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ABSTRACT

The aim of this paper is to establish a new formula of generalized
curvature discussed with the help of decomposition theorem which is
used to obtain generalized curvature for algebraic curves by using some
concepts of nonstandard analysis given by Robinson A. and axiomatized
by Nelson E.

1-Introduction: -

Among the difference expressions of the generalized curvature, there
is one which can be expressed by using only one point infinitely close to
a singular point of a standard curve and this will be our consideration in
this paper. This is derived from generalized curvature form [10], with the
help of decomposition theorem.

The following definitions of nonstandard analysis will be needed
throughout this paper. [4], [5], [9], [11], [12], [15], [16], [17]

A real number X is called unlimited if and only if |x|> r for all

positive standard real numbers, otherwise it is called limited.

The set of all unlimited real numbers denoted byR , and the set of all
limited real numbers denoted by R

A real number xis called infinitesimal if and only if |X|< r for all
positive standard real numbersr .
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l Reformulation of the Generalized.... 61'
Two real numbers xand y are said to be infinitely close if and only
if X —y is infinitesimal and denoted by x = y.
If xis a limited number in R, then it is infinitely close to a unique
standard real number, this unique number is called the standard part of X
or shadow of x denoted by st(x)or °x.

Every set or element defined in a classical mathematics is called
standard.

Any set or formula which does not involve new predicates “standard,
infinitesimals, limited,...etc” is called internal, otherwise is called
external.

Let a: | >R’ , 1 =(a,b), be a curve parametrized by an arc
length s, and its tangent vector be « ' which has a unit length, then the
measure of the ratio of change of the angle with neighboring tangents
made with the tangent at s is known as a curvature of the curve « ats
,and it is given by ‘ g"(s)‘ and denoted by x(S)

Theorem 1.1 [10]
Let A =y(t)be a standard point on the planar curvey, and let B and

C be two points infinitely close to the point 4, then

tand ACx AB _BCx AB

3 3

—

BC| |Bc BC

Theorem 1.2 [10]
Let A be a standard point on the curvey, and let B and C be two

points infinitely close to the point 4, then the generalized curvature x; of

the curvey at the point 4 is given by: «, = -t%ﬁ“ = % :
BC

2- Decomposition Technique for Calculating the Generalized Curvature

According to the applications of decomposition theorem to algebraic
equations, we give an expression of the generalized curvature, which does
not involve the parametric but a point which infinitely close to the
considered standard part.

Theorem 2.1(Decomposition Technique Theorem)
If M is a limited point of R?whose shadow is°M = M, then for

M # M, there exist two standard vectors \Z and \Z linearly independent
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and two real infinitesimal numbers gand g,such that

M=M,+¢V, +¢68,V,.

Proof:
Since°M = M, then there exist an infinitesimal 7 such that
M =Mos+n ~+(2.1.1)
where M, M_, neR?.
Put ¢, =HM’-M’O and 5{=M -+(2.1.2)
&

then P, is a unit direction vector.

Also put \leo E then there exist an infinitesimal £ such that

E;=\71+Z (2.1.3)
Put &=|P,—Vi|, @:Pl_\/l,and V,= P, ,
&
then there exist an infinitesimal &such that P,=V,+& ... (2.1.4)

Combine equations (2.1.2)—(2.1.4)and substitute them in equation
(2.1.1) we getthat M = Mo +&V, + £V, +£,6,&

Thus M=z=M, +¢&V, +¢8,V,.

Corollary 2.2
If M is limited point of R*whose shadow is°M =M _, then

for °M =M, there exist two real infinitesimal numbers & and ¢, such

thatM =M, + 81\Z + elez\z where {\Z\Z} is a standard basis of R?.

Proof:

Since °M =M.then there exist an infinitesimalz such that
M=M, +7
and M, M,, n eR?.
Since M ,\Z}is a standard basis ofR?, then there exist two standard real
numbers a and b, and two real infinitesimals & and £ not both zero, such
that
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U J

R ™

if @0, then M =M, + 31\71+ 8182\72 , where ¢, =« and ¢, =
if 820, then M = M, +¢&6)V,+¢&V, , where g =% and ¢,=4.
Remark:
1- The choice of a and b to be standard ande«, g to be infinitesimals
IS necessary, since M, is standard and Eis infinitesimal.
2- If T\Z} is a standard usual basis of R?, then
Mz(x, y)=m0 +31\Z+3132\Z=(x0 +é&,Y, +&E,).
3- If o(x-x,)=0(y-y,). then M=(x, y)=(X, +¢&,Y, +¢&), Where
o is denoted to the small oh
4- For any basisB = E\Tz} the matrix form of the decomposition

Vy, V I
theorem in R? is given by: (XJz( H 12)(a+aj’ that is X=BC
y Vo Vp Ab+ S

—~ (v . v — (a+a
where V., =( “j, V, =( ”j andC is the constant matrlx[ J and
v b+ p

V21 22

. (v, v
B is the constant matrix| * ¥ |.
\J 21 v 22

Theorem 2.3(General Decomposition Technique Theorem)
If M is limited point of R"whose shadow 1s°M =M, then for

M # M, there exist n standard vectors \71,\72,~~~,\7nwhich are linearly
independent, and # real infinitesimal numbers ¢,,¢,,--+, &, such that

M=z=M,+¢V, +e6,V,+--+&6,--6.V,.

