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  الملخص

ات التي أجريت على طريقة يتضمن هذا البحث عرض النتائج العددية التي تؤكد التحسين

)PASVA (القصيرة في ةلحل بعض المسائل للقيم الحدودية، وذلك باستخدام طرق الموج 

  .والتي تعتبر احد طرق حل المعادلات الاخطية) PASVA(التكرارات الداخلية في 
Abstract 

In this paper we present our numerical results to insure the 
improvement on the performance of PASVA algorithm to solve 
perturbation two-point boundary value problems, by using wavelet 
method in the inner loop of the nonlinear solver. 
 
Introduction 

Two point boundary value problems (TPBVP) arise naturally in the 
process of solving partial differential equations. Methods based on 
shooting, finite difference and collocation are well known in the literature 
and well represented also in standard software. Methods based on wavelet 
representation of the solution are relatively new and may very much be 
dependent on the type of wavelet to be used. We select several standard 
TPBVP problems, run our wavelet algorithm and compare its 
performance and results to those obtainable from PASVA. As a standard 
algorithm PASVA is well known for its outstanding performance on non-
perturbation and mildly perturbation ordinary differential equations, 
while wavelets (considering their rich variety and neat representation) 
allow new ideas to be incorporated in order to enhance the performance 
of existing software.  This paper documents preliminary results of our 
numerical experiments. 
 
Two-point Boundary Value Problems (TPBVP) 

We consider the general TPBVP 
 u'(t) = f(t,u) in t ∈ [a,b] 
 r(u(a),u(b)) = 0.       (1) 
The currently accepted standard practice is to approximate it by a set of 
nonlinear algebraic equations in the following sense. In the interval [a,b], 
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introduce m mesh points {tj}, j = 1,2,3,…,n, with n ≥ 2, a = t1 < t2 < t3 
<…< tn-1 < tn = b and approximate u(tj) by xj, j = 1,2,…,n. The 
approximate equations which as the form 

Fj(x1,x2,…,xn) = 0, j = 1,2,…,n     (2) 
is solved for , j = 1,2,…,n, and this equation, each F*

jx j describes the 
relation which is to be satisfied at the mesh point tj. On the basis of the 
assumption u( ) ≅ , j = 1,2,3,…,n, we obtain the solution of (1). In 
this case x

*
jt *

jx

j ∈ Rn for j = 1,2,3,…,n, and obviously x ≡ [x1,x2,…,xn]T and  
F ≡ [F1,F2,…,Fn]T are in RN with N = n⋅n,  where  

We introduce a level function ϕ(x) = ⎜⎢F(x)⎥⎟2, and solve the set of 
nonlinear equations by the damped Newton method: 
 xk+1 = xk - λk[J(xk)]-1 F(xk),      (3) 
Using the following algorithm (detail omitted): 
1. start with an initial estimate x0; 
2. for k = 0,1,2,…..: 

a. compute F(xk), J(xk) Jacobian of F(x) at xk; 
b. solve the linear equation for sk :  

J(xk)sk = -F(xk); 
c. compute λk, 0 < λk ≤ 1, such that ϕ(xk+λksk) < ϕ(xk) and set the next 

estimate xk+1 = xk+λksk; 
d. test the convergence of that xk; if yes, exit; 

otherwise set k = k+1, and go to (a). 
 

Equation (2) is often called the discrete boundary value problem 
for the Eq.(1). If the approximation is consistent, and the discrete 
equation is numerically stable, then the solution to the discrete version 
converges to the desired solution of the original equation. For definitions 
of consistency, stability and convergence, see Watt (1968). 
 

