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ABSTRACT
In this paper we study the existence and approximation of the
periodic solutions for certain systems of second-order of integro-
differential equations unsolvable for the highest derivative by using the
numerical analytic method for ordinary differential equations of A. M.
Samoilenko which given. Also these investigation lead us to the
improving the extending the above method.

Introduction
Consider the following system of second-order integro-differential
equation, which has the form:

d?x o o
e f (t, X, X, x,t _jTg(s, x(s), X(s), x(s))dsJ ...... (1)

where xe D < R", D is aclosed and bounded domain.
The vector functions f(t,x,%, % w) and g(t,x,%,X) are defined on the
domain:
(t,x,%,%,w)e R* x Dx D, x D, x D,

=(—o,0)xDxD,xD,xD;, ... 2
which are continuous in (t, x, X, %,w) and periodic in t of period T , where
D,, D, and D, are bounded domains subset of Euclidean spaces R"

and R™ respectively.
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| |
Suppose that the vector functions f (t, x, x,%,w) and g(t, x, X, X) are
satisfy the following inequalities:

[ftxx&w)i<M ,  Jotxxx)<m , L (3)
£t %0, %, %Wy ) — F (%o, %o, Ko, W, )| < KX — %o+ K [% = %o +
T g YA I @)
Hg(t, X1s Xq, Xl)_ g(t, X3, X, Xy X‘ < L1HX1 - Xz” + L2HX1 - X2H + |—3HX1 - Xz” ,
...... (5)
forall teR" and x,x,X,eD , X,%,% €D, , X¥%,% €D, and
w,w;,w, € D; , where M,K,,K,,K;,K, and L;,L,,L; are a positive
constants, ||| = max || .
0<t<T
We define the non-empty sets as follows:
Dy=D-N , ]
DlNl =D, -N; , (6)
DzN2 =D,-N, ., 7
D3N3 =D; —Nj ]
2
where N = MT , N, _SMT , N, =2M :
6 6
2
N, :[M;' L, + 5T6M L, + 2ML3JT +MT .

Furthermore, we suppose that the largest eigen-value g, of the
following matrix:

T? T? T’
?(Kl + K4|—1T) ?(Kz + K4|—1T) ?(K3 + K4|—1T)
5T 5T 5T
Qo = ?(Kl + K4|—2T) ?(Kz + K4|—2T) ?(Ks + K4|—2T)
2(K, +K,L,T) 2(K, + K, LsT) 2(K, + K,L,T)
...... (7)
Is less than one, I.e.
T? 5T
?(K1+K4L1T)+?(K2+K4L2T)+2(K3+K4L3T) <1 ... (8)
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L J
Lemmal:
Let f(t) be a continuous vector function in the interval [0,T], then:

t

j( f (t)—TlT[ f (s)ds}ds
0

0

<a(t)M

where M = max|f(t)] and a(t):Zt(l—%).

te[0,T]

For the proof see [2].

We define an operator L as follows:
(LF)ty=Lf(t) =] [ f(t) —Tl [f (s)ds]ds
0 0
we obtain
L(LF)t) = L2 f(t) = £ [Lf (t) —Tl £ Lf (s)ds}ds .

It is obvious that if f(t) is continuous on the interval [0,T], then Lf (t)

and L?f (t) are also continuous on the same interval.
By lemma 1, we get:

Juf < (0 max |7 0]

and

HL2 f (t)H < a(b)||Lf ()] < Tga(t)M < %M

forall t[0,T] and a(t) s% |

Approximation Solution of (1)

The investigation of approximation solution of the system (1) will
be introduced by the following theorem.

Theorem 1:

If the system of second-order integro-differential equations (1)
satisfy the inequalities (3), (4) with assumptions (5), (6) and the condition
(8) has a periodic solution x = Xx(t, X,), passing through the point (0, x,),

X, € Dy, then the sequence of functions:
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L J
Xma (%) =% +L2f(t,xma,xo),xm(%),xm(t,xo), Ig(s,M(s,%),xm(s,xo),xm(s,%))d%
T
...... )
with
dx(t, , d?x, (t, !
) =x el og k) DBl
m=0,1,2,... ,

Is periodic in t of period T, and is uniformly convergent as m — o in the
domain:

(t,X,) eR'xD; =(-o,0)xD, , ... (10)
to the function x_, (t, x,) defined in the domain (10), which is periodic in
t of period T and satisfying the system of integral equations:

