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Abstract

In this paper we present our numerical results to insure the
improvement on the performance of PASVA algorithm to solve
perturbation two-point boundary value problems, by using wavelet
method in the inner loop of the nonlinear solver.

Introduction

Two point boundary value problems (TPBVP) arise naturally in the
process of solving partial differential equations. Methods based on
shooting, finite difference and collocation are well known in the literature
and well represented also in standard software. Methods based on wavelet
representation of the solution are relatively new and may very much be
dependent on the type of wavelet to be used. We select several standard
TPBVP problems, run our wavelet algorithm and compare its
performance and results to those obtainable from PASVA. As a standard
algorithm PASVA is well known for its outstanding performance on non-
perturbation and mildly perturbation ordinary differential equations,
while wavelets (considering their rich variety and neat representation)
allow new ideas to be incorporated in order to enhance the performance
of existing software. This paper documents preliminary results of our
numerical experiments.

Two-point Boundary Value Problems (TPBVP)

We consider the general TPBVP

u'(t) = f(t,u) int € [a,b]

r(u(a),u(b)) = 0. 1)
The currently accepted standard practice is to approximate it by a set of
nonlinear algebraic equations in the following sense. In the interval [a,b],
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introduce m mesh points {tj}, j = 1,2,3,....n, withn > 2, a=t; <t <t;
<..< 1 < t, = b and approximate u(t) by X, j = 1,2,...,n. The
approximate equations which as the form

Fi(X1,X2,..., %) = 0, j=12,...n (2)

is solved for xT, J = 1,2,...,n, and this equation, each F; describes the
relation which is to be satisfied at the mesh point t. On the basis of the
assumption u(t;c =~ xT, J =1,2,3,...,n, we obtain the solution of (1). In

this case x; € R" for j = 1,2,3,...,n, and obviously x = [xl,xz,...,xn]T and
F = [Fi,F,,...,F.]" are in RN with N = n-n, where
We introduce a level function @(x) = || F(x) I, and solve the set of
nonlinear equations by the damped Newton method:
X=X IO R, 3)
Using the following algorithm (detail omitted):
1. start with an initial estimate x°:
2. fork=0,1,2,.....:
a. compute F(x"), J(x) Jacobian of F(x) at x*;
b. solve the linear equation for s :
J(X)s* = -F(x"):;
c. compute A, 0 < Ay < 1, such that e(x*+1,s%) < @(x*) and set the next
estimate X** = x*+1,s%;
d. test the convergence of that x*; if yes, exit;
otherwise set k = k+1, and go to (a).

Equation (2) is often called the discrete boundary value problem
for the Eq.(1). If the approximation is consistent, and the discrete
equation is numerically stable, then the solution to the discrete version
converges to the desired solution of the original equation. For definitions
of consistency, stability and convergence, see Watt (1968).

Methods to derive the nonlinear equation exist in literature. For
example, the finite difference method used in PASVA (see further below)
uses the trapezoidal rule:

Xi,q — X
= )+ ()] (4)
i
where h; =t —tjand j = 1,2,...,(n-1). We obtain
F, (X X.0)=X; = XpH2h [ x,) + F (X ) FO (5a)
which, together with the boundary conditions now written as
Fa(X1,Xn) = r(X1,%) =0 (5b)

Form well-defined equations of the standard type.

h; of
Gj:|+?‘.a(tj,xj), and
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_ h, of
GJ+1:|_7J'a(ti+1’Xi+l)’
We obtain that
] h; [ of of

The Wronskian can be approximated by
tig of
W(tj+l,tj): I+ {[ (a_f]dH

= Wh (tj+1,tj).

and thus by the trapezoidal approximation, we arrive at

Wh (ti+1t) = G;41.G;.