Methods to derive the nonlinear equation exist in literature. For 
example, the finite difference method used in PASVA (see further below) 
uses the trapezoidal rule: 

{ )()( 1112
11

+++
+ +=
−

jjjj
j

jj ,xtf,xtf
h

xx }     (4) 

where hj = tj+1 – tj and j = 1,2,…,(n-1). We obtain 
[ ] 0)(+)()( 112

1
11 =,xtf,xtf.h+x=x,xxF j+j+jjjjjjjj ++ −             (5a) 

which, together with the boundary conditions now written as 
 Fn(x1,xn) = r(x1,xn) = 0              (5b) 

Form well-defined equations of the standard type. 
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The Wronskian can be approximated by 
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≅ Wh (tj+1,tj). 
and thus by the trapezoidal approximation, we arrive at 
 Wh (tj+1,tj) = . jj GG .1

1
−
+

Next, by virtue of the group property of the Wronskian, 
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),(),().,(. 12211 ttWttWttWBAEE hnnhnnhh K−−−+≅≅ The non-singularity of 1j+G  
through a restriction on the stepwise hj is then a basic feature of this 
method. 
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Since equation (4) is only O(h2) accurate, a combination of 
correction and mesh selection are developed to arrive at the user’s 
prescribed tolerance. We recall that the n-vectors xj are meant to 
approximate . If we write (5a,5b) with x)( jj tuu ∗∗ = j replaced by uj and 
expand in Taylor series around tj + ½hj, recalling that , we 
obtain the Local Truncation Error (LTE) of the method 
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with )(2vf  the 2vth derivative of f(t,u*) evaluated at tj + ½hj. If a mesh π of 
discretization points (tj) has been selected such that LTEj is constant for j 
= 1,2,…,m, then the mesh is called equidistributing. Roughly speaking, an 
equidistributing mesh will have small step sizes when the third derivative 
of the solution is large.  
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 PASVA insists on computing the leading term of the LTEj of the 
equedistributing mesh π0. This is done in a two-pass algorithm. First, 
given an initial mesh π, the solution [ ]0

jx  is computed. Then the LTEj are 
estimated, end the mesh is refined to achieve equedistribution…and so on 
until some stopping criteria are satisfied. See Lentini and Pereyra 
(1975,1977) and Pereyra (1965,1966,1967,1968) for the justification. 
 
 Let x[0] be the computed O(h2) solution of the nonlinear equations 
based on the equedistributing mesh π0. Let S1(x[0]) be the corresponding 
O(h2) approximation ti the LTEj, then by solving the linear equation 
 J(x[0]) δ = - S1(x[0]), 
an approximation to the global error  is obtained; i.e.  ∗∗ − jj ux

)O( 2hux jjj +−=δ ∗∗  
According to the Pereyra (1979). It turns out that by solving the 

nonlinear problem 
 F(x) = S1(x[0]) 

One obtains an O(h4) approximate solution jx .this represents the 
first step of the deferred correction, which could be improved by 
improving the estimate on LTEj. Let Sk(x[k-1]) be the first kth terms of the 
LTEj expansion, and let ]  be the  approximate solution after (k-
1) correction steps. The solution of 

[ 1−kx )( 2khO

        (7) )()( ]1[ −= k
k xSxF

is accurate to order h2k+2. This is the iterative deferred correction 
algorithm, and given the user’s tolerance requirement TOL, PASVA will 
attempt to obtain x satisfying 

TOL)( max
,

≤− ∗
jiijji

tux       (8) 

On a mesh πf containing the original mesh π provided by the user. 
Mesh refinement may occur. The basic strategy is ti achieve (8) by 
increasing the order of the method and performing mesh refinement as 
well. Mesh refinement implies an increase in m, unequal value of hj. 
Mesh recompilation of the Jacobian matrix. The computing cost for 
solving the nonlinear equations is proportional to the number of mesh 
pointed. The nonlinear equation is proportional to the number of mesh 
points. Once the nonlinear equation F(x) = 0 on a mesh πk are solved, the 
Jacobian available in forced form, thus the deferred correction process 
based on πk is no longer expensive. What is needed is a scheme to 
carefully manage the operation based on currently available information. 
PASVA contains a heuristic algorithm to do this (Soesianto, 1991). 
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The Wavelet Method 
Wavelet analysis is a rapidly developing area in the mathematical 

sciences which is emerging an in independent field of investigation. 
Moreover, it has already created a common link between mathematicians, 
electrical engineers, and has even drawn a great deal of attention from 
scientists and engineers in other disciplines.  In physics and engineering, 
problems requiring numerical solution of differental equations rank 
among the most computing-intensive operation. New mathematical bases 
of their computation are always developed.  Wavelet represents one 
which permit accurate representation of a variety of functions and 
operators without redundancy.  Through the ability to represent local, 
high frequency information with localized basis elements, wavelets allow 
adaptation in a straightforward, consistent fashion. Soesianto and Riyad 
Mubarak, 2000 gives a brief presentation on wavelet and wavelet 
transforms. 
 

