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 الملخص

لنظام معين كدالة لمزمن يمكن صياغتها بشكل دالة تعظيم  لاد الحل الامثان مسالة ايج
وقد وجد بشكل خاص أن خوارزميات البرمجة الديناميكية . خطيةالغير  الكمفةاو تصغير لدالة 

. كفوءة لحل هذه المسائل مقارنة مع  محاولات طرق البرمجة التكرارية غير الخطية
دار المتدرج مع الاعاقة الديناميكية ورففت بطريقة ديناميكية عممت طرق الانح, وفي عممنا هذا 

مع الاستراتيجيات غير الرتيبة لمحصول عمى نوع  جديد من خوارزميات التصغيرلمدوال 
 .ذات القياس العاليغيرالتربيعية التي تتعامل بكفاءة مع المسائل اللاخطية في الامثمية  

Abstract 

The problem of optimizing a certain systems as a function of time 

may be formulated in terms of maximizing or minimizing a non-linear 

cost function. It was found that a Dynamic Programming (DP) algorithm 

was particularly efficient procedure for solving this problem compared 

with an alternative nonlinear programming method. 

In this work, a new CG method with dynamical retards is generalized and 

combined in a dynamical way with non-monotone globalization strategies 

to obtain a new type CG-algorithm for minimizing non-quadratic 

functions that can deal efficiently with large scale nonlinear optimization 

problems. 

 

1. Introduction: 

Conjugate gradient (CG) algorithms have advantage over both modified–

Newton and variable metric (VM) algorithms for unconstrained 

optimization of not requiring a matrix store. They tend, however, to 

require more function evaluations to obtain the minimum than the latter 

algorithms and therefore their use is usually restricted to the solution of 

problem in a large number of dimensions, or to computers with a 

restricted store. 

We consider the unconstrained minimization problem 

min ( )
nx R

f x


,                                                          … (1) 
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where f : n  is continuously differentiable and its gradient is 

available. We are interested in the large–scale case for which the Hessian 

of  f  is either not available or requires a prohibitive amount of storage 

and computational cost. 

The most important features of these methods are that only gradient 

directions are used, that the memory requirement are minimal, and they 

do not involve a decrease in the objective function, which allows fast 

local convergence. 

In this paper, we extended the gradient method and introduce a new 

gradient method with dynamical retards to find the unique global 

minimizer of the quadratic function of form 
1

( )
2

T Tf x x G x b x  ,                                           …(2) 

where n nG   is large, sparse, symmetric and positive definite. 

For the non-quadratic case, the method needs to be incorporated in a 

globalization strategy, since the method does not enforce decrease in the 

objective function, a non-monotone line search strategy will be used. 

In particular, the non-monotone line search technique introduced by 

Grippo, Lampariello and lucidi [8] has proved to be very effective for 

large scale optimization problems. This line search essentially enforces 

the following condition 

max
1 1

0
( ) ( ) ( )T

k k j k k k
j M

f X f X g X X
  

 
   ,            ... (3) 

 

 

Where M is a non-negative integer and   is a small positive number. This 

condition leads us to create two algorithms; the first which is called (The 

original) using this condition only, and the second which called (The 

new) using Armijo rules with BFGS updating formula and self scaling 

Variable Metric (VM) update  for the scalar Hestense and Stiefel (HS) 

[9]. 

This paper is organized as follows: In the next section we discuss the line 

search procedure and then talking about Steepest Descent (SD) method 

and in the third section we describe a review of conjugate gradient 

method and in the fourth section the non-monotone gradient methods will 

be describe and in the fifth section we describe VM methods and the new 

Preconditional Conjugate Gradient (PCG) algorithm and some new 

theorems, while section six gives the numerical results and the 

conclusions, sections seven and eight contain the  Appendix and  the 

References. 

 

2. Line search procedure: 
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One-dimensional search is the backbone of many algorithms for solving a 

nonlinear programming algorithms precede as follows: given a point x
k

, 

find a direction vector d
k

 and then a suitable step-size 
k
 , yielding a 

new point  
1k k k k

x x d

   ; the process is then repeated. Finding the 

step-size 
k
 involves solving the sub problem to minimize  ( )

k k
f x d  , 

which is a one-dimensional search problem in the variable   . 

