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 المستخلص

لنمرذجين  كثررر ومذة رن ةر  النمرذج   في هذا البحث تطرقنا إلى تقصي و اشتقاق نظرر  
  ت ررما تا الجييرريقتررا  الطري والترري تخررتقيم ارر ل اليالررن والم ررتقن  المذسررعن PR لطريقررنالترب عرري 

 تحر  التقرا   ال راةل تي الانحريا  الحراو وخاصرن ا وتمتلكر المذسر  حقل طرائر  التري   المترافر 
 Wu and Chen يقررنتررل الحصررذى ولررى نتررائم ويوةررن ةتمنرر ط ةقا نررن ةرر  طر   شررروم ةعننررن

PRCG-(2010)   المتماثلن في نفس المجاى 
 

Abstract 
          In this paper, we have discussed and investigated two nonlinear 
extended PR-CG method which use function and gradient values. The 
two new methods involve the standard CG-methods and have the 
sufficient descent and globally convergence properties under certain 
conditions. We have got some important numerical results by comparing 
the new method with Wu and Chen PRCG-(2010) method in this field. 
 

Key Words: Extended Conjugate Gradient Method, Minimization Problems, 

Non-Quadratic Models, Sufficient Descent, Global Convergence. 

 

1.  Introduction. 
      This paper considers the calculation of a local minimizer x* say, for 
the problem:  

 )(Min xf ; where RR: n →f                                                …...(1) 

is a smooth nonlinear function (of n variables) and its gradient vector 

)(k kxfg =  is available are calculated but the Hessian matrix is not 

available. At the current iterative point kx , the Conjugate Gradient (CG) 

method has the following form: 
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where k  is a step-length; kd  is a search direction; k  is a parameter. 

Standard algorithms for solving this problem include CG-algorithms 

which are iterative algorithms and generate a sequence of approximations 
to minimize a function )(F x  and their very low memory requirements. 

However, this paper considers a more general model than the usual 

quadratic function  

cxbGxxx TT ++=
2

1
)(F                                                                     ……(3) 

Some well-known formulas for k  are the Fletcher-Reeves (FR), 

Polak-Ribiére (PR), Hestenes-Stiefel (HS), Descent-Dixon (DD) methods 

which are given, respectively, by: 
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11 −−
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k

k

T

kDD

k
gd

gg
   ……(4) 

where  11 −− −= kkk ggy                                                                      

Another important issue related to the performance of CG-methods 

is the line search, which requires sufficient accuracy to ensure that the 

search directions yield descent. Common criteria for line search accuracy 
are the Wolfe-Powell conditions:  

( ) ( ) ,1111 −−−− −+ k

T

kkkkkk dgxfdxf                                 ……(5a)                                                              

,111 −−−  k

T

kk

T

k dgdg                                                           ……(5b) 

               ( ) ( ) ,1111 −−−− −+ k

T

kkkkkk dgxfdxf                                 ……(6a) 

               
111 −−− − k

T

kk

T

k dgdg                                                             ……(6b) 

  where  15.00    

Equations (5) and (6) are called the “Standard Wolfe” and “Strong 

Wolfe” conditions, respectively. When ,quadratic functions and exact line 

searches are used, all the above formulas in (4) are equivalent. However, 

these formulas very according to general functions. For general functions, 
[22] proved the global convergence of  PR method with exact line search. 

On the other hand, the PR and HS methods perform similarly in terms of 

theoretical property. Nevertheless, [16] showed that the PR and the HS 

methods can cycle infinitely without approaching a solution, which 

implies that they do not have globally convergence.  

In this paper, we have  proposed, two new special formulas 
STS

k

SB

k  ,  for TS

k

B

k  , , respectively, from this formulas we can conclude 

the 21 , New

k

New

k   and two new formulas 1New

k , 2New

k  for k  applying the 

rational non-quadratic model .Moreover, 1New

k , 2New

k  keeps the property 

of  PR method, namely, if a very small step is generated the next search 
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direction tends to the Steepest Descent (SD) direction, preventing a 

sequence of tiny steps from happening. Furthermore, finite quadratic 
termination is retained for the new methods. Since the sufficient descent 

condition is a property of great importance for the global convergence 

analysis of any CG-method, we have modified the conjugacy parameter 

of [21] to implement the non-quadratic rational model which satisfies the 

sufficient descent property and the modified Wolfe-Powel conditions 

introduced by Andrei [6] we illustrate this condition in section 4. In 
addition, the global convergence property of the new proposed CG-

method is discussed and a set of numerical results presented show that the 

new proposed method is efficient. 