The Haar wavelet is a common and simplest wavelet 
transformation which can be used to transform values within a matrix. 
Haar transformation is a two-dimensional generalization of one-
dimensional wavelet transform. The Haar transform uses the standard 
decomposition algorithm. To obtain the standard decomposition of a 
matrix, we first apply the one-dimensional wavelet transform to each row 
of value. This operation gives us an average value with detail coefficient 
for each row. Next we treat these transformed rows as if they were 
themselves an matrix and apply the one-dimensional transform to each 
column. The resulting values are all detail coefficients except for a single 
overall coefficient Stollintz, et al, (1996). An algorithm to compute the 
standard decomposition is given below  
 
procedure StandardDecomposition (c: array [1 .. 2j,1 .. 2k] of reals) 

for row ←1 to 2j do 
Decomposition(c[row, 1 .. 2k]) 

end for 
for col ←1 to 2k do 
Decomposition(c[1 .. 2j,col]) 

end for 
end procedure. 
The corresponding reconstruction algorithm simply reserves the steps 
performed during decomposition: 
procedure StandardRedecomposition (c:  array [1 .. 2j,1 .. 2k] of reals) 

for col ←1 to 2k do  
Redecomposition(c[1 .. 2j,col]) 

end for 
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for row ←1 to 2j do 
Redecomposition(c[row, 1 .. 2k]) 

end for 
end procedure.. 
 
In this paper the wavelet method is used to solve the linear equation 
problem in the inner-loop of the nonlinear equation with two objectives: 
(1) cheaper operation, (2) more accurate computation. We proceed to the 
numerical experiments to obtain a general idea of the feasibility of 
introducing wavelet method in PASVA. In a later paper we will pursue 
the proposal of integrating wavelet concept to enhance the deferred 
correction and mesh refinement process. 
  
Numerical Results 
 
Problem 1. This problem is given in Cash (1994)  
We consider a problem with a boundary layer at the right end of the 
interval: 

0u(1)   1,u(0)               ,0u '' ===− uε  

The exact solution for this problems 
ε

εε
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 , we run PASVA 

and our Wavelet method then we get the result below when we put the ∈ 
= 0.01. 
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Table 1. The result of  TPBVPs produced by PASVA, MW, and exact 
solution for problem 1 

x (u)Pasva (u)Wavelet (u) Exact 
.000000000E+00 .100000000E+01 0.100000000E+01 0.1000e+001 
.781250000E-02 .924848800E+00 0.92308760258849 9.2312e-001 
.156250000E-01 .855345300E+00 0.85208296583363 8.5214e-001 
.234375000E-01 .791065100E+00 0.79442734424371 7.9453e-001 
.312500000E-01 .731615600E+00 0.73330176934923 7.3345e-001 
.390625000E-01 .676633800E+00 0.67686932577867 6.7706e-001 
.468750000E-01 .625784000E+00 0.62476884589306 6.2500e-001 
.546875000E-01 .578755600E+00 0.57666688662115 5.7695e-001 
.625000000E-01 .535261400E+00 0.53225559542361 5.3259e-001 
.781250000E-01 .457833300E+00 0.45816583344933 4.5841e-001 
.937500000E-01 .391605600E+00 0.39049926667963 3.9063e-001 
.101562500E+00 .362176000E+00 0.36041477625489 3.6059e-001 
.109375000E+00 .334958000E+00 0.33598302470858 3.3622e-001 
.125000000E+00 .286504800E+00 0.28632110882879 2.8650e-001 
.140625000E+00 .245060500E+00 0.24398901333502 2.4414e-001 
.156250000E+00 .209611400E+00 0.20997541836969 2.1014e-001 
.171875000E+00 .179290100E+00 0.17890164078226 1.7907e-001 
.187500000E+00 .153354900E+00 0.15240774519887 1.5259e-001 
.203125000E+00 .131171400E+00 0.13111319816529 1.3134e-001 
.218750000E+00 .112196900E+00 0.11165062197728 1.1192e-001 
.234375000E+00 .959670600E-01 0.09600033376204 9.6328e-002 
.250000000E+00 .820849700E-01 0.08168750127639 8.2085e-002 
.281250000E+00 .600546300E-01 0.05990732280339 6.0205e-002 
.312500000E+00 .439368900E-01 0.04346321606655 4.3718e-002 
.343750000E+00 .321448800E-01 0.03177717071410 3.2065e-002 
.375000000E+00 .235176600E-01 0.02314491146724 2.3518e-002 
.437500000E+00 .125879800E-01 0.01245514128323 1.2525e-002 
.500000000E+00 .673764100E-02 0.00676141723832 6.7376e-003 
.562500000E+00 .360599200E-02 0.00363816697231 3.5880e-003 
.625000000E+00 .192938600E-02 0.00197428180933 1.9294e-003 
.687500000E+00 .103130300E-02 0.00106093325171 1.0261e-003 
.750000000E+00 .549357700E-03 0.00057319392538 5.4936e-004 
.812500000E+00 .289082400E-03 0.00030328294381 2.8757e-004 
.875000000E+00 .145453900E-03 0.00015517840426 1.4545e-004 
.937500000E+00 .605170200E-04 0.00006578657846 5.9973e-005 
.968750000E+00 .288388800E-04 0.00003138522898 2.8601e-005 
.100000000E+01 .131415700E-15 000000000E+00 000000000E+00 