The minimization may be over all real   , non-negative   ,or such that 

k kx d is feasible. Consider a function   of one variable   to be 

minimized. One approach to minimizing   is to set the derivative '  

equal to 0 and then solve for  . Note, however, that   is usually defined 

implicitly in terms of a function f of variables. In practice, given the 

vector x and d,  ( )=f(x+ d). If f is not differentiable , then  will not 

be differentiable. if f is differentiable, then ' '( ) ( ) 0d f x d      . 

Therefore, to find a point   with '( )  =0, we have to solve the equation 

'
( ) 0d f x d   , which is usually nonlinear in  . Furthermore,  

satisfying '( )   = 0 is not necessarily a minimum; it may be a local 

minimum , a local maximum , or even a saddle point , for these reasons , 

and except for some special cases , we avoid minimizing   by letting its 

derivative be equal to zero. Instead, we resort to numerical techniques for 

minimizing the function  . In our work we use this technique to find   as 

follows: 

 

find     z = min (k ,M) , where  k is the count , M is non negative integer 

and  for  0 j z  , find  Max 
( )

. . T
k j k k

f g g 


   where g is the gradient of   

the function f ,  (0,1) , (0,1)   . If   
1

( ) max ( ) . . . T
k k k

f x f k j g g 


        

choose   .       , 
1k k k

x x d

      else       

k
  ,    

1
.

k k k k
x x d


        

update     by take    
vv

yv
T

T

    and     =1/  . 

 

2.1 Steepest -Descent (SD): 

The Steepest Descent (SD) method is particularly useful when the 

dimension of the problem is very large, however, it may generate short 

zigzagging displacements in a neighborhood of a solution. 

For simplicity, we denote ( )f x
k

  by  kg , ( )f x
k

 by kf and *( )f x  

by  *f , respectively, where *x denotes a local minimizer of f. 

In the algorithmic framework of (SD) method the iterative formula 

1
, 0,1,2,

k k k k
x x d k


   .                                        ... (4) 

Where 
k

d  satisfies the relation 
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0t

k kg d  ,                                                                    … (5) 

Which guarantees that 
kd  is a descent direction of  f(x) at 

kx . In order to 

guarantee the global convergence, it is usually required the descent 

condition 
2T

k k k
g d c g  ,                                                          ... (6) 

Where c > 0 is a constant . The angle property 

0cos( )
.

T
T k k
k k

k k

g d
g d

g d
   ,                                          ... (7) 

is often used in many situations, with 
0 (0,1] . 

Observe that, if 0
k

g   then 
k k

d g   satisfies (5) , (6) and (7) 

simultaneously. 

There are many alternative line-search rules to choose 
k
 along the ray 

}0|{1   kkkk dxd .namely: 

 

(a) Minimization Rule.   At each iteration, k is selected so that 

( ) min ( )
0

k k k k k kf x d f x d 


  


                                … (8) 

(b) Armijo Rule. Set scalars Ldk ,,  and   with 
2

k

k

T

k
k

dL

dg
d  , (0,1)  , 

0L   And (0,1/ 2)  .Let k  be the largest  in ,....},,{ 2

kkk ddd   such that 

( ) T

k k k k kf f x d g d                                              ... (9) 

 

 (c) Approximate Minimization Rule.   At each iteration, k is selected so 

that 

min{ ( ) 0, 0}T

k k kg x d d                                ...(10) 

For more details see [13]. 

 

In our work we choose Armijo rule to describe the new proposed 

algorithm in section (5.5). 

 

3. Review of conjugate gradient method: 

Conjugate gradient (CG) methods were first used to solve the general 

unconstrained problem by Fletcher and Reeves [6]. Their algorithm (or 

simple variants) is still frequently used, especially for problems with a 

large number of variables since they require only a few vectors of length 

n to be stored. 

Given a symmetric positive definite matrix G, the finite set of non-null 

vectors { 1 2
, ,...,

k
d d d } is said to form a conjugate set if 
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0Td G d
i j

  for all i ≠ j                                          …(11) 

The CG-method, which we shall now derive, is based on a successive 

construction of conjugate search directions. Suppose for now that we 

know the matrix G defining the quadratic function. 
1

( ) ( )
2

T Tq x x G x b x    ;                                         ...(12) 

then we can construct a set of conjugate directions {
1 2
, ,...,

n
d d d } from an 

arbitrary set of linearly independent direction {
1 2
, ,...,

n
r r r } by a Gram -

Schmidt process in the following way [ 3] : 

Let 
1 1,

d r  For i=1,2,…..…n determine successively 

1

1

i
d r c d

i i ij jj


  


,                                                 ... (13) 

 

where the coefficient ijc must be chosen so that 

0Td G d
i k

    for   k=1,2,…….,i-1                        ….(14) 

From (13) we get     
1

1

T

ij j

i
T T
i k i k

kj

d G d r G d c d G d




   … (15) 

By the obvious inductive assumption, substitution of (14) into (15) yields: 

 

[ ]T T
ij i j j j

c r G d d G d   For j=1, 2,…, i-1           …(16) 

 

now jd ≠ 0, since jr are assumed to be linearly independent, hence    

0Td G d
j j

   and  0
ij

c   is well–defined. 