 

2.  Materials and Methods. 
2.1 Extended CG-Methods For Non-Quadratic Models. 

 Over years, various authors have published works in this area, In 

this paper, a more general model than quadratic one is suggested as a 

basis for a CG-algorithm. If q(x) is a quadratic function, then a function 

F(q(x)) is defined as a non-linear scaling of q(x) if the following 
invariancy condition holds: 

)]([F)(Minimize xqxf = ;  where 0' = f
dq

df
  and  0q                    ……(7) 

where, *x  is the minimizer of q(x)  with respect to x  for more details see 

[19] and f  is monotonic increasing, may be better to represent the 

objective and thus it gives an advantage to method based on this model. 

In order to obtain better global rate of convergence for minimization 

methods when applied to more general functions than the quadratic.                                 
       

The following properties for )(xf  are immediately derived from the 

above condition:  

•  Every contour line of q(x)  is a contour line of )(xf   

•  If *x  is a minimizer of q(x) , then it is a minimizer of )(xf  

•  If *x  is a local minimizer of q(x) , then it is a local minimizer of )(xf  
   

       Boland et al. (1979) was the first who observed that q(x) and )]([F xq  

have determined the same search directions so that the finite termination 

property  for their algorithm was satisfied. Many authors have proposed 

special models as follows: 

a) A conjugate method which minimizer the function 

( ) np
Rxpxqxq = and0;)()]([F  

in at most n step has been described by Fried [11].  

b) The special polynomial case, ( )2

21 )(
2

1
)()]([F xqxqxq  +=  

where 12 ,    are scalars, has been investigated by Boland et al, [9]. 
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c) A rational model has been developed by (Tassopoulos and Storey) 

[20] where:    0)(and;0;
)(

1)(
)]([F 2

2

1 
+

= xq
xq

xq
xq 




 

d) Al-Bayati introduced several non-quadratic rational models; see for 
example [2]; [1]; [4] and [3].  

 

2.2 ERCG-Method (Tassopoulos and Storey ,1984). [20] 

Tassopoulos and Storey,1984 non-quadratic model is defined as: 

  0)(and;0;
)(

1)(
)]([F 2

2

1 
+

= xq
xq

xq
xq 




                              ……(8a) 

From Boland theorem [10] they get the parameter: 

2

2

)2(

)(

wn

nTS

k
+

= ;   where   2)( 111 −−−−= k

T

kk dgn     and   1−−= kk ffw  

Where they defined the direction as: 

,....2,1;11 =+−= ++ kdgd k

FR

k

TS

kkk   

 
2.3 ERCG-Method (Al-Bayati,1993). [2] 

        Al-Bayati's, 1993 non-quadratic model is defined as the quotient of 

two quadratic functions and so belongs also to the class of rational 

functions , Al-Bayati's rational function model was considered by: 

0,0;
)(1

)(
)]([F 12

2

1 
−

= 




xq

xq
xq                                                  ...…(8b) 

 Where    )()(
2

1
)( minmin xxQxxxq T −−=                                     ...…(9) 

 is the quadratic function then it determines the solutions minx  in a finite 

number of iterations not exceeding (n), and )]([F xq  satisfy the property  

(7). He get the parameter: 

2

1

2

11

)(4

)(

kk

k

T

kB

k
ff

gs

−
=

−

−−                                                                             ……(10) 

Where they defined the direction as: 

,....2,1;11 =+−= ++ kdgd k

FR

k

B

kkk   

 

2.4 The Special Cases.   

In this paper ,we introduced the two special cases of AL-Bayati's 
(1993) and Tassopoulos and Storey (1984) extended CG-method which 

are invariant to nonlinear scaling of quadratic rational functions are 

proposed. The first investigated model is defined as the quotient of two 

quadratic functions and so belongs also to the class of rational functions a 

special of AL-Bayati's rational function model was considered by: 

;
)(1

)(
)]([F

xq

xq
xq

−
=                                                                              .…..(11) 

From (7) We can rewritten (11) as: 
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;
)(1

)(
)(

xq

xq
xf

−
=  

Where the function f  is defined as nonlinear scaling of )(xq  and the 

invariancy property to nonlinear scaling (7) holds and )(xq  is defined in 

(9) is the quadratic function then it determines the solutions 
minx  in a finite 

number of iterations not exceeding (n). It is shown the one-dimensional 

problem ( )(min kk dxf  + ) and kd  is a search direction that the following 

updating process by the Boland theorem [10] to  convert the quadratic 

model to a non-quadratic model in (12) : 