Next, by virtue of the group property of the Wronskian,

E=A+BG,'G, G, G, ,...G,'G,
can be approximated by
E=E, = A+BW, (t,,t, )W, (t,,t,,).. W, (t,,t,) The non-singularity of G,
through a restriction on the stepwise h; is then a basic feature of this
method.
E*= A*+B*W, (a,b) is nonsingular with

or or

* *

oy - y()
__or N or_, oy*(b)
oy*(a) oy(b) o*y(a)

Since equation (4) is only O(h® accurate, a combination of
correction and mesh selection are developed to arrive at the user’s
prescribed tolerance. We recall that the n-vectors x; are meant to
approximate u; =u"(t;). If we write (5a,5b) with x; replaced by u; and
expand in Taylor series around t; + %2h;, recalling that f(t;,u})=u"(t;), we
obtain the Local Truncation Error (LTE) of the method

_%[f (tj!u]f)"_ f(tj+1’u]f+1)]
i

S MO N ey
=27 2v+1) (2v)!
= £h2u®(t; +1h;)+O(h?) (6)

12 )
with f@ the 2vth derivative of f(t,u’) evaluated at t; + %h;. If a mesh & of
discretization points (t;) has been selected such that LTE] is constant for j
=1,2,...,m, then the mesh is called equidistributing. Roughly speaking, an
equidistributing mesh will have small step sizes when the third derivative
of the solution is large.

*

* *
Ujyy —U;

LTE, =
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PASVA insists on computing the leading term of the LTEj of the

equedistributing mesh =#°. This is done in a two-pass algorithm. First,
given an initial mesh =, the solution xEO] iIs computed. Then the LTEj are

estimated, end the mesh is refined to achieve equedistribution...and so on
until some stopping criteria are satisfied. See Lentini and Pereyra
(1975,1977) and Pereyra (1965,1966,1967,1968) for the justification.

Let x'% be the computed O(h?) solution of the nonlinear equations
based on the equedistributing mesh =°. Let S;(x'”) be the corresponding
O(h?) approximation t; the LTEj, then by solving the linear equation

I 8 = - (<),
an approximation to the global error x; —uj is obtained; i.e.

8, =] —uj +0(h?)

According to the Pereyra (1979). It turns out that by solving the
nonlinear problem

F(x) = Sy(x™)

One obtains an O(h?) approximate solution X, .this represents the
first step of the deferred correction, which could be improved by
improving the estimate on LTEj. Let Si(x*™) be the first k™ terms of the
LTEj expansion, and let x** be the O(h*) approximate solution after (k-
1) correction steps. The solution of

F(x) =S, (x"™) (7)
is accurate to order h**% This is the iterative deferred correction
algorithm, and given the user’s tolerance requirement TOL, PASVA will
attempt to obtain x satisfying

n?ajlx‘xij —ui*(tj)‘ <TOL (8)

On a mesh =’ containing the original mesh = provided by the user.
Mesh refinement may occur. The basic strategy is t; achieve (8) by
increasing the order of the method and performing mesh refinement as
well. Mesh refinement implies an increase in m, unequal value of h;.
Mesh recompilation of the Jacobian matrix. The computing cost for
solving the nonlinear equations is proportional to the number of mesh
pointed. The nonlinear equation is proportional to the number of mesh
points. Once the nonlinear equation F(x) = 0 on a mesh * are solved, the
Jacobian available in forced form, thus the deferred correction process
based on = is no longer expensive. What is needed is a scheme to
carefully manage the operation based on currently available information.
PASVA contains a heuristic algorithm to do this (Soesianto, 1991).
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The Wavelet Method

Wavelet analysis is a rapidly developing area in the mathematical
sciences which is emerging an in independent field of investigation.
Moreover, it has already created a common link between mathematicians,
electrical engineers, and has even drawn a great deal of attention from
scientists and engineers in other disciplines. In physics and engineering,
problems requiring numerical solution of differental equations rank
among the most computing-intensive operation. New mathematical bases
of their computation are always developed. Wavelet represents one
which permit accurate representation of a variety of functions and
operators without redundancy. Through the ability to represent local,
high frequency information with localized basis elements, wavelets allow
adaptation in a straightforward, consistent fashion. Soesianto and Riyad
Mubarak, 2000 gives a brief presentation on wavelet and wavelet
transforms.