Suppose we want to minimize the quadratic function q without first 

evaluating the Hessian G, but suppose also that we can compute the 

gradient g since 

1k k k k
x x d


                                                 ….(17a) 

1 1 ,k kg G x b                                                   …(17b) 

1k k k k k
y g g Gd


   ,                                   .…(17c) 

1k k k
v x x


  ,                                                … .(17d) 

 

Let the set { 1 2, ,..., nr r r } be chosen as the set {
1 2
, ,...,

n
d g g  } where 

1
d  is 

an arbitrary downhill direction and {
2 3
, ,...,

n
g g g } are determined 

successively. Substituting now (17) and using 
i i

r g  for i ≥2 into (16) 

we obtain 
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1 1
[ ( ) ( )] [ ]T T T T

i j j j j j i j j j
c g g g d g g g y d y
ij

 
    ,…..(18) 

 

for q with an exact line search ( ELS ) we have 

1
0T

i j
d g


  for  i = 1, 2 ,3 , j     ,                           …(19) 

 

also since 
2, 3

{ ,... }
j

d d d were constructed as a linear combination of 

{
2, 3

,...
j

g g g } we see that 

0T
i j

g g  for 2  ≤ i  < j                                        …..(20) 

 

this orthogonally relation makes  0
ij

c   for  j = 2, 3, i-2  

………………(21) 

Finally, (13) reduces to the following: 

12 2 2 1 1 1
[ ]T Td g g y d y d   ,                                 …(22a) 

1 1 1
,

k k k k k
d g d d 

 
                                       …(22b) 

1
[ ],T T

k k k k k
g y d y


                                        …(22c) 

1 1 1 1
[ ]T T

k k
g y d y


 ,                                        … .(22d) 

 

This is the Beale CG-method [3] in regular CG-methods the first direction 

1
d  is not arbitrary, but it is taken as

1
g . 

Then in this case 

0T
i j

g g     For     1 ≤ i < j                                 ….(23) 

 

3.1 Regular CG-method: 

 

The regular CG-method can be defined as follows: 

given an arbitrary starting point ix ,define the first search direction by 

1 1
d g  and for k = 1,2,3,…. iterate with 

 

1k k k k
x x d


  ,                                                      ….(24a) 

1
[ ]T T

k k k k k
g y d y


      ,                                       ….(24b) 

1 1k k k k
d g d

 
   ,                                                 ….(24c) 

 

the formula (24b) is called the Hestenes and Stiefel [9] form of 
k

  .It can 

also be written as: 
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1

T T

k
k k k k

g y g g


  
 

,                                            …(25a) 

 

the Polak-Ribiere [11] form ;or 

 

1 1

T T

k
k k k k

g y g g
 

  
 

,                                        ….(25b) 

 

the Fletcher-Reeves [7] form; or 

 

 

1 1

T T

k
k k k k

g g g d
 

  
 

,                                      … (25c) 

 

Dixon  [5] form. 

 

For the quadratic function in (2) with ELS these four formulae for 
k

   are 

equivalent, but for general function  they are not the same and give 

different algorithms, however, for any arbitrary function f, the CG-

method (24) generates downhill directions provided ELS are used since 

 1 1 1
1

T
T
k k k

k k k

d g g d g
  



   ,                           ...(26) 

 
1 1

0
T

k k

g g
 

  ,                                               … (27) 

 

In fact the ELS required can be relaxed since it is clear from (27) that a 

downhill direction can be obtained whenever 

 

1 1 1
T T

k k k k k
d g g g

  
 ,                                           …(28) 

 

In practice this is usually replaces by the slightly stronger condition: 

1 1 1
( )T T

k k k k k
d g g g 

  
 ,                                     …(29) 

 

Where    is some small constant, say  0.2 or 0.1 (very small positive 

number)  and this condition is attainable in practice for any continuous 

function. 
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Max 

0 ≤ j ≤min(k,M) 

 

4. Non-Monotone Gradient Methods: 

For the minimization of non-quadratic functions ,non-monotone methods 

like the gradient method ,need to be incorporated  with a globalization 

strategy .The main idea is to accept the step if it is satisfies a weak 

condition of the form given by (3) ,when M > 0 ; this condition allows the 

objective function to increase at some iterations and still guarantees 

global convergence first in this section  we would like to present a general 

non-monotone gradient algorithm for which we can establish classical 

convergence results. 

 

 

4.1 Non-monotone line search algorithm: 

We adopted a non-monotone line-search strategy, we do not impose 

decrease of the objective function at every iteration . Instead,  we choose 

a positive integer M at the beginning of the process and we accept a trial 

point when a sufficient decrease is obtained in relation to the maximum 

functional value among the M+1 last iterations. 

assume that (0,1)  is given independently of the iteration number k and 

that kd  has been computed . 

Step 1 : set 1 . 

Step 2 :set 
1k k k

x x d

  . 

Step 3: if ( )k kk
f x d                       

1
( ) ( )

k j k k k
Tf x g x x

 
   

then define 
k
   and finish the line search. 

If  the condition in step 3 dose not hold, define   [0.1 ,0.9 ]new    

Set new   and goto step 2 

for more detail see [10]. 

 

4.2 Original Algorithm:                  

Outlines of the original non-monotone algorithm [12]: 

Step1: Given
0

x , 0.05  , n is the dimension of the problem , Ac=1*E-4 

           k =0, integer M  > 0 , (0,1)  ,  0 <   < 1, max(1,min(1/ , )g  ,    

           1/        

Step2:  
k k

d g   

Step 3:  If 
1k

g Ac


  stop else continue. 

Step4: 
1k k k

x x d

   

Step5:  Find z=min (k ,M),0 j z  , Max .
( )

. . T
k j k k

f g g 


  

If 
1

( ) max ( ) . . . T
k k k

f x f k j g g 


    choose   .   , 

1
.

k k k
x x d


   
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 else     
k
  ,     

1
.

k k k k
x x d


      ,      

T

T

v y

v v
  ,   =1/  

Step 6: 
1 1

( )
k k

g f x
 
 , If  k = n Consider k = 1 and go to (step 2 ), 

otherwise k = k+1 and go to (step 4) 

Step7:  End 

In the next section we are going to draw the flow chart of the original 

non-monotone algorithm as follows: 
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4.3 Flow chart of the original non-monotone algorithm: 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Start 

     
1x , n ,  = 0.1 , = 0.0001, , Ac=1E-4 

          d g
k k
       

1k
g Ac




 

  stop 

            1k k k
x x d


   

yes 

No 

z=min(k,M), 0 j z   

max ( ) . . . T
k k

f k j g g    

If 

1
( ) max ( ) . . . T

k k k
f x f k j g g 


    

k
   

.  

.    

1
.

k k k k
x x d


   

1k k k
x x d


 

1
.

k k k
x x d


 

 

If 
k=n 

K=1 

k=k+1 

yes 

Yes 

No 

T

T

v y

v v
 

,  =1/  

 

No 
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4.4 Theorem: 

Assume that Ω={x n :
0

( ) ( )f x f x } is abounded set. If f is continuously 

differentiable on an open set that contains Ω then algorithm 4.2 is well 

defined and any accumulation point of the sequence {
k

x } that generates 

stationary point. 

For the details of the proof see [12].                                                               

 

5. Variable Metric (VM) methods: 

Quasi-Newton methods are probably the most popular general purpose 

algorithm for unconstrained optimization problems .Many QN-method 

are advantageous due to their fast convergence and absence of second 

order derivatives computation. 

For the QN-methods assume that at the k- th iteration at approximation 

point x and n×n matrix 
k

H  are available, then the methods proceed by 

generating a sequence of approximation points via the equation: 

1k k k k
x x d


       , 

k k k
d H g   

where 
k

H is an approximation of 1

kG  which is corrected for  updating 

from iteration to iteration .In general 
k

H  is symmetric and positive 

definite ,there are different choices of 
k

H  see [7] we list here some most 

popular forms 

1

1

( )( )

( )

SR

k

T
k k k k k k

k T
k k k k

v H y v H y
H H

v H y y


 
 


,               … (30) 

is called rank one correction formulae, where 

1k k k
v x x


     and     1k k ky g g   

1

T T
DFP k k k k k k
k k T T

k k k k k

v v H y y H
H H

v y y H y


   ,                   …(31) 

is the DFP formula 

1
1

TT T Tk k k kkBFGS k k kk k k
k k TT T

kk kkk k

v y H H y vv vy H y
H H

v yv y v y

   
   
   
      


    ;   ...(32) 

all three forms satisfy the quasi-Newton condition 
1k k k

H y v


 and 

maintain positive definite matrices if 1H  is positive definite. And we use 

the last one (BFGS) to update kH  in our new proposed algorithm and the 

scalar of HS to scale the direction 
k

d . 