Problem 2. This problem is given in Cash (1995) 
We consider a problem with a boundary layer at the right end of the 
interval:      2u(1)   ,0u(-1)               ,0u '' ===+ε xu

The exact solution for this problems 
)

2
1(

)
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ε

ε

erf

xerf
xu =  , we run PASVA and 

our Wavelet method then we get the result below when we put the ∈ = 
0.1.  
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Table 2. The result of  TPBVPs produced by PASVA, MW, and exact 
solution for problem 2 

x (u) Pasva (u)Wavelet (u) Exact 
-1.000000000 .000000000E+00 .000000000E+00 000000000E+00 
-.973684200 .511949500E-03 0.00045595938299 5.0499e-004 
-.947368400 .117331800E-02 0.00107017268180 1.1838e-003 
-.894736800 .310290100E-02 0.00284013335190 3.0908e-003 
-.868421100 .447080700E-02 0.00412869769205 4.4954e-003 
-.842105300 .618970300E-02 0.00569125818801 6.1974e-003 
-.789473700 .109931400E-01 0.01024011963971 1.1046e-002 
-.736842100 .182640900E-01 0.01702897198811 1.8238e-002 
-.684210500 .289701200E-01 0.02727546783998 2.9021e-002 
-.631578900 .443043800E-01 0.04171961820779 4.4160e-002 
-.578947400 .656689500E-01 0.06230894786573 6.5644e-002 
-.526315800 .946238900E-01 0.09036167089042 9.4824e-002 
-.473684200 .132796300E+00 0.12668982616070 1.3254e-001 
-.421052600 .181748500E+00 0.17425436052368 1.8180e-001 
-.368421000 .242813600E+00 0.23376470368238 2.4335e-001 
-.315789500 .316912400E+00 0.30462618642957 3.1659e-001 
-.263157900 .404375900E+00 0.38992745914598 4.0466e-001 
-.210526300 .504800400E+00 0.48602320161942 5.0384e-001 
-.157894700 .616963600E+00 0.59545924958278 6.1673e-001 
-.105263200 .738822600E+00 0.71445994367457 7.3945e-001 
-.052631570 .867606900E+00 0.83783212108040 8.6669e-001 
.000000007 .100000000E+01 0.96712552851499 1.0000e+000 
.052631590 .113239300E+01 1.09641893596982 1.1333e+000 
.105263200 .126117700E+01 1.21979111336288 1.2605e+000 
.157894700 .138303600E+01 1.33879180752674 1.3833e+000 
.210526300 .149520000E+01 1.44822785532819 1.4962e+000 
.263157900 .159562400E+01 1.54432359794601 1.5953e+000 
.315789500 .168308800E+01 1.62962487044292 1.6834e+000 
.368421100 .175718600E+01 1.70048635328681 1.7566e+000 
.421052600 .181825100E+01 1.75999669638335 1.8182e+000 
.473684200 .186720400E+01 1.80756123085404 1.8675e+000 
.526315800 .190537600E+01 1.84388938613877 1.9052e+000 
.578947400 .193433100E+01 1.87194210913752 1.9344e+000 
.631578900 .195569600E+01 1.89253143886851 1.9558e+000 
.684210500 .197103000E+01 1.90697558918891 1.9710e+000 
.736842200 .198173600E+01 1.91722208507964 1.9818e+000 
.789473700 .198900700E+01 1.92401093744926 1.9890e+000 
.842105300 .199381000E+01 1.92855979878770 1.9938e+000 
.868421100 .199552900E+01 1.93012235942794 1.9955e+000 
.894736900 .199689700E+01 1.93141092373170 1.9969e+000 
.947368400 .199882700E+01 1.93318088437344 1.9988e+000 
.973684200 .199948800E+01 1.93379509768011 1.9995e+000 
1.000000000 .200000000E+01 .200000000E+01 .200000000E+01 
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Problem 3: This problem is given in Cash (1996) 
We consider a problem with a boundary layer at the right end of the 
interval: 