The Haar wavelet is a common and simplest wavelet
transformation which can be used to transform values within a matrix.
Haar transformation is a two-dimensional generalization of one-
dimensional wavelet transform. The Haar transform uses the standard
decomposition algorithm. To obtain the standard decomposition of a
matrix, we first apply the one-dimensional wavelet transform to each row
of value. This operation gives us an average value with detail coefficient
for each row. Next we treat these transformed rows as if they were
themselves an matrix and apply the one-dimensional transform to each
column. The resulting values are all detail coefficients except for a single
overall coefficient Stollintz, et al, (1996). An algorithm to compute the
standard decomposition is given below

procedure StandardDecomposition (c: array [1.. 2,1 .. 2] of reals)
for row <1 to 2’ do
Decomposition(c[row, 1 .. 2])
end for
forcol«<1to2do
Decomposition(c[1 .. 2',col])
end for
end procedure.
The corresponding reconstruction algorithm simply reserves the steps
performed during decomposition: _
procedure StandardRedecomposition (c: array [1 .. 2,1 .. 2] of reals)
for col <1 to 2“do _
Redecomposition(c[1 .. 2/,col])
end for
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for row <1 to 2' do
Redecomposition(c[row, 1 .. 2])
end for
end procedure..

In this paper the wavelet method is used to solve the linear equation
problem in the inner-loop of the nonlinear equation with two objectives:
(1) cheaper operation, (2) more accurate computation. We proceed to the
numerical experiments to obtain a general idea of the feasibility of
introducing wavelet method in PASVA. In a later paper we will pursue
the proposal of integrating wavelet concept to enhance the deferred
correction and mesh refinement process.

Numerical Results
Problem 1. This problem is given in Cash (1994)

We consider a problem with a boundary layer at the right end of the
interval:

su —u=0, u(0 =1, u(®)=
X X=2
, : eve _g Ve
The exact solution for this problems u(x) = —— » We run PASVA

1-eve

and our Wavelet method then we get the result below when we put the e
=0.01.
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solution for problem 1

Table 1. The result of TPBVPs produced by PASVA, MW, and exact

X (u)Pasva (WWavelet (u) Exact
.000000000E+00 | .100000000E+01 0.100000000E+01 0.1000e+001
.781250000E-02 | .924848800E+00 | 0.92308760258849 9.2312e-001
.156250000E-01 | .855345300E+00 | 0.85208296583363 8.5214e-001
.234375000E-01 | .791065100E+00 | 0.79442734424371 7.9453e-001
.312500000E-01 | .731615600E+00 | 0.73330176934923 7.3345e-001
.390625000E-01 | .676633800E+00 | 0.67686932577867 6.7706e-001
.468750000E-01 | .625784000E+00 | 0.62476884589306 6.2500e-001
.546875000E-01 | .578755600E+00 | 0.57666688662115 5.7695e-001
.625000000E-01 | .535261400E+00 | 0.53225559542361 5.3259e-001
.781250000E-01 | .457833300E+00 | 0.45816583344933 4.5841e-001
.937500000E-01 | .391605600E+00 | 0.39049926667963 3.9063e-001
.101562500E+00 | .362176000E+00 | 0.36041477625489 3.6059¢e-001
.109375000E+00 | .334958000E+00 | 0.33598302470858 3.3622e-001
.125000000E+00 | .286504800E+00 | 0.28632110882879 2.8650e-001
.140625000E+00 | .245060500E+00 | 0.24398901333502 2.4414e-001
.156250000E+00 | .209611400E+00 | 0.20997541836969 2.1014e-001
.171875000E+00 | .179290100E+00 | 0.17890164078226 1.7907e-001
.187500000E+00 | .153354900E+00 | 0.15240774519887 1.5259¢-001
.203125000E+00 | .131171400E+00 | 0.13111319816529 1.3134e-001
.218750000E+00 | .112196900E+00 | 0.11165062197728 1.1192e-001
.234375000E+00 | .959670600E-01 | 0.09600033376204 9.6328e-002
.250000000E+00 | .820849700E-01 | 0.08168750127639 8.2085e-002
.281250000E+00 | .600546300E-01 | 0.05990732280339 6.0205e-002
.312500000E+00 | .439368900E-01 | 0.04346321606655 4.3718e-002
.343750000E+00 | .321448B800E-01 | 0.03177717071410 3.2065e-002
.375000000E+00 | .235176600E-01 | 0.02314491146724 2.3518e-002
437500000E+00 | .125879800E-01 | 0.01245514128323 1.2525e-002
.500000000E+00 | .673764100E-02 | 0.00676141723832 6.7376e-003
.562500000E+00 | .360599200E-02 | 0.00363816697231 3.5880e-003
.625000000E+00 | .192938600E-02 | 0.00197428180933 1.9294e-003
.687500000E+00 | .103130300E-02 | 0.00106093325171 1.0261e-003
.750000000E+00 | .549357700E-03 | 0.00057319392538 5.4936e-004
.812500000E+00 | .289082400E-03 | 0.00030328294381 2.8757e-004
.875000000E+00 | .145453900E-03 | 0.00015517840426 1.4545e-004
.937500000E+00 | .605170200E-04 | 0.00006578657846 5.9973e-005
.968750000E+00 | .288388800E-04 | 0.00003138522898 2.8601e-005
100000000E+01 131415700E-15 000000000E+00 000000000E+00