 

5.1 Preconditioned CG algorithm (PCG): 

The preconditioned CG methods (PCG) first appeared in paper by 

Axelsson  in 1972 , it was developed with object of accelerating the 

convergence of the CG-method by a transformation of variables while 

keeping the basic properties of the method. Such transformation was 
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introduced by Allwright in 1972, the symmetric positive definite matrix H 

can be factored in various ways for example as TH LL  where L is lower 

triangular and non-singular. 

         Buckly in 1978 [4] introduced an algorithm in which conjugate 

gradient and quasi-Newton search directions occur together and which 

can be extended this type of algorithms see for example [1]. 

The search direction to the preconditioned (PCG) method defined by: 

t k t
d H g   

1k k k k k
d H g d


    for   1k                     

1 k

HS

T
k

T
k k

g H y

d H y
                                                     …(33) 

where H  is the BFGS update defined as : 

1 2( )

T TT
t t iBFGS i ti t t t t

i i T T T
t t t t

t t

T
H yv y y H yH y v

H H vtv y v y v y

  
  
   
    


     

For more detail we state the  following  algorithm (Buckely,1978): 

 

Algorithm (Buckley, 1978) 

Start with 
1

x ,  
1

IH  ,let t = 1, i = 1, 0  . 

Step 1:let  t i td H g     if 
t

g   

Step2:   k = t , t+1 , t+2,… repeat with 
1k k k k

x x d

   

           
1 1

T

k i k
k i k kT

k k

y H y
d H g d

d y
 
    where 1k k ky g g   

Step 3: we use the restarting when 
1

1

1

0.2
T

k

T
k i k

i k

g H g

g H g





  

         when this condition is  satisfied it restarts t to k and go to step 4 

Step4:  Update 
i

H  by 
1i

H


(using BFGS formula) to get: 

              
1 2( )

T TT
t t iBFGS i ti t t t t

i i T T T
t t t t

t t

T
H yv y y H yH y v

H H vtv y v y v y

  
  
   
    


     

Step 5:    Replace i with i+1 and go to step1. 

 

5.2 Self-Scaling PCG method: 

 

         Clearly self-scaling techniques are very effective in unconstrained 

optimization algorithms. In this section a new PCG method for solving 

unconstrained optimization problems is proposed. 
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 This PCG  algorithm considered here has an additional property of being 

invariant under scaling of the function is twice continuously differentiable 

and search direction is descent i.e T
k k

g d < 0 also we assume that line 

search is exact i.e T
k k

g d = 0  

Let 11 kk k k k
d H g d

                                          ...(34) 

 where  
k

  as in (33) where the matrix 
kH  is an approximation of 1G   

the inverse of Hessian of the objective function f (x). One important 

feature of  PCG method is the choice of kH the method requires kH  to be 

positive definite to deduce directions. 

 

 

5.3  Theorem (New proof for the  positive definite kH in equation 

(34)): 

 

Let G be a nn symmetric matrix , let G v = y where k1kk ggy   and 

1k k k
v x x


   and let 0

T

k km v v  , k

T

k1 vym  , 2

T

k km y y then the quantity  

0

1

m

m
 ,                                                            ….(35) 

is an approximation for an eigen value  of  G and if we set     ,so 

that    is the error of   ,then 2

0

2

m

m
 ,        ….(36) 

Proof: 

 

Let 2 denote the radiant in (36)  then since 01 mm  ,we have  

)vy()vy( T  0

2

12 mm2m  0

2

2 mm   0

2m  

,…..…….(37) 

Since G  is symmetric, it has an orthogonal set of n real unit eigen vectors 

1 2, ,................. nz z z corresponding to the eigen values  n1 .....,,.........    