X(t, X) =X, + L2 f(t, X(t, X ), X(t, %), X(t, %), jg(s, X(S, %o ), X(S, X, ), X(8, XO))dSJ

t-T
...... (11)
which is a unique solution of the system (1) provided that:
% =X
1%, %] [SQME-Q) vV L (12)
% = %]
Nl
where v, =| N, | and E is identity matrix.
N3
Proof:
Setting m=0 and using (9), we get
t
X, (t, o) = Xo| = sz(t, X0,0,0, Ig(s, xO,O,O)dsj
t-T
t S
< 1—ljj Lf[s,xO,O,O, jg(r,xo,o,o)dr]}ds +
T 0 s—T
t T S T 2
+?! Lf (s, X9,0,0, jTg(r,XO,O,O)er ds <M 3
Hence
T2
X, (t, X0) = Xo| < M S e (13)
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So that x,(t,x,)eD for all teR' and x, € D. Moreover on
differentiating x (t, X, ), we find

t T t
% (t,X,) = Lf[t,xo,o,o, _fg(s, xo,0,0)dsJ—%JLf(t,xo,0,0, jg(s,xO,O,O)dsjdt
0

t-T t-T

and hence
. 17
”Xl(t' Xo)”S —?J dt

0

t
Lf {t, X000, [ g(s, %, ,0,0)dsj

t-T

t
Lf (t, X000, [ g(s, %, ,0,0)dsj

t-T

1 T
<a(t)M + { a(t)Mdt

< (a(t) +T§j|v| < %M ...... (14)

From (4) and (5), we get X,(t,x,)eD, for x,eDy, and
t € RY, also on differentiating x, (t,x,) we find

t T t
%, (t, X,) = f(t,xo,o,o, | g(s,xO,O,O)ds]—% | f(t,xO,O,O, | g(s,xO,O,O)ds]dt
0 t-T

t-T
Therefore
t T t
% (t, %) < f(t,xo,o,o, jg(s, xO,O,O)dsj +%j f[t,xO,O,O, jg(s, xO,O,O)dstt
t-T 0 t-T
<2M (15)

From (6) and (15), we have X, (t,x,)e D, forall x, € D, and teR"'.
Using the inequalities (4), (13), (14) and (15), we find

t

f(g(s, X1 (S, Xg), X1 (S, Xg), Xy (S, Xg )) - g(S, Xo ,0,0) + g(s, Xo 1010))15

t-T

<

t

< J'Hg(s X, (S, X)), %, (S, X0 ), X1 (S, %)) — 9(S, X0,0,0)|ds + MT

t-T
T
< I(Liux1 (5 %0) — Xo| + L [0 (8, Xo)| + Lo %0 (5, Xo )| s + MT
T
2
s[Mg |_1+5T6'VI L2+2ML3]T+MT =Ny e (16)

From (6) and (16), we get w,(t)eD, for all teR' and
Xg € Dy -
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U J

Thus by induction we can prove that x, (t,X,) € D, X, (t,%,) € D,
Xq(t,X,)eD, and w,(t) e D;, for x, € Dy, m=1,23,....

We claim that the sequence of functions X, (t,x,) is uniformly

convergent on the domain (10).
By using (9) and (13) the following inequalities are holds:

meﬂ(t’ Xg) = X (t, XO)H < a(t)%[(K1 + K, LT )ﬂxm (t,Xo) — X (8, XO)H +
+ (K + Ky LT )% (t, Xg) = Xy (t, X0 )]| +

+ (Ks + K, LT }‘Xm (t, %) — Xy (8, XO)H]’

...... (17)

meu(tv Xo) — X (t, %o )H < (“(t) +T§ [(Kl + K, LT )ﬂxm (t,Xg) — X Xo)” +

+(Ky + Ky LT )”Xm (t, Xo) = Xma (8, XO)H +
+ (K3 + Ky LT )ﬂxm (t,Xo) — Xia (£, Xg )H],
...... (18)

and
me+l (t, Xo) — X, (L, Xo)” < 2[(K1 + K, LT )me (t, Xo) = X (L, XO)H +
+ (K + Ky LT )% (t, Xg) = Xy (t, X0 )|| +
+ (Ks + K, LT }‘Xm (t,Xg) = X4 (L, XO)H]'
...... (29)
Rewrite the inequalities (17), (18) and (19) in vector form as:
Vm+1 (t) < Q(t)vm (t) 2 L (20)

where
me+1 (t! XO) — Xm (t’ Xy )H
Vm+l (t) = meﬂ (t’ XO) - Xm (t’ XO )H

meﬂ (t,Xo) — X (t, %o )H
O KLT) a0 (4K o) (rKLT)

QO [+ freraat) [t Jig ki) (et i o)
A1 AT 4K T Ak KT

me (t,Xg) = X1 (1, X )H
Vi (1) = me (t,Xo) = X (8, Xo)H :

me (t, Xg) = Xt (6 X )H
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L J

It follows form the inequality (19) that
Vool <QoVip, (21)
where Q, :trerg(()s’l%(]Q(t) :