0u(1)   1,u(0)               ,0u ''' ===− uε  

The exact solution for this problems 
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 , we run PASVA and 

our Wavelet method then we get the result below when we put the ∈ = 
0.01.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
98 



 ON THE WAVELET METHODS …. 

Table 3. The result of  TPBVPs produced by PASVA, MW, and exact 
solution for problem 3 

x (u) Pasva (u)Wavelet (u) Exact 
.000000000 .100000000E+01 1.00000000000000 1.00000000000000 
.052631580 .100000000E+01 0.99999917470581 1.00000000000000 
.105263200 .100000000E+01 1.00000078670631 1.00000000000000 
.157894700 .100000000E+01 0.99999994708488 1.00000000000000 
.210526300 .100000000E+01 1.00000132891930 1.00000000000000 
.263157900 .100000000E+01 0.99999993929315 1.00000000000000 
.315789500 .100000000E+01 0.99999996311693 1.00000000000000 
.368421000 .100000000E+01 0.99999997715468 1.00000000000000 
.421052600 .100000000E+01 1.00000200320727 1.00000000000000 
.473684200 .100000000E+01 0.99999998626601 1.00000000000000 
.526315800 .100000000E+01 0.99999993658944 1.00000000000000 
.578947400 .100000000E+01 0.99999999693698 1.00000000000000 
.631578900 .100000000E+01 0.99999996283448 1.00000000000000 
.684210500 .999999900E+00 0.99999990798167 0.99999999999998 
.736842100 .100000000E+01 0.99999983654878 0.99999999999622 
.789473700 .999999900E+00 0.99999997457454 0.99999999931390 
.815789500 .100000000E+01 1.00000314654388 0.99999998979104 
.842105300 .999999900E+00 0.99999997148043 0.99999986254923 
.859649100 .999999300E+00 0.99999996561794 0.99999916847128 
.877193000 .999995500E+00 0.99999919437383 0.99999544825554 
.894736800 .999973200E+00 0.99998540359013 0.99997246355065 
.905263100 .999923200E+00 0.99995638339149 0.99992514817011 
.915789500 .999779900E+00 0.99984972449140 0.99977513267582 
.926315800 .999369200E+00 0.99954920332247 0.99938874723887 
.936842100 .998192500E+00 0.99844737344034 0.99816369522297 
.947368400 .994821100E+00 0.99534209083208 0.99500840609309 
.952153100 .991643200E+00 0.99223671409578 0.99177025295098 
.956937800 .986515600E+00 0.98706124021676 0.98643144098780 
.961722500 .978241500E+00 0.97843528254048 0.97762922814383 
.966507200 .964890400E+00 0.96405979543972 0.96311683259876 
.971291900 .943347000E+00 0.94608858279115 0.94497677994359 
.976076500 .908585000E+00 0.91014737441623 0.90928204671059 
.978468900 .883877600E+00 0.89018780650929 0.88919684163767 
.980861200 .852492400E+00 0.85142104716872 0.85043138077737 
.983253600 .812624400E+00 0.81840350541827 0.81731647594727 
.985645900 .761981100E+00 0.75431063026188 0.75340303605839 
.988038300 .697650000E+00 0.69971299587509 0.69880578808780 
.990430700 .615931600E+00 0.63298255383190 0.63212055882856 
.992025600 .549521300E+00 0.55142312467670 0.55067103588278 
.993620400 .471631000E+00 0.45173937792821 0.45118836390597 
.995215300 .380269300E+00 0.39402773507389 0.39346934028737 
.996411400 .301524900E+00 0.33024118244542 0.32967995396436 
.997607600 .212770300E+00 0.18140589297884 0.18126924692202 
.998803900 .112737700E+00 0.09523809381386 0.09516258196404 
1.000000000 .413500300E-15 .413500300E-15 0 
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The Comparison Between PASVA and MW to Solve Perturbation 
TPBVPs 
 In this section we tried to solve the same problems above and we 
found that PASVA failed to solve the problems above when the value of 
∈ < 0.01, this is called a perturbation problems. But MW able to solve 
these perturbation problems and the table below include the results of 
problem 1. 
 