Problem 2. This probllem Is given in Cash (1995)
We consider a problem with a boundary layer at the right end of the

interval:  eu +xu=0, u-1)=0, u(1)=2
erf (\/X_)
The exact solution for this problems u(x) = _ Nee , we run PASVA and
erf (—(——
(@)

our Wavelet method then we get the result below when we put the € =
0.1.
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solution for problem 2

Table 2. The result of TPBVPs produced by PASVA, MW, and exact

X (u) Pasva (u)Wavelet (u) Exact
-1.000000000 | .000000000E+00 .000000000E+00 000000000E+00
-.973684200 .511949500E-03 | 0.00045595938299 5.0499e-004
-.947368400 .117331800E-02 | 0.00107017268180 1.1838e-003
-.894736800 .310290100E-02 | 0.00284013335190 3.0908e-003
-.868421100 447080700E-02 | 0.00412869769205 4.4954e-003
-.842105300 .618970300E-02 | 0.00569125818801 6.1974e-003
-.789473700 .109931400E-01 | 0.01024011963971 1.1046e-002
-.736842100 .182640900E-01 | 0.01702897198811 1.8238e-002
-.684210500 .289701200E-01 | 0.02727546783998 2.9021e-002
-.631578900 443043800E-01 | 0.04171961820779 4.4160e-002
-.578947400 .656689500E-01 | 0.06230894786573 6.5644e-002
-.526315800 .946238900E-01 | 0.09036167089042 9.4824e-002
-.473684200 | .132796300E+00 | 0.12668982616070 1.3254e-001
-.421052600 | .181748500E+00 | 0.17425436052368 1.8180e-001
-.368421000 | .242813600E+00 | 0.23376470368238 2.4335e-001
-.315789500 | .316912400E+00 | 0.30462618642957 3.1659e-001
-.263157900 | .404375900E+00 | 0.38992745914598 4.0466e-001
-.210526300 | .504800400E+00 | 0.48602320161942 5.0384e-001
-.157894700 | .616963600E+00 | 0.59545924958278 6.1673e-001
-.105263200 | .738822600E+00 | 0.71445994367457 7.3945e-001
-.052631570 | .867606900E+00 | 0.83783212108040 8.6669e-001
.000000007 .100000000E+01 | 0.96712552851499 1.0000e+000
.052631590 .113239300E+01 | 1.09641893596982 1.1333e+000
.105263200 .126117700E+01 | 1.21979111336288 1.2605e+000
157894700 .138303600E+01 | 1.33879180752674 1.3833e+000
.210526300 .149520000E+01 | 1.44822785532819 1.4962e+000
.263157900 .159562400E+01 | 1.54432359794601 1.5953e+000
.315789500 .168308800E+01 | 1.62962487044292 1.6834e+000
.368421100 .175718600E+01 | 1.70048635328681 1.7566e+000
421052600 .181825100E+01 | 1.75999669638335 1.8182e+000
473684200 .186720400E+01 | 1.80756123085404 1.8675e+000
.526315800 .190537600E+01 | 1.84388938613877 1.9052e+000
578947400 .193433100E+01 | 1.87194210913752 1.9344e+000
.631578900 .195569600E+01 | 1.89253143886851 1.9558e+000
.684210500 .197103000E+01 | 1.90697558918891 1.9710e+000
.736842200 .198173600E+01 | 1.91722208507964 1.9818e+000
789473700 .198900700E+01 | 1.92401093744926 1.9890e+000
.842105300 .199381000E+01 | 1.92855979878770 1.9938e+000
.868421100 .199552900E+01 | 1.93012235942794 1.9955e+000
.894736900 .199689700E+01 | 1.93141092373170 1.9969e+000
.947368400 .199882700E+01 | 1.93318088437344 1.9988e+000
.973684200 .199948800E+01 | 1.93379509768011 1.9995e+000
1.000000000 | .200000000E+01 .200000000E+01 .200000000E+01
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Problem 3: This problem is given in Cash (1996)