11 gd −=                                                                                         …... (12a) 

,....2,1;11 =+−= ++ kdgd kkkkk                                                   .…..(12b) 
'

1

'

+= kkk ff                                                                                    ..….(12c) 

k

T

kkk

T

kk ggggg )( 11 −= ++                                                                …...(12d) 

dq

df
f ='                                                                                            .…..(12e) 

we can write: 

qffqqff
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q
f )1(
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+==−

−
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q                                                                                     .…..(13) 

Since from the (12c) we have: 
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If substituting (13) in (14) we get: 
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Similarly the special case of the rational function of  Tassopoulos and 

Storey [20] in (8a). In this paper we shall state the rational function of 

AL-Assady and Shakory [18] considered by: 

1;1
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Since from the (12) we have: 
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If substituting (16) in (17) we get: 
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The (18) and (15) are called the special case of rational function model of  
Tassopoulos and Storey (1984) and AL-Bayati's (1993) ,respectively. 

 
2.5 Two New Combined of Rational Functions. 
A. We introduce the combined of two rational function as a convex 
combination of the special case of Tassopoulos and Storey in the equation 
(18) and the rational function AL-Bayati's (1993) in the equation (10) 
non-quadratic model to be investigated here is considered by : 
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Where 10   , we take the suitable value in the numerical result; 
2

1
= . 

 
B. We introduce another combined of two rational function as a convex 
combination of the special case of  AL-Bayati's in (15) and  the and  AL-
Bayati's in (10) non-quadratic model to be investigated here is considered 
by : 
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Where 10   , we take the suitable value in the numerical result; 
2

1
=  

 
3.  Wu and Chen (2010) CG-Method. 

In this section, we are going to present the recent work of the two 
well-known Scientist Wu and Chen in (2010). They introduced several 
well-known CG-formulas. The conjugacy parameters of these CG-
methods are given by; 21 , kk  , respectively by making use of the Powell’s 

restarting criterion and the Armijo-type line search  defined by: 
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They proved that all the above CG-methods satisfy the sufficient 
descent condition and have the global convergence property for more 
details see [21]. 
 

4. A New Extended CG-Method. 
4.1 Transform Quadratic model to Non-quadratic. 

Consider the following quadratic model we proceed as in [21]: 

cxbAxxf TT ++=
2

1
 (x)                                                                       ..….(23) 

where nnRA   is a symmetric positive definite  matrix,. Rc and nRb  
Wu and Chen in (2010) obtain the new formula of conjugate gradient 
method in (22) which based on the quadratic model, in this paper we 
expand the conjugate coefficient (22) by add k  using (19)-(20) to get 

two new extended CG method whose conjugacy parameters are defined 
by:  
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where 0,1 21   . 

 
4.1.1  An Acceleration Scheme of  the Line Search Parameter. 

In the CG-methods the search directions tend to be poorly scaled  
and as a consequence the line search must perform more function 
evaluations in order to obtain a suitable step-length k . In order to 

improve the performances of the CG-methods  the efforts were directed to 
design procedures for direction computation based on the second order 
information. Jorge Nocedal [14] pointed out that in CG methods the step 
lengths may differ from 1 in a very unpredictable manner. They can be 
larger or smaller than 1 depending on how the problem is scaled.  
Numerical comparisons between CG  methods and the limited memory 
QN method, by Liu and Nocedal [13], show that the latter is more 
successful [8]. Here, we have pointed out Andrei's [7] acceleration 
scheme; basically, this modifies the step length in a multiplicative manner 
to improve the reduction of the function values along the iterations [5, 6].  
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4.1.2  Outline of The Two New Extended CG-Method. 
Step 1:    Given nRx 1 ; ( 0 ); (k) is an index of the algorithm 

Step 2:    Set k=1; kk gd −=  

Step 3: Using the modification WP line search conditions which fully 
described by Andrei (2009) determine the step length k , such 

that, compute: kkkk dxz +=+1 , )(, zfgggy zzkk =−= . 

                  Acceleration scheme, compute , 
k

T

kkkk

T

kkk dybdga  −== , . If 

0kb , then   compute 
k

k

k
b

a
−=  and update the variables as 

kkkkk dxx +=+1 , otherwise update the variables as 

kkkk dxx +=+1 . 

Step 4:   Compute
11 , ++ kk gf ,use

kkk ggy −= +1
and kkk xxs −= +1 .  