Theorem 2.4(Decomposition Version of Generalized Curvature)
Let M, be a standard point of a standard curveyinC®, and let

M=M, + 81\Z + glgz\z, then the general curvature at M is independent

of the choice of M and it given by Kg =

Proof:

Let p and g be the respective orders of the first non zero vector
derivative ¥” and of the first vector derivative not collinear with .

By using the Taylor development up to the order g, and the
decomposition theorem, the point M can be written in two different

ways:
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M=M,+¢V, +¢¢,V,,
and

. (P) (Q)
M =y (t,)+ - (”( ) e ( W) 4y gt-t,)

where n=0 Putting t—t =J, 6=0we get
_. B O y@
eV. + eV, =7T(I°)5p bt ( )5q L8t -(24.0)

Dividing equation (3.4.1)by &, we get

. . (p) t p (a) t q q
V1+82V2 :}/—(0)5_4_...4_7/—(0)6_4_775_ (242)

p! € q! 3 &,

p q
Since §—is limited andﬁ—gO Vvg> p, then from the decomposition
6‘1 81

theorem, we have

Therefore
p p
i‘_ - ° p - £=0
. ‘ 5"+ +7 5% +nst ‘7+,BH
p! q! p!
5" p! C e e : :
Thus —;‘—p, which is limited. Taking the shadow of the equation
Y
(2.4.2) we get V, =~ which is a unit vector in R?. The scalar product

of equation (2.4.1) by V, implies
T y? oy -
p| 6p+"'+m§q+§ ’§=0

& =

Then

s

£ = -(2.4.3)

p!
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Again, the norm of the cross product of equation (2.4.1)by V, is implies

@ ., )
_ <)
|5132|= q,H}/(p)H 6

Now raising equation (2.4.4)to the power ¢ and equation (2.4.3) to the
power p and then dividing the obtained two equations we get

(p!)ﬂp(y(q) x},(p)) ]

a9 1 - KG = —1
@)y
Corollary 2.5

&P
The curvature K(t)of a standard curve at a standard biregular point
is given by

0

K(t)=2

&2

€

Corollary 2.6
Let M, be a standard point of a standard curvey inC®, and let

M=z=M,+ gl\Z + 8182\Za whereB={V, =(a,,h,),V, =(a,,b,)}is  any
standard basis of R?, then we have the following cases:

(1) If a, #0,b, =0,b, #0, then’x, = &0,

q q|°

gl;_ a‘lB

(2) If V,and V,are basic unit direction vectors, thena, =1,
wheneverb, =0, and conversely.

(3) For cases other than (1) and (2), x; is unlimited or
undefined

Proof:
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(1) Form the following table of all possible values of (a,,b,)and

(a,,b,) for the basis B we can deduce the result

This is either
unlimited or
undefined

(2) Obviously

(3) In this case, the general curvature is the same as that given by

Theorem 2.4, but here we give a simple proof as follows:
Since V,and V, are basic unit direction vectors, then we have

M=(Xx,y)=(X,,Y,)+&,(1,0)+¢€,6,01)=(X, +&,,Y, + &E,)

Therefore such as shown in the figure (2.1) we get y
1 —
IM—M,|=¢,(1+&): ¢ and tan(T| )=tan(6)= £:%,
MO gl V
o &
Thus Kg (7)‘M0 = Tz_
&P

3-Spherical Curvature

" Figure (2.1)

Nonstandard studies of curves are now available widely for

geometrical and non geometrical applications, [6], [7], [13].

In this section the problem of curvature on spherical Euclidean space is
studied. For planar curves [3], [8], we have only two related order
derivatives corresponding to a standard curve, while for spherical curves,
three related order of derivatives effect the behavior of the curve, as it is

shown in Theorem 3.5.

Other studies on spherical curvatures can be found in [1], [2],

[14] and

[18]. The characterization of this study begins with the fundamental
definition of curvature, which is applicable to any curve in all spaces.
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Theorem 3.1
Let ybe a standard curve of type C~inR°®which admits at each

point two vector derivatives not coplanar denoted by y” andy¥, where p
and ¢ are the smallest integers such thaty® xy@ #0. Then the

generalized curvature of yis given by
(p!)%‘},(p) « y(q)‘

q
aty ]

OKG (t) =

Proof:
Let B=y(t+a) and C = y(t+ ag) where a,& =0 be two tinfinitely

close to the point A= y(t). By Theorem 1.2 , we have

B ‘tan A‘ _ ‘Exﬁ
"l e

3

We consider the following cases concerning the point A= y(t)

+# Case I\ 4 is a Biregular point:

We have HEH ~|(8 - a)|(x’2 Ly 4 Zrz)%

Therefore H?d“g ~ ‘(ﬂ—a)3‘(x’2 +y'2 4+ z’z)% (3.1.1)

Note that we can obtain two different forms according to the given form
of the quantity (8 —a)® as follows:

3af(a- )+ (a’ - B°)=3af(a- p)

(’3_0,)3:{ 2 2\ ~
20B(f - a)+(B-a)a” - p7)=2apf(a - p)

In general, we have(B-a)’=c-af(a— ), where ¢ is an arