02
600 | 20 | 29 0 18 28 0 17 27 0
700 | 20 | 29 0 18 28 0 17 27 0
800 | 20 | 29 0 18 28 0 17 27 0
900 | 20 | 29 0 18 28 2 18 28 0
1000 | 20 | 29 0 18 28 0 18 28 0
Total 7662 | 8351 | 3.42 |4331| 4968 | 251 | 4407 | 5054 | 1.49
TABLE (5.2)

New a

PERCENTAGE PERFORMANCE OF TABLE (5.1

Wu & Chen 2010

Igorithm 2012 (1

New algorithm 2012 (2)
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TABLE (5.3
COMPARISON BETWEEN THE NEW 1(&2)AND %NU & CHEN) METHODS
FOR THE TOTAI1_08|3635) PIR;%(I)SL MS WITH
n=

New Extended 1 New Extendeo
Wu & Chen/2010 PRCG/2012 PRCG/2012

1 936 1099 940 1106 943 1109 | 0.65
2 113 208 0.01 113 208 0.02 113 208 0.02
3 37 47 0.02 37 47 0 37 47 0.03
4 775 848 0.46 775 848 0.47 775 848 0.48
5 513 559 0.08 513 559 0.06 513 559 0.08
6 151 163 0.11 170 184 0.1 170 184 0.14
7 4244 | 4277 0.31 | 1098 | 1112 0.13 207 222 0.01
8 81 98 0.1 81 98 0.09 81 98 0.09
9 168 228 0.02 168 228 0.01 168 228 0.03
10 93 134 0.05 93 134 0.07 93 134 0.03
11 219 289 0.06 280 337 0.06 214 268 0.06
12 89 140 0.02 89 140 0 89 140 0
13 18 35 0.02 18 35 0.02 18 35 0.02
14 660 698 0.09 663 701 0.09 660 698 0.09
15 3311 | 3349 0.48 | 3315 | 3353 0.51 | 3311 | 3349 | 052
16 65 75 0.02 70 80 0.03 65 75 0.02
17 45 60 0.02 45 60 0.02 45 60 0.03
18 54 65 0.01 54 65 0.02 54 65 0.01
19 639 683 0.11 639 683 0.09 639 683 0.09
20 37 47 0.01 37 47 0 37 47 0
21 455 494 0.06 455 494 0.06 455 494 0.07
22 374 404 0.14 278 301 0.1 337 360 0.12
23 429 492 0.19 406 475 0.15 315 364 0.09
24 68 87 0.01 73 102 0.02 68 87 0
25 119 174 0.03 125 135 0.02 120 157 0.02
26 510 549 0.17 422 458 0.13 421 472 0.13
27 74 99 0.02 69 102 0.01 69 102 0.01
28 40 80 0.01 40 81 0.01 40 81 0.04
29 43 53 0.01 43 53 0.01 43 53 0.01
30 22 38 0.01 22 38 0 22 38 0.01
31 95 122 0.03 95 122 0.05 95 122 0.04
32 572 632 0.08 701 763 0.08 649 708 0.08
33 12 35 0 12 35 0 12 35 0
34 39 55 0.02 39 55 0.02 39 55 0.01
35 98 144 0.02 86 133 0 82 129 0
Total | 15198 | 16560 3.5 | 12064 | 13372 | 3.15 | 10999 | 12314 | 3.03

TABLE (5.4)
PERCENTAGE PERFORMANCE OF TABLE (5.3

Methods
Wu & Chen 2010 T00% | 100% 100 %

New algorithm 2012 (1 79.3 80.7 90
New algorithm 2012 (2) 72.4 74.4 86.6
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TABLE (5.5
COMPARISON BETWEEN THE NEW 1(&2)AND %NU & CHEN) METHODS
FOR THE TOTAL OF gSSE)PROBL MS WITH
n= 100, 400,700 ,1000