Step 5:   If  Powell restarting,  
2

1 2.0 kk

T

k ggg − ,  satisfied then set:  

             11 ++ −= kk gd  , else set k

New

kkk dgd +−= ++ 11   ( 1New

k , 2New

k is defined in 

(25), (27)),  go to Step 2. 
Step 6:  If +1kg ,  stop else set  k=k+1 go to  Step 3. 

 
4.2 Theoretical Properties for the Two New Extended CG-Method. 

In this section, we focus on the convergence behavior on the 
21 , New

k

New

k   methods with inexact line searches. Hence, we make the 

following basic assumptions on the objective function. 
 
4.3 Assumption.[21]  

f  is bounded below in the level set })()({ 0
0

xfxfRxL n

x = ; in 

some neighborhood U  of the level set 
0xL , f  is continuously 

differentiable and its gradient f  is Lipschitz continuous in the level set 

0xL  , namely, there exists a constant L> 0 such that: 

yxLyfxf −− )()(   for all x, y 
0xL                                        ..….(28) 

 
4.4 Assumption.[21] The level set 

0xL is compact. 

 
4.5 Lemma. [12] 

           Consider a general CG-method, and suppose that   kg0  

holds. We call a method has Lemma 4.5 if there exist two constants b>1 
and p>0 such that for all k, bk    and        

b
ps kk

2

1
                                                                               ..….(29) 

 
4.6 Lemma.  (Zoutendijk Condition).[22] 
         Suppose that Assumption 4.3 holds. Consider any CG-type method 
in the form of kkkk dxx +=+1  where kd  is a descent direction and k  
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satisfies the Wolfe-Powell line search conditions in (5)-(6). Then we have 
that: 

+
0

2

2)(

k k

k

T

k

d

dg
 

 
4.7  Lemma. 
         Suppose that the Assumption 4.3 and 4.4 hold. Consider the CG-
algorithm 4.1.2, and k  is obtained by the strong Wolfe-Powell (6) and 

for all 0k , there exists the positive constant   such that kg , then 

the new algorithm (4.1.2) has the Lemma 4.5. 
Proof. 
It follows from the definition of 1New

k  in (25), and by the compactness of 

the level set 
0xL , there exist three constants 0,0,0 21  MM  such that: 

0

,,)(, 21 xkkkk LxgMxfMx    

Under Assumption 4.3 and 4.4, we know there is a constant 01 L  

satisfying : 
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     ……(30) 

The third term from the last equation can be simplified as: 
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 we obtain from the Lipschitz continuous that if psk  , for all 0k  then 
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                                    ……(33) 

Therefore, for b and p  defined in (31) and (32) respectively, it follows 

that the relation (29) hold, and similar if we want to proof that 2New

k  has 

the Lemma 4.5 
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4.8 Theorem. 
Suppose that Assumption 4.3 and 4.4 holds. Consider the new 

extended CG-method defined in (25) , (27) with 1New

k , 2New

k  if k  is 

obtained by an exact line search. If 0→ks , then:    0inflim =
→

k
k

g   

Proof:  
We now prove the theorem by contradiction and assume that there 

exists some constants   > 0 such that kg  for all 0k . The 

compactness of the level set 
0xL  implies that there exists a constant  >0  

such that kg . Since 0→ks , we know that there is a ,k  for 

all pskthatsuchkk k  , where p is the same as in Lemma 4.6. Then, 

for all ,kk   we have: 

1−+ k

New

kkk dgd                                                                         .…..(34) 
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is a geometric and the 
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lim 1
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(                                                                       ......(35) 

Furthermore, we know 
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                                                           ......(36) 

we know using Lemma 4.6 together with (36) ,yields 




=0
2

4

k kd


                                                                                     ……(37) 

Which contradictions (35). Therefore, we conclude the truth of the 
theorem. 
 
4.9 Theorem.  

Suppose that Assumption 4.3 holds. If there exists a constant  > 0 

such that kg , for all 0k . If k  is obtained by modified Wolfe-

Powell conditions and kd  is defined in (2b) of the new 21 , New

k

New

k   CG-

method and 0 < k < 1, then the new extended method has sufficient 

descent directions  i.e.,  

0;
2

− cgcgd kk

T

k                                                                  ...…(38) 
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Proof: 
For initial direction we have: 

0
2

11111 −=−= ggdgd T                                                               ......(39) 

which satisfies (35). Now let the theorem be true for all  1−k , i.e. 