respectively. (some of them  may be equal).Then v has a representation of 

the form 

nn11 za...zav                                            …(38) 

now etc,zzG 111   ,and we obtain y = G v = nnn111 za...za   and , 

since the iz are orthogonal unit vectors 

, 
2

n

2

1

T

0 a...avvm                                   ...(39) 

it follows that (37) 

vy  = nnn111 z)(a...z)(a    since the iz  are orthogonal unit 

vectors we thus obtain from (37) 
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2

n

2

n

2

1

2

10

2 )(a...)(am   

replacing each ( 2

i ) by the smallest of these terms, we have from (39) 

0

2

c

2

n

2

1

2

c0

2 m)()a...a()(m   

Where c  is an eigen value to which   is closest .dividing this inequality 

by  

0m and taking square root, we obtain (36). And the theorem is proved.  

Because the matrix G is positive definite then all eigen values are 

positive.                                                                                                                           

5.4 Theorem (New descent property): 

 

The new  search direction which is defined in 

1
1 1

.

T T
k k k k

k k kT T
k k k k

v v g y
d g d

v y d y


 
   ,                   …..(40) 

is always negative with exact line search. 

Proof: 

Multiplying (40) by 
1k

g


then we have 

T

kk

k

T

k

T

kk

k

T

k

k

T

k

k

T

kk

T

k gd
yd

yg

yv

vv
gggd 1

1

1111 .. 



      

  T

kk

k

T

k

k

T

k

k

T

k

k

T

k

k

T

k yd
yd

gg

yv

vv
gg 11

11.


    )1(11

k

T

k

k

T

k

k

T

k
yv

vv
gg    

Because 
T
k k
T

k k

v v

v y
 is a n n approximation for an eigen value of H, then 

T
k k
T

k k

v v

v y
>0 and always we have the direction 

1k
d


 is negative.                                  

 

5.5 New PCG- algorithm with dynamical retards: 

 

Out lines of the new proposed PCG  algorithm: 

Let  kret : number of retard . 

       knm : number of non-monotone . 

Step1:    Given 
1

x  , n is the dimension of the problem, k=1,Ac= 4101   

    integer M  > 0 , 0 <  <1 ,
0

H I , 0.001  ,knm = 0, kret = 0 

Step 2:   =1, k k kd H g  ,  k
z f x  

Step 3:   1Ar   

Step 4:   If (Ar >1) go to step 5(a) else    go to step 6 

Step 5 (a):  If (Ar > 2) go to step 5(b)  else 0.2   ,         go to step 6 

Step 5(b) : 1Ar    
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Step 6:    
1k k k k

x x d

  ,   compute  1 1k k

f f x
 
  

Step 7:  If  
1

0.1. ( 0.5. . )T T
k k k k k

f z g d g d 

    go to step 8                                                       

else     1Ar Ar   go to step 4 

Step 8: for j = 0, min (k ,M) find  max .
( )

. . T
k j k k

f g g 


  

Step 9: if 
1k

f


> max .
( )

. . T
k j k k

f g g 


  then .    , knm = knm+1             

                    
1

.
k k k

x x d 


    else     kret = kret+1     
1

.
k k k

x x d 


 

Step 10:  1NOI NOI   

Step 11:   If 
1k

g AC


  then go to step 15 else  continue.  

Step 12: 
k

T

k

k

T

k

vv

yv
 Compute 1kH   by the BFGS update and compute the                                                                                        

.            scalar HS
k

 where         1 k

T
HS k
k T

k k

g H y

d Hy
   

Step 13:Compute a new direction    k

HS

kkkk dgHd /111    

Step 14: If (
1 1

0T
k k

g d
 

  or k=n)    then k=1 and go to step 2 else  k=k+1 

go          

             to step 3 

Step 15:     End 

And now we are going to represent the flowchart of the new proposed 

PCG- algorithm as follows: 
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1k
f


> max . . .

( )
T

f g g
k j k k

 


 

1
0.1 ( 0.5 . )

T T

k kk k k
f z g d g d 


  

 

No 

5.6 Flow chart for the new proposed algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

                                                                 

 

 

 

 

 

 

 

 

 

 

                                                  

 

 

 

 

 

 

 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No Yes 

k k kd H g    =1, ( )f k z  

            Ar=1 

if Ar>1    ifAr>2 0.2 

         

1Ar  

1cc    1
.

k k k
x x d


 

1
.

k k k
x x d


   

 1 1k k
f f x

 


 k k
f f x  

Ar=Ar+1 

1
.