Table 4. the result of perturbation TPBVPs produced by MW and 
failed of PASVA 

x ∈ = 0.001 ∈ = 0.0001 ∈ = 0.00001 PASVA ∈ < 0.01 
.000000000E+00 
.781250000E-02 
.156250000E-01 
.234375000E-01 
.312500000E-01 

.390625000E-01 
.468750000E-01 
.546875000E-01 
.625000000E-01 
.781250000E-01 
.937500000E-01 
.101562500E+00 
.109375000E+00 
.125000000E+00 
.140625000E+00 
.156250000E+00 
.171875000E+00 
.187500000E+00 
.203125000E+00 
.218750000E+00 
.234375000E+00 
.250000000E+00 
.281250000E+00 
.312500000E+00 
.343750000E+00 
.375000000E+00 
.437500000E+00 
.500000000E+00 
.562500000E+00 
.625000000E+00 
.687500000E+00 
.750000000E+00 
.812500000E+00 
.875000000E+00 
.937500000E+00 
.968750000E+00 
.100000000E+01 

0.100000E+01 
7.7697e-001 
6.0367e-001 
4.8373e-001 
3.7567e-001 
2.9166e-001 
2.2631e-001 
1.7545e-001 
1.3581e-001 
8.4929e-002 
5.1713e-002 
4.0069e-002 
3.1985e-002 
1.9391e-002 
1.1761e-002 
7.3428e-003 
4.4510e-003 
2.6985e-003 
1.6830e-003 
1.0172e-003 
6.2948e-004 
3.7203e-004 
1.4425e-004 
5.4538e-005 
2.0881e-005 
7.2913e-006 
1.2626e-006 
2.2194e-007 
3.8431e-008 
6.7557e-009 
1.1698e-009 
2.0564e-010 
3.5611e-011 
6.2764e-012 
1.1827e-012 
3.9941e-013 

000000000E+00 

0.100000E+01 
4.5884e-001 
2.1134e-001 
1.0572e-001 
4.8455e-002 
2.2198e-002 
1.0149e-002 
4.5939e-003 
1.9793e-003 
4.9127e-004 
1.2237e-004 
5.5391e-005 
2.5867e-005 
5.9787e-006 
1.3959e-006 
3.4503e-007 
7.9747e-008 
1.8620e-008 
4.6046e-009 
1.0745e-009 
2.6314e-010 
5.0296e-011 
4.3161e-012 
3.5900e-013 
3.1070e-014 
1.9853e-015 
3.6429e-017 
-2.0817e-017 
-2.3039e-019 
-6.7085e-019 
-2.2362e-019 
-2.0329e-020 
1.7138e-020 
-9.4609e-022 
-8.3028e-023 
1.1374e-024 