0
2

11111 −=−= −−−−− kk

T

kkk ggdgd                                                   ...…(40) 

Since our function f  is uniformly convex function either in the 

quadratic or in the non-quadratic regions, then there exist a Lipschitz 
constant L>0 and a constant, 0  such that: 

( −− )())()( yxyfxf T  
2

yx−   for all x, y 
0xL               ...…(41) 

Or equivalently: 
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A.  Multiplying  the search direction of (25) by T

kg  yields: 
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For inexact line search using Wolfe-Powell conditions (5) and (6) we 
have: 
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Powell  and criteria  which are defined as: 

)1,0(;
2

1 −  kk

T

k ggg                                                                 ...…(45) 

From [17] Powell restarting criterion (45) we have: 
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Using (45) and (46) in (44): 
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B.  Multiplying  the search direction of (27) by T

kg  yields: 
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For inexact line search using Wolfe-Powell conditions (5) and (6) we 
have: 
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From Powell restarting criterion (45) , and (46) in (44): 
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Thus our new proposed extended CG-method has sufficient descent 
directions using inexact line searches under the condition that Powell 
restarting condition must be used. 
 
4.10 Theorem 

Suppose that Assumption 4.3 hold. Consider the method (2)-(3) 
with the following three properties: 
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(i)   0k  for all k; 

(ii) the line search satisfies the Zoutendijk condition, and the sufficient 

descent condition (38); 

(iii)  Lemma 4.4 holds. 

       Then 0inf =
→

k
k

gLim , for more details see [12]. 

Therefore, the method has a global convergent property by satisfying the 

conditions of Zoutendijk theorem and the line search satisfy the strong 

Wolfe condition then from Gilbert and Nocedal in [12] these method is 

global convergent.  

 

5.  Numerical Results  
The main work of this section is to report the performance of the 

new method on a set of test problems. The codes are written in Fortran 

and in double precision arithmetic. All the tests are performed on a PC. 

Our experiments are performed on a set of case 35 nonlinear 

unconstrained problems that have second derivatives available. These test 

problems are contributed in CUTE and their details are given in the 

Appendix.  

In Case are divided in three branches according to the numerical 

experiments with their number of variables: 

1- 10 numerical experiments with  n = 100, 200, . . . . ,  1000. 

2- 5  numerical experiments with   n = 100, 300, 500, 700,  900. 

3- 4  numerical experiments with   n = 100, 400, 700 , 1000. 
 

           In order to assess the reliability of our new proposed method, we 

have tested it against the standard Wu & Chen's modified  PRCG-method  

(Wu and Chen, 2010) using  the same set of test problems. All these 

methods terminate when the following stopping criterion is met:  
610−kg                                                                                           ...…(57) 

     

      Tables 5.1, 5.3 and 5.5 compare some numerical results for the 

modified PRCG method of Wu & Chen and the two new extended PRCG 

method for 35 test functions. In all these tables  (n)  indicates for the 

dimension of the problem; (NOI) indicates for the  number of iterations; 

(NOFG) indicates for the number of function and gradient  evaluations; 

(TIME) indicates for the total time required to complete the evaluation 

process for each test problem. 
 

      In Tables 5.2, 5.4 and 5.6 we have compared the percentage 

performance of the two new extended PRCG-methods against the 

standard Wu & Chen PRCG-method taking over all the tools as 100%. In 

order to summarize our numerical results, we have concerned only on the 

Total of n different dimensions for all tools used in these comparisons. 
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Table (5.1) 

COMPARISON BETWEEN  THE NEW 1 &2 AND (WU & CHEN) METHODS 

FOR THE TOTAL OF DIFFIRENT DIMENSIONS OF (35) PROBLEMS 

WITH   n= 100, 200, … ,1000 

New Extended 2 

PRCG/2012 

New Extended 1 

PRCG/2012 
Wu & Chen/2010 

n Prob. 