By iterating the inequality (21) gives

Ve SQoVo, (22)
which leads to the estimate
m m .
V<> Qptvg. (23)
i=1 i=1
Since the matrix Q, has eigen-values g, =0 , g, =0 and

2
q3:{%(K1+K4L1T)+%(K2+K4L2T)+2(K3+K4L3T) <1, then

the series (23) is uniformly convergent, i.e.
m A 0 . B
anim Qo= Qe =(E-Qy)Vo. ... (24)
%=1 i=1

The limiting relation (24) signifies a uniform convergent of the
sequence {X, (t, X, ), X, (t, X0 ), X (t, o)} -
Let
Lim X, (t, Xy) = X, (t, %)
m—o0
Lim X, (t, Xy) = X, (t, %)
m—o0

and

Limx,, (t,%X,) = %, (t,%,) ,
m-—o0

By the inequality (21), the estimate (12) true for m=1,2,... .
Thus X, (t, X,) is the solution of the integral equation (11).

Finally, we have to show that x(t,x,) is unique solution of the

system (1). On the contrary, we suppose that there is at least two different
solutions x(t,x,) and y(t,x,) of (1).
From (11) the following identities are holds:

IX(t, %) — y(t, o) < a(t)Tg[(Kl SR LT Xt %0) = Yt x)| +
+ (K, + K LT )X(t Xo) — Y(t, %) +
+ (K + Ky LT )%t %0) = (t, %) ]
[X(t, %0) = Y(t, %o )| < (a(t) +%)[(Kl + K, LT )X(E %) — Y(& %o )|+
+ (K, + K, LT )Ix(t %) — y(t, Xo)| +
+ (K + K, LT IX(t, %0) = §(t, %o)]],
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and so

[%(8, %0) = Y(t, %o )| < 2[(Ky + K, LT )x(t, X0 ) — Y(t, %) +
+ (K, + K LT I%(t, X)) — Y (t, X0 )| +
+ (K + Ky LT )% (& Xo ) — X (8 %)

thus
Hx(t, Xo) — Y(t, XO)H Hx(t’ Xo) — Y(t, XO)H
[%(t.xo) = (& %0)] | < Qo [X(t %) — Y (L. %) |-
HX’(’[, Xo) = ¥(t, XO)H HX'(t, Xo) = Y(t, XO)H

By iterating whish we should find that

HX(’[, Xo) = Y(t, XO)H HX(’[, Xo) = Y(t, XO)H
[t %0) = Yt %) |< Q| [(t %0) = ¥ (t, %))
HX'('[,XO)— Y('[,XO)H HX'('[,XO)— Y(t’XO)H

But Q;' —> 0 as m — oo, hence, proceeding in the last inequality
to the limit we obtain that x(t,x,)=y(t,X,), X(t, X,)=y(t X,) and
X(t,%,) = Y(t, X,) which proves the solution is unique, and this completes
the proof of theorem 1.

Existence of Solution of (1)
The problem of existence solution of the system (1) is uniquely
connected with the existence of zeros of the function A(X,), which has

the form:-

T t
A(xo):%ijEt, X (6 X6 5 (1 X0), %, (1 X0), [ 98,0 (5, %), %, (8, %0), X, (5, xo))ds}it
0

t-T
...... (26)
since this function is approximately determined from the sequence of
functions:

An(%) =% [ Lf(t, Xt X6) X0 (%0 Ko (6 %), [ 95, X, (8, %), % (8, %), (S Xo))ds}ﬂ
0

t-T

m=0,1,2,... .
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Theorem 2:

Let all assumptions and conditions of theorem 1 were given, then
the following inequality:

HA(XO) AT (XO)H < E,— | Q(rJn(E _Q)_lvo =0,

is holds for all m>1 and x, € D, .

Proof:
According to (26) and (27) we have

1A6)-,06) <2 [ )

f[t, Xt %) X 50). %, (8 (S X,(5, %), %5, %) X (s Xo))dS]_

=T

- f{t,xm(t, Xo) ot X0) ot X0), [ 95X, %) (50 S Xo))dS] dt

t=T

-
< E[Kluxw (8 Xo) = X (8, X0 )|+ K5 [X.. (8, Xg) = X (£, X0) | +

+ K3 [X,, (8 Xg) = Ko (t, X0 )|+ Ky Ly X, (8 Xg ) = X (£, X )| +
+ K L% (8 X0) = Xin (8 X )]+ K g Lg%, (8 X0) = % (8 %)

:Tg[(K1+ K gL X (8 X0) = Xin (8, X0 +

+ (K, + KLy %, (t, X0) = X (8 X0 +
+(Ky + Ky Ly )%, (8 %) — %o (8 %)

m
Ly

IA
M
N
w|l— w|- w|-

QME-Q)Y, )=6,, .. (28)

m
w

where < : > denotes the scalar product in the space R? and
E, =(K,+K,L), E,=(K,+K,L,), E;=(K;+K,L;), &, are a
positive constants.