k k k
x x d 


 

kret=kret+1 

NOI=NOI=1 

1k
g AC


  STOP 

1 1
0T

k k
g d 



 or k=n 
k=k+1 

Start    
1x , n  ,   =0.1  , =.001, 

1
H I   , 

Ac=1*10^-4,         knm=0,     kret=0  ,M=10, k=1 

.    

knm = knm+1 

     J = 0, min(k,M) 

max . . .
( )

T
f g g

k j k k
 


 

Yes 

k=1 

Update H by BFGS 

k

T

k

k

T

k

vv

yv
  

k

HS

kkkk dgHd /111  
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Max 

0 ≤ j ≤min(k,M) 

 

Max 

0 ≤ j ≤min(k,M) 

 

5.8 The Global Convergence Theorem (for the new proposed 

algorithm): 

                                           

If ( ) i

kk
f x f               

1
( ) ( )T

k j k k k
f x g x x

 
    .....(41) 

 

and        ( ) ( )i

k k k k
f x d f X                               ….(42) 

holds , then the algorithm is well defined in the sense that 

( )k kk
f x d                          

1
( ) ( )T

k j k k k
f x g x x

 
   ….(43) 

 

 hold  for finite (M). 

 

Proof: 

Assume by contradiction that, at the iteration k, the test (43) is never 

satisfied then there exist sequence {
M
 },with 0

M
  as M   

such that  

)()(max)( 1

),min(0

kk

T

k

Mkj

jkkkk xxgxfdxf  



  ,            ....(44) 

Remember now that, because of (41) we have that ( ) 0i

k kf f x   now if 

( ) 0i

k kf f x  since 
M
    0 for sufficiently large M ,(44) yields that 

( ) 0i

k kf f x   ,which is a contradiction, if instead ( ) 0i

k kf f x  ,then 

dividing both term of (44) by 
M
  and taking the limit for 0M   we 

obtain that T T

k kk k
g d g d .                                                                                          

 

6. Numerical results and conclusions: 

6.1 numerical results: 

The two proposed algorithms describes in this paper namely: 

 

1. The original non monotone algorithm (original) 

2. The new proposed algorithm (new) 

 

They are programmed in double precision (FORTRAN 95) .The complete 

set of results are given in Tables (6.1.1) - (6.1.4). The numerical 

comparison are the number of function evaluations NOF, number of 

iterations NOI; number of non monotones (NONM) and the number of 

dynamical retards (NODR) are considered. The actual convergence 

criterion employed was 1 1*10 ^ 4kg      for all the algorithms twenty 

well-known test functions with different dimensions are employed in this 

comparison. 
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The first table contains the results of ten test functions for n = 4 only, 

while the second table contains another ten test function of 

dimensionality one  hundred and  one thousand. 

Table (6.1.1) 

Comparison between the original & new algorithm 

for n=4 only 

(standard test functions) 

It is clear from the above table, for small dimensionality test function (n = 

4) 

and for ten selected test functions there are an important of 74% NOI ; 

68% NOF . 

 
Origin New 

NOI NOF NONM NODR NOI NOF NONM NODR 

ROSEN 96 193 25 96 61 146 12 49 

BEALE 40 81 8 40 13 34 0 11 

DIXON 39 79 10 39 13 32 0 13 

WOLFE 23 47 4 23 10 30 0 10 

CANTRAL 59 119 12 59 37 82 0 37 

SUM 14 29 0 14 16 36 0 16 

WOOD 333 667 83 333 45 118 5 40 

MILEL 181 363 49 181 28 62 0 28 

CUBIC 159 319 42 159 76 184 19 57 

POWELL 282 565 77 282 32 76 0 32 

TOTAL 1226 2462 310 1226 331 800 36 293 

From the above table it is clear that the new proposed algorithms has an 

improvements on the original non monotone algorithm (origin) by 

taking 100% [ NOI ;NOF] for the origin algorithm we have in table 

(6.1.2) 

Table (6.1.2) 

Performance percentage of the new algorithm compared with the original  

algorithm   

Tools NOI NOF 

Origin 100% 100% 

new 26% 32% 

 

 
 



 

 

ABBAS Y. AL-BAYATI&ASEEL MOAYAD 

QASIM 
 

131 

Table (6.1.3) 

Comparison between the (origin) and (new) algorithms 

for dimensionality  n=100 and n=1000 

 