TIME NOFG NOI TIME NOFG NOI TIME NOFG NOI 

0.01 204 167 0.02 201 164 0.03 206 169 100 

1 0.25 327 278 0.11 327 278 0.3 347 317 800 

0.14 157 127 0.07 157 127 0.21 212 182 1000 

0 39 19 0 39 19 0 39 19 200 2 

0 9 7 0 9 7 0 9 7 100 3 

0.03 124 110 0.02 124 110 0.04 124 110 300 4 

0 103 95 0 103 95 0.02 103 95 100 5 

0 37 34 0 37 34 0.01 38 35 100 

6 

0 26 24 0 26 24 0.02 39 36 300 

0.03 38 35 0.01 38 35 0.01 39 36 400 

0.01 31 29 0 31 29 0.03 40 37 500 

0.05 39 36 0.01 39 36 0.05 40 37 800 

0.07 39 36 0 39 36 0.07 40 37 1000 

0 18 15 0 18 15 0.02 544 524 100 

7 

0 30 27 0 17 14 0.01 602 575 200 

0 18 15 0 12 9 0.02 228 226 300 

0.02 21 18 0.02 303 301 0.07 460 457 700 

0 94 91 0 44 41 0.09 539 536 800 

0.02 112 109 0 74 71 0.03 230 227 900 

0.05 238 215 0 32 29 0.09 485 481 1000 

0.03 20 17 0 20 17 0.05 20 17 900 8 

0 37 26 0 38 27 0 51 39 300 
9 

0 38 26 0.02 38 26 0 39 27 900 

0 23 16 0 23 16 0 27 19 100 

10 
0 22 20 0 22 20 0.02 34 21 200 

0 23 21 0 23 21 0.01 30 22 700 

0.01 27 19 0 27 19 0.02 23 21 800 

0.02 43 34 0 60 49 0 62 51 200 
11 

0.02 50 38 0.02 50 38 0.01 52 40 700 

0 23 15 0 23 15 0.02 23 15 600 12 

0 6 3 0 6 3 0.02 6 3 1000 13 

0.01 157 149 0 157 149 0.02 157 149 500 14 

0.11 498 490 0.03 498 490 0.12 498 490 900 15 

0 11 8 0.02 11 8 0 11 8 1000 16 

0.01 12 9 0 12 9 0.05 12 9 900 17 

0 14 11 0 14 11 0.02 14 11 200 18 

0.01 139 130 0.02 139 130 0.03 139 130 600 19 

0 9 7 0 9 7 0.01 9 7 900 20 

0 99 92 0 99 92 0.02 99 92 100 21 

0 45 36 0 43 34 0 45 36 200 
22 

0.02 45 43 0 47 38 0 45 43 300 
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0.01 52 50 0 52 49 0 52 50 400 

0.05 97 95 0.01 55 53 0.05 97 95 700 

0.05 96 94 0 46 44 0.05 100 98 800 

0.04 96 94 0.02 72 70 0.04 96 94 900 

0.05 73 71 0.02 49 47 0.07 92 90 1000 

0.01 149 136 0 80 73 0.03 164 152 200 

23 

0.05 159 143 0 96 80 0.05 185 169 400 

0.06 122 92 0.01 144 124 0.09 165 148 800 

0.03 69 65 0.02 105 87 0.12 163 145 900 

0.05 42 40 0.01 52 50 0.11 155 136 1000 

0.01 25 13 0 25 13 0.02 25 13 600 24 

0 25 23 0 25 23 0 35 24 600 25 

0.01 79 74 0.01 100 95 0.01 106 96 100 

26 
0.02 71 49 0.01 129 107 0.04 145 123 600 

0.03 62 60 0 45 43 0.04 119 109 800 

0.03 47 45 0.01 60 58 0.05 67 65 900 

0 21 12 0 21 12 0 23 13 500 27 

0 16 8 0 16 8 0.02 16 8 1000 28 

0 11 9 0 11 9 0.02 11 9 300 29 

0 8 4 0 8 4 0.02 8 4 900 30 

0.02 23 21 0 23 21 0.01 30 22 700 
31 

0.01 27 19 0 27 19 0.02 23 21 800 

0 114 104 0 114 104 0 116 106 100 

32 0 156 134 0 156 134 0 153 144 200 

0.02 92 80 0.02 143 128 0 141 128 300 

0 4 1 0 4 1 0 4 1 100 33 

0 11 8 0 11 8 0.02 11 8 900 34 

0 24 15 0 25 16 0 27 18 100 

35 

0 24 15 0 25 16 0 30 20 200 

0 24 15 0 25 16 0 29 20 300 

0 26 17 0 27 18 1 29 20 400 

0.02 27 17 0 28 18 0 29 20 500 

0 27 17 0 28 18 0 29 20 600 

0 27 17 0 28 18 0 29 20 700 

0 27 17 0 28 18 0 29 20 800 

0 28 18 2 28 18 0 29 20 900 

0 28 18 0 28 18 0 29 20 1000 

1.49 5054 4407 2.51 4968 4331 3.42 8351 7662 Total 

 
TABLE (5.2) 

PERCENTAGE PERFORMANCE OF TABLE (5.1) 