We consider a problem with a boundary layer at the right end of the
interval:

gu —u =0, u(0)=1, u(1)=0

x-1
The exact solution for this problems u(x) =1_e—_g1 , we run PASVA and
l-e¢
our Wavelet method then we get the result below when we put the € =
0.01.
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Table 3. The result of TPBVPs produced by PASVA, MW, and exact

solution for problem 3

X (u) Pasva (WWavelet (u) Exact
.000000000 | .100000000E+01 | 1.00000000000000 | 1.00000000000000
.052631580 | .100000000E+01 | 0.99999917470581 | 1.00000000000000
105263200 | .100000000E+01 | 1.00000078670631 | 1.00000000000000
157894700 | .100000000E+01 | 0.99999994708488 | 1.00000000000000
.210526300 | .100000000E+01 | 1.00000132891930 | 1.00000000000000
263157900 | .100000000E+01 | 0.99999993929315 | 1.00000000000000
.315789500 | .100000000E+01 | 0.99999996311693 | 1.00000000000000
.368421000 | .100000000E+01 | 0.99999997715468 | 1.00000000000000
421052600 | .100000000E+01 | 1.00000200320727 | 1.00000000000000
473684200 | .100000000E+01 | 0.99999998626601 | 1.00000000000000
526315800 | .100000000E+01 | 0.99999993658944 | 1.00000000000000
578947400 | .100000000E+01 | 0.99999999693698 | 1.00000000000000
.631578900 | .100000000E+01 | 0.99999996283448 | 1.00000000000000
.684210500 | .999999900E+00 | 0.99999990798167 | 0.99999999999998
.736842100 | .100000000E+01 | 0.99999983654878 | 0.99999999999622
789473700 | .999999900E+00 | 0.99999997457454 | 0.99999999931390
.815789500 | .100000000E+01 | 1.00000314654388 | 0.99999998979104
.842105300 | .999999900E+00 | 0.99999997148043 | 0.99999986254923
.859649100 | .999999300E+00 | 0.99999996561794 | 0.99999916847128
877193000 | .999995500E+00 | 0.99999919437383 | 0.99999544825554
894736800 | .999973200E+00 | 0.99998540359013 | 0.99997246355065
905263100 | .999923200E+00 | 0.99995638339149 | 0.99992514817011
915789500 | .999779900E+00 | 0.99984972449140 | 0.99977513267582
.926315800 | .999369200E+00 | 0.99954920332247 | 0.99938874723887
936842100 | .998192500E+00 | 0.99844737344034 | 0.99816369522297
947368400 | .994821100E+00 | 0.99534209083208 | 0.99500840609309
952153100 | .991643200E+00 | 0.99223671409578 | 0.99177025295098
.956937800 | .986515600E+00 | 0.98706124021676 | 0.98643144098780
961722500 | .978241500E+00 | 0.97843528254048 | 0.97762922814383
966507200 | .964890400E+00 | 0.96405979543972 | 0.96311683259876
971291900 | .943347000E+00 | 0.94608858279115 | 0.94497677994359
976076500 | .908585000E+00 | 0.91014737441623 | 0.90928204671059
978468900 | .883877600E+00 | 0.89018780650929 | 0.88919684163767
980861200 | .852492400E+00 | 0.85142104716872 | 0.85043138077737
.983253600 | .812624400E+00 | 0.81840350541827 | 0.81731647594727
.985645900 | .761981100E+00 | 0.75431063026188 | 0.75340303605839
.988038300 | .697650000E+00 | 0.69971299587509 | 0.69880578808780
990430700 | .615931600E+00 | 0.63298255383190 | 0.63212055882856
992025600 | .549521300E+00 | 0.55142312467670 | 0.55067103588278
.993620400 | .471631000E+00 | 0.45173937792821 | 0.45118836390597
995215300 | .380269300E+00 | 0.39402773507389 | 0.39346934028737
996411400 | .301524900E+00 | 0.33024118244542 | 0.32967995396436
997607600 | .212770300E+00 | 0.18140589297884 | 0.18126924692202
.998803900 | .112737700E+00 | 0.09523809381386 | 0.09516258196404

1.000000000 | .413500300E-15 .413500300E-15 0
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The Comparison Between PASVA and MW to Solve Perturbation

TPBVPs

In this section we tried to solve the same problems above and we
found that PASVA failed to solve the problems above when the value of
e < 0.01, this is called a perturbation problems. But MW able to solve
these perturbation problems and the table below include the results of

problem 1.