By using the inequality (28) we can prove the following theorem in
a similar way to that of theorem 7.2 [ 1 ].
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Theorem 3:
If the system of equations (1) satisfies the following conditions:
(a1) the sequence of functions (26) has an isolated singular point x, = X,

A, (x,)=0.

(a,) the index of this point is nonzero.

(as) there exist a closed convex domain D, belonging to the domain D,
and possessing a unique singular point x_ such that on it’s boundary
I'p, the following inequality holds

min|A, (x)|z6, L (29)

XOGFD4
for all m>1. Then system (1) has a periodic solution x = x(t) for
which x(0) e D, .

Remark 1: [2]

When R" = R*, i.e. when x is a scalar theorem 4 can be strengthens
by giving up the requirement that the singular point should be isolated,
thus we have.

Theorem 4:
Let the system of equations (1) be defined on the domain (2).
Suppose that for m>0, the function A (X,) defined according to

formula (27) satisfies the inequalities:
minA, (X,) <=6, ,

and (30)
maxA,, (X,) 2o, ,

where x, € [a+ N,b—N]. Then the system (1) has a periodic solution of

period T, x = x(t) for which x(0) € [a+ N,b—N].

Proof:

Let x, and x, be any two points of the interval [a+ N,b— N] such that:

A (%) =minA,(x),
Am(xz) = maXAm(X) ' :|
where x e[a+N,b—N]. Taking into account the inequalities (28) and
(30), we have:

A(X) =An () +(A() —An (%)) <0,

and L (32)
A(Xy) = A (X,) +(A(X) = A (%,)) > 0.

It follows from (32) in virtue of the continuity of the A —constant, that
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there exists a point x,, X, €[x;,X,], such that A(x,)=0. The last
equality proves the theorem.

Remark 2: [3]
If the set D, dose not degenerate to a point, then the A —constant
of the system (37) may be considered as the function A =A(0, x,) given

on the set R* x D, . The properties are defined by:

Theorem 5:
Let
A:Dy »>R",
T t
A(Xo) =%IL{L X, (£ %o ) X, (t %), X, (8, Xg), Ig(S, X, (S %) X, (S, %), %, (S, Xo))dS}t
0 t-T

...... (33)
where x_ (t,X,) is the limit of a sequence of periodic functions (9), then

the following inequalities are holds:

A(x,)] < % ...... (34)
and

1 2 1 ET?
HA(XO) —A(Xg )H S|:E1 +(E1E4 +E,E, +2E,E,(1-2E,) " (E, +E,E, )| 1- 6

E,E,T? E,T? - i
_ 264 - 33 (12E3)1(El+2E2E4)j ‘Xé_xgH’

forall x,,x5,x; € Dy and E, =(K; +K,L ), E, =(K, +K,L,),
E, = (K, +K,L;) and

-1
A :(1—5EGZT —5'533T (1—2E3)_1E2) (SEGJ —5E33T (1-2E,)" Elj.

m

o

roof:
From the properties to the function x_(t,x,) established by

theorem 1, it follows that the function A(x,) is continuous and bounded

in the domain R* x D . By using (33), we have:
JAOG) = A < Eyfxe (6. 56) =, (1, X)] + B K, (6 35) = %, (6, %¢)| +
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+ Eguxw (t,x)) =% (t, xg)H ...... (36)
where X, (t,xi) and x_, (t,xj) are the solutions of the integral equation:

X(t,X) =xK +L° f(t, X(t, X)X XK), X(t, X°), _t[g(s, X(5,X), X(s, X, %G5, x'g))dsj

=T

where k=1,2.
From (37), we find that

wa (t,x5) — X, (t, x§)H < Hx(l) - x§H + a(t)lEluxw (t,x5) — X, (t, x§)H +

+ B[, (6 6) k(6 x3)] + B[, (6 xd) — ., ¢, 52)]
<P -]+ T €. -, 00

+ X, (6,35) = %, (6, 30)] + Eg[%,. (6. 6) — %, xg)HJ
...... (38)
On differentiating x_ (t,xi) and x_, (t,xj),we get:

it X8) -, 630) g%[Eluxw (t36) X, (0 X)] +Eo i (6 X8) ~ X, 030)|

CEf G- e (39)

Using the inequalities (37), (38) and (39) in (36) we have the
inequality (35), and this proves the theorem.
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