Methods NOI NOFG5 TIME 

Wu & Chen 2010 100 % 100 % 100 % 

New algorithm 2012 (1) 56.5 59.5 73.4 

New algorithm 2012 (2) 57.5 60.5 43.6 
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TABLE (5.3) 
COMPARISON BETWEEN THE NEW 1&2 AND (WU & CHEN) METHODS 

FOR THE TOTAL OF (35) PROBLEMS WITH  
n= 100, 300, … ,900 

New Extended 2 
PRCG/2012 

New Extended 1 
PRCG/2012 Wu & Chen/2010 

Prob. 
TIME NOFG NOI TIME NOFG NOI TIME NOFG NOI 
0.65 1109 943 0.7 1106 940 0.7 1099 936 1 

0.02 208 113 0.02 208 113 0.01 208 113 2 

0.03 47 37 0 47 37 0.02 47 37 3 

0.48 848 775 0.47 848 775 0.46 848 775 4 

0.08 559 513 0.06 559 513 0.08 559 513 5 

0.14 184 170 0.1 184 170 0.11 163 151 6 

0.01 222 207 0.13 1112 1098 0.31 4277 4244 7 

0.09 98 81 0.09 98 81 0.1 98 81 8 

0.03 228 168 0.01 228 168 0.02 228 168 9 

0.03 134 93 0.07 134 93 0.05 134 93 10 

0.06 268 214 0.06 337 280 0.06 289 219 11 

0 140 89 0 140 89 0.02 140 89 12 

0.02 35 18 0.02 35 18 0.02 35 18 13 

0.09 698 660 0.09 701 663 0.09 698 660 14 

0.52 3349 3311 0.51 3353 3315 0.48 3349 3311 15 

0.02 75 65 0.03 80 70 0.02 75 65 16 

0.03 60 45 0.02 60 45 0.02 60 45 17 

0.01 65 54 0.02 65 54 0.01 65 54 18 

0.09 683 639 0.09 683 639 0.11 683 639 19 

0 47 37 0 47 37 0.01 47 37 20 

0.07 494 455 0.06 494 455 0.06 494 455 21 

0.12 360 337 0.1 301 278 0.14 404 374 22 

0.09 364 315 0.15 475 406 0.19 492 429 23 

0 87 68 0.02 102 73 0.01 87 68 24 

0.02 157 120 0.02 135 125 0.03 174 119 25 

0.13 472 421 0.13 458 422 0.17 549 510 26 

0.01 102 69 0.01 102 69 0.02 99 74 27 

0.04 81 40 0.01 81 40 0.01 80 40 28 

0.01 53 43 0.01 53 43 0.01 53 43 29 

0.01 38 22 0 38 22 0.01 38 22 30 

0.04 122 95 0.05 122 95 0.03 122 95 31 

0.08 708 649 0.08 763 701 0.08 632 572 32 

0 35 12 0 35 12 0 35 12 33 

0.01 55 39 0.02 55 39 0.02 55 39 34 

0 129 82 0 133 86 0.02 144 98 35 

3.03 12314 10999 3.15 13372 12064 3.5 16560 15198 Total 

 
TABLE (5.4) 

PERCENTAGE PERFORMANCE OF TABLE (5.3) 

Methods NOI NOFG TIME 

Wu & Chen 2010 100 % 100 % 100 % 

New algorithm 2012 (1) 79.3 80.7 90 

New algorithm 2012 (2) 72.4 74.4 86.6 
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TABLE (5.5) 
COMPARISON BETWEEN THE NEW 1&2 AND (WU & CHEN) METHODS 