Table 4. the result of perturbation TPBVPs produced by MW and

failed of PASVA

X € =0.001 € =0.0001 € =0.00001 PASVA € <0.01
.000000000E+00 | 0.100000E+01 0.100000E+01 0.100000E+01 failed
.781250000E-02 7.7697e-001 4.5884e-001 1.2085e-001 failed
.156250000E-01 6.0367e-001 2.1134e-001 1.5144e-002 failed
.234375000E-01 4.8373e-001 1.0572e-001 2.1575e-003 failed
.312500000E-01 3.7567e-001 4.8455e-002 2.6059e-004 failed
.390625000E-01 2.9166e-001 2.2198e-002 3.1475e-005 failed
.468750000E-01 2.2631e-001 1.0149e-002 3.8015e-006 failed
.546875000E-01 1.7545e-001 4.5939e-003 4.5765e-007 failed
.625000000E-01 1.3581e-001 1.9793e-003 4.2723e-008 failed
.781250000E-01 8.4929e-002 4.9127e-004 1.6991e-009 failed
.937500000E-01 5.1713e-002 1.2237e-004 7.7404e-011 failed
.101562500E+00 4.0069e-002 5.5391e-005 9.6487e-012 failed
.109375000E+00 3.1985e-002 2.5867e-005 1.0187e-012 failed
.125000000E+00 1.9391e-002 5.9787e-006 3.6959e-014 failed
.140625000E+00 1.1761e-002 1.3959¢-006 1.3778e-015 failed
.156250000E+00 7.3428e-003 3.4503e-007 5.4778e-017 failed
.171875000E+00 4.4510e-003 7.9747e-008 2.0586e-018 failed
.187500000E+00 2.6985e-003 1.8620e-008 -2.9273e-018 failed
.203125000E+00 1.6830e-003 4.6046e-009 -0.7714e-018 failed
.218750000E+00 1.0172e-003 1.0745e-009 -9.7578e-019 failed
.234375000E+00 6.2948e-004 2.6314e-010 6.7763e-021 failed
.250000000E+00 3.7203e-004 5.0296e-011 1.1858e-020 failed
.281250000E+00 1.4425e-004 4.3161e-012 -9.1056e-020 failed
.312500000E+00 5.4538e-005 3.5900e-013 4.0658e-020 failed
.343750000E+00 2.0881e-005 3.1070e-014 -2.5411e-020 failed
.375000000E+00 7.2913e-006 1.9853e-015 1.0694e-020 failed
.437500000E+00 1.2626e-006 3.6429e-017 1.3553e-020 failed
.500000000E+00 2.2194e-007 -2.0817e-017 2.7105e-020 failed
.562500000E+00 3.8431e-008 -2.3039e-019 1.6498e-021 failed
.625000000E+00 6.7557e-009 -6.7085e-019 -3.5734e-022 failed
.687500000E+00 1.1698e-009 -2.2362e-019 6.6174e-024 failed
.750000000E+00 2.0564e-010 -2.0329e-020 9.9262e-023 failed
.812500000E+00 3.5611e-011 1.7138e-020 -4.7043e-025 failed
.875000000E+00 6.2764e-012 -9.4609e-022 8.0639e-027 failed
.937500000E+00 1.1827e-012 -8.3028e-023 -2.3367e-028 failed
.968750000E+00 3.9941e-013 1.1374e-024 -8.1351e-031 failed
.100000000E+01 | 0O00000000E+00 | . 000000000E+00 | 000000000E+00 failed
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Conclusion

The Wavelet Method for solving two point boundary value problems is

introduced. The method examined for several popular problems and

compared the results with the results of the same problems solved by

PASVA and the exact solution for each problem. From the tables in our

discussions we can conclude that:

1. The accuracy of both methods are same

2. Although PASVA software is well-known to solve TPBVP but it
failed to solve perturbation problems, WM is able to do it.

3. The result of € = 0.00001 method was failed, and PASVA method
when € = 0.001 already failed.
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