 N 

Origin New 

NOI NOF 
NON

M 

NOD

R 
NOI NOF 

NON

M 

NOD

R 

MILEL 100 105 211 0 105 28 67 0 28 

BEALE 100 49 99 0 99 19 53 0 16 

DIXON 100 1492 2985 322 1492 160 495 114 46 

WOLFE 100 44 89 2 44 110 422 66 44 

CANTR

AL 
100 94 189 0 94 40 87 0 40 

MILEL 
100

0 
130 261 0 130 40 100 0 40 

BEALE 
100

0 
49 99 0 49 28 73 0 19 

Shallo 
100

0 
23 47 0 23 19 48 0 19 

CANTR

AL 

100

0 
111 223 0 111 42 91 0 42 

POWEL

L 

100

0 
120 241 1 120 397 1426 91 306 

TOTAL 2217 4444 325 2267 883 2862 271 600 

 

 

From the above table it is clear that the new proposed algorithms has an 

improvements on the original Non-monotone algorithm (origin)by taking 

100% [NOI ; NOF] for the origin algorithm we have in table (6.1.4) 
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Table (6.1.4) 

Performance percentage of the new algorithm compared with the original 

algorithm 

 

 

Tools NOI NOF 

Origin 100% 100% 

new 39% 64% 

 

It is clear from the above table, for the dimensionality test function  

100 n1000   there are an improvements of  61%  NOI;   36%  NOF. 

 

6.2 Conclusions: 

In this paper a new PCG-algorithm which employs a Non-monotone 

search direction with dynamical retards is investigated both theoretically 

and numerically. 

The new proposed algorithm employs a modified line search sub program 

and it saves about 77% of NODR (Dynamical Retards) for small size of 

test functions while it saves a bout 74% of  NODR for high-size test 

problems. 

 

7. Appendix: 

All the test function used in this paper is from general literature [2]: 

 

1. Cube function, 
23 2

2 1 1
( ) 100( ) (1 ) ,F x x x x              0 ( 1.2,1.0)Tx    

 

2. Beale function, 
2 2 2 3 2

1 2 1 2 1 2
( ) (1.5 (1 )) (2.25 (1 )) (2.625 (1 )) ,F x x x x x x x                   

0 (0,0)Tx   

 

3. Miele and Cornwell function, 
2 4 6 8 21

3 4 2 3 1 4( ) ( 1) ( ) 100( ) ( 1) ,tanx
F x e x x x x x x       

0 (1,2,2,2)Tx   
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4. Dixon function, 

2 2 2 2
1 10 1( ) (1 ) (1 ) ( )

2

i i

n

F x x x x x

i

    



  ,                       
0 ( 1;...)Tx    

5. Shallow function, 

2 2 2
]2 1 2 2 1

/ 2

( ) (1 )

1

( ) [ i i i

n

x x x

i

F x   



                              
0 ( 2;...)Tx    

 

6. Powell function (generalized form), 

4
2 2 4 4

( ) 10( ]4 3 4 2 4 1 4 4 2 4 1 4 3 4

1

( ) 10 ) ( ) 2 )( ) [ 5

n

i i i i i i i i

i

x x x x x x x xF x       



    

, 0 (3, 1,0,1;...)Tx    

 

7. Wood function (generalized form), 

2
4 1

0

4 2 2 2 4 2
( ) [100( ) (1 ) 90( ) (1 )4 2 4 3 4 3 4 4 1

1

2 2
10.1( 1) ( 1) 19.8( 1)( 1)], ( 3, 1, 3, 1;...)4 2 4 4 2 4

i

T

n

F x x x x x x xi i i i i
i

x x x x xi i i i

            


           

 

 

8. Rosenbrock Banana function, 

F(x)=100 22 2
2 1 1

( ) (1 ) ,x x x                0 ( 1.2,1.0)Tx    

 

 

9. Wolfe function, 

1 1 2

0

1
2 2

( ) ( (3 / 2) 2 1) ( (3 / 2) 2 1)1 1

1

2
( (3 / 2) 1) , ( 1;...)1

i i

T
n n

n

F x x x x x x x xi i

i

x x x xn



          



     


 

 

10. Sum function, 

 

F(x)= 4
1

1
( )x  ,     0 (2;...)

T
x     

  

11.Cantral function 

F(x)= 

4
4 6 4

(arctan( )) ]4 3 4 2 4 1 4 1 4 1 4 4 3

1

(exp( ) ) ( )[ 100

n

i i i i i i i

i

x x x x x x x      



    

0 (1,2,2,2)Tx   
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