FOR THE TOTAL OF (35) PROBLEMS WITH  
n= 100, 400,700 ,1000 

New Extended 2 
PRCG/2012 

New Extended 1 
PRCG/2012 Wu & Chen/2010 

Prob. 
TIME NOFG NOI TIME NOFG NOI TIME NOFG NOI 
0.63 955 839 0.63 952 836 0.66 1008 892 1 

0.01 164 87 0 164 87 0 164 87 2 

0.02 38 29 0.01 38 29 0.03 38 29 3 

0.42 685 631 0.4 681 627 0.42 681 627 4 

0.06 443 406 0.05 443 406 0.06 443 406 5 

0.13 146 135 0.1 146 135 0.13 147 137 6 

0.06 362 330 0.09 810 799 0.34 2548 2518 7 

0.08 79 66 0.04 79 66 0.09 79 66 8 

0 183 141 0.01 183 141 0.02 183 141 9 

0.05 119 84 0.05 119 84 0.03 119 84 10 

0.08 288 236 0.07 304 252 0.08 285 233 11 

0.01 138 98 0 138 98 0.02 138 98 12 

0 28 14 0.02 28 14 0 28 14 13 

0.07 538 510 0.07 541 513 0.1 538 510 14 

0.41 2188 2156 0.41 2192 2160 0.4 2188 2156 15 

0.01 61 53 0.02 65 57 0.03 61 53 16 

0 48 36 0 48 36 0 48 36 17 

0.02 52 43 0.01 52 43 0 52 43 18 

0.08 545 510 0.08 545 510 0.06 545 510 19 

0.02 38 29 0.01 38 29 0 38 29 20 

0.06 412 379 0.07 412 379 0.04 412 379 21 

0.13 336 315 0.07 222 201 0.15 355 334 22 

0.09 289 264 0.13 393 339 0.19 428 386 23 

0.02 115 67 0.01 115 67 0.02 84 56 24 

0.02 118 101 0.02 118 101 0 124 98 25 

0.08 275 244 0.09 341 322 0.12 357 333 26 

0 84 61 0.02 84 61 0 84 61 27 

0.02 64 32 0.02 64 32 0.03 64 32 28 

0.02 43 35 0.02 43 35 0.03 43 35 29 

0.01 30 18 0.02 30 18 0.02 30 18 30 

0.06 95 76 0.05 95 76 0.03 95 76 31 

0.04 446 402 0.04 459 415 0.05 437 393 32 

0 27 9 0 27 9 0 27 9 33 

0.02 44 32 0.01 44 32 0.02 44 32 34 

0 106 68 0 108 70 0.01 115 78 35 

2.73 9582 8536 2.64 10121 9079 3.18 12030 10989 Total 

 
TABLE (5.6) 

PERCENTAGE PERFORMANCE OF TABLE (5.5) 

Methods NOI NOFG TIME 

Wu & Chen 2010 100 % 100 % 100 % 

New algorithm 2012 (1) 82.6 84.1 83 

New algorithm 2012 (2) 77.7 79.7 85.8 
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6.  Discussion.  
It is clear from Table (5.2) that taking, over all, the tools as a 100% 

for the Wu & Chen PRCG method, the two New Extended PRCG method 
has an improvement, in about New 1 Extended PR CG method  (43.5%) 
NOI, (40.5%) NOFG and (26.6%) TIME, in about New 2 Extended PR 
CG method  (42.5%) NOI , (39.5%) NOFG and (56.4%) TIME.  

In from Table (5.4) that taking, over all, the tools for PRCG method 
has an improvement, in about New 1 Extended PR CG method  (20.7%) 
NOI , (19.3%) NOFG  and  (10%) TIME , in about New 2 Extended PR 
CG method  (27.6%) NOI , (25.6%) NOFG  and  (13.4%) TIME.  

It is clear from Table (5.6) that taking, over all, the tools for PRCG 
method has an improvement, in about New 1 Extended PR CG method  
(17.4%) NOI, (15.9%) NOFG and (17%) TIME, in about New 2 
Extended PR CG method (22.3%) NOI, (20.3%) NOFG and (14.2%) 
TIME. These results indicate that the two new extended PRCG method is 
in general is the best. 
 
Appendix. 
(1)Trigonometric (2)Penalty (3)Raydan (4)Hager (5)Generalized 
Tridiagonal (6)Extended Three Exp-Terms (7)Diagonal4 (8)Diagonal 
(9)Extended Himmelblau (10)Extended PSC1 (11)Extended BD1 
(12)Extended Quadratic Penalty QP1 (13)Extended EP1 (14)Extended 
Tridiagonal-2 (15)ARWHEAD (CUTE) (16)DIXMAANA (CUTE) 
(17)DIXMAANB (CUTE) (18)DIXMAANC (CUTE) (19) EDENSCH 
(CUTE) (20)DIAGONAL-6 (21)ENGVAL1 (CUTE) (22)DENSCHNA 
(CUTE) (23)DENSCHNC (CUTE) (24)DENSCHNB (CUTE) 
(25)DENSCHNF (CUTE) (26)Extended Block-Diagonal BD2 
(27)Generalized quarticGQ1 (28)DIAGONAL 7 (29)DIAGONAL-8  
(30)Full Hessian (31)SINCOS (32)Generalized quartic GQ2 
(33)ARGLINB (CUTE) (34)HIMMELBG (CUTE) (35)HIMMELBH 
(CUTE) 
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