NeW EXtene New Extended
W“ & Chen/2010 PRCG/2012 PRCG/2012

1 892 1008 | 0.66 | 836 952 0.63 | 839 955 0.63
2 87 164 0 87 164 0 87 164 0.01
3 29 38 0.03 29 38 0.01 29 38 0.02
4 627 681 042 | 627 681 0.4 631 685 0.42
5 406 443 0.06 | 406 443 0.05 | 406 | 443 0.06
6 137 147 0.13 | 135 146 0.1 135 146 0.13
7 2518 | 2548 | 0.34 | 799 810 0.09 | 330 362 0.06
8 66 79 0.09 66 79 0.04 66 79 0.08
9 141 183 002 | 141 183 001 | 141 183 0
10 84 119 0.03 84 119 0.05 84 119 0.05
11 233 285 0.08 | 252 304 0.07 | 236 288 0.08
12 98 138 0.02 98 138 0 98 138 0.01
13 14 28 0 14 28 0.02 14 28 0
14 510 538 0.1 513 541 0.07 | 510 538 0.07
15 2156 | 2188 04 |2160| 2192 | 0.41 |2156 | 2188 | 0.41
16 53 61 0.03 57 65 0.02 53 61 0.01
17 36 48 0 36 48 0 36 48 0
18 43 52 0 43 52 0.01 43 52 0.02
19 510 545 0.06 | 510 545 0.08 | 510 545 0.08
20 29 38 0 29 38 0.01 29 38 0.02
21 379 412 0.04 | 379 412 0.07 | 379 412 0.06
22 334 355 0.15 | 201 222 0.07 | 315 336 0.13
23 386 428 0.19 | 339 393 0.13 | 264 289 0.09
24 56 84 0.02 67 115 0.01 67 115 0.02
25 98 124 0 101 118 0.02 | 101 118 0.02
26 333 357 0.12 | 322 341 0.09 | 244 275 0.08
27 61 84 0 61 84 0.02 61 84 0
28 32 64 0.03 32 64 0.02 32 64 0.02
29 35 43 0.03 35 43 0.02 35 43 0.02
30 18 30 0.02 18 30 0.02 18 30 0.01
31 76 95 0.03 76 95 0.05 76 95 0.06
32 393 437 0.05 | 415 459 0.04 | 402 446 0.04
33 9 27 0 9 27 0 9 27 0
34 32 44 0.02 32 44 0.01 32 44 0.02
35 78 115 0.01 70 108 0 68 106 0
Total | 10989 | 12030 | 3.18 | 9079 | 10121 | 2.64 |8536| 9582 | 2.73

TABLE (5.6)
PERCENTAGE PERFORMANCE OF TABLE (5.5

Methods
Wu & Chen 2010 T00% | 100% 100 %

New algorithm 2012 (1 82.6 84.1 83
New algorithm 2012 (2) 77.7 79.7 85.8

R




Two New Extended PR Conjugate Gradient Methods for Solving Nonlinear ...

6. Discussion.

It is clear from Table (5.2) that taking, over all, the tools as a 100%
for the Wu & Chen PRCG method, the two New Extended PRCG method
has an improvement, in about New 1 Extended PR CG method (43.5%)
NOI, (40.5%) NOFG and (26.6%) TIME, in about New 2 Extended PR
CG method (42.5%) NOI , (39.5%) NOFG and (56.4%) TIME.

In from Table (5.4) that taking, over all, the tools for PRCG method
has an improvement, in about New 1 Extended PR CG method (20.7%)
NOI , (19.3%) NOFG and (10%) TIME , in about New 2 Extended PR
CG method (27.6%) NOI , (25.6%) NOFG and (13.4%) TIME.

It is clear from Table (5.6) that taking, over all, the tools for PRCG
method has an improvement, in about New 1 Extended PR CG method
(17.4%) NOI, (15.9%) NOFG and (17%) TIME, in about New 2
Extended PR CG method (22.3%) NOI, (20.3%) NOFG and (14.2%)
TIME. These results indicate that the two new extended PRCG method is
in general is the best.

Appendix.

(1) Trigonometric  (2)Penalty (3)Raydan (4)Hager (5)Generalized
Tridiagonal (6)Extended Three Exp-Terms (7)Diagonal4 (8)Diagonal
(9) Extended Himmelblau (10)Extended PSC1 (11)Extended BD1
(12)Extended Quadratic Penalty QP1 (13)Extended EP1 (14)Extended
Tridiagonal-2 (15) ARWHEAD (CUTE) (16)DIXMAANA (CUTE)
(17)DIXMAANB (CUTE) (18)DIXMAANC (CUTE) (19) EDENSCH
(CUTE) (20)DIAGONAL-6 (21)ENGVALL1 (CUTE) (22)DENSCHNA
(CUTE) (23)DENSCHNC (CUTE) (24)DENSCHNB (CUTE)
(25)DENSCHNF  (CUTE) (26)Extended  Block-Diagonal BD2
(27)Generalized quarticGQ1 (28)DIAGONAL 7 (29)DIAGONAL-8
(30)Full  Hessian  (31)SINCOS  (32)Generalized quartic GQ2
(33)ARGLINB (CUTE) (34)HIMMELBG (CUTE) (35)HIMMELBH
(CUTE)
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