. 000000000E+00 

0.100000E+01 
1.2085e-001 
1.5144e-002 
2.1575e-003 
2.6059e-004 
3.1475e-005 
3.8015e-006 
4.5765e-007 
4.2723e-008 
1.6991e-009 
7.7404e-011 
9.6487e-012 
1.0187e-012 
3.6959e-014 
1.3778e-015 
5.4778e-017 
2.0586e-018 
-2.9273e-018 
-9.7714e-018 
-9.7578e-019 
6.7763e-021 
1.1858e-020 
-9.1056e-020 
4.0658e-020 
-2.5411e-020 
1.0694e-020 
1.3553e-020 
2.7105e-020 
1.6498e-021 
-3.5734e-022 
6.6174e-024 
9.9262e-023 
-4.7043e-025 
8.0639e-027 
-2.3367e-028 
-8.1351e-031 

000000000E+00 

failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
failed 
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 ON THE WAVELET METHODS …. 

Conclusion 
The Wavelet Method for solving two point boundary value problems is 
introduced. The method examined for several popular problems and 
compared the results with the results of the same problems solved by 
PASVA and the exact solution for each problem. From the tables in our 
discussions we can conclude that: 
1. The accuracy of both methods are same 
2. Although PASVA software is well-known to solve TPBVP but it 

failed to solve perturbation problems, WM is able to do it. 
3. The result of ∈ = 0.00001 method was failed, and PASVA method 

when ∈ = 0.001 already failed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
101 



 
Kais Ismail  & Thamir Abdul Hafedh 

REFERENCES 
Cash, J.R., 1994, “Mesh Selection for Stiff Two Point Boundary Value 

Problems”, Numerical Algorithms., 7, 205-224. 
Cash, J.R., 1996, “Runge-Kutta Methods for the Solution of Stiff Two-

Point Boundary Value Problems”, Appl. Numer. Math., 22, 165-177. 
Cash, J.R., Moore, G., and Wright, R.W., 1995, “An Automatic 

Continuation Strategy for the Solution of Singularly Perturbed Two-
Point Boundary Value Problems”, J. Comput. Phys., 122, 266-279. 

Lentini M., and Pereyra, V., 1975, “PASVA2-Two Point Boundary Value 
Problem Solver for Nonlinear First Order Systems”, Lawrence 
Berkeley Lab. Program Documentation Rep. 

Lentini, M and Pereyra, V, 1977, “An Adaptive Finite Difference Solver 
for Non-linear Two-Point Boundary Problems with Mild Boundary 
Layers”, SIAM J. Numer. Anal., 14, 91-112. 

Pereyra, V., 1965, “The Difference Correction Method for Nonlinear 
Two-Point Boundary Value Problems of Class M”, SIAM J. Numer. 
Anal., 22, 184-198

Pereyra, V., 1966, “On Improving An Approximate Solution of A 
Functional Equation by Deferred Corrections”, Numer. Math., 8, 376-
391. 

Pereyra, V., 1967a, “Accelerating the Convergence of Discretization 
Algorithms”, SIAM J. Numer Anal., 4, 508-833.

Pereyra, V., 1967b, “Iterated Deferred Corrections for Non-Linear 
Operator Equations”, Numer. Math. 10, 316-323 

Pereyra, V., 1968, “Iterated Deferred Corrections for Non-Linear 
Boundary Value Problems”, Numer Math 11, 111-125. 

Pereyra, V., 1979, “Pasva3: An adaptive finite difference FORTRAN 
program for first –order non-linear ordinary boundary problems”, 
Lecture Notes in Computer Science, pp. 67-88., Spinger-Verlag, 
Berlin-Heidelberg. 

Soesianto, F., 1991; On the Solution of The Highly Structured Non-Linear 
Equation” Ph.D. Dissertation from Department of Computer Science, 
University of Essex, UK. 

Soesianto, F., and Abdullah, R. M., 2000, "Two Competing Methods to 
Solve Sparse Linear Equations", this proceeding. 

Stollintz, E. J., T. D. Derose, and D.H. Salesin, Wavelet for Computer 
Graphics Theory and application, Morgan Kaufmann Publishers, Inc., 
San Francisco, California, 1996. 

Watt, J.M., 1968, “Convergence and Stability of Discretization Methods 
for Function Equation ’’, Comput. J., 11, 77-82  

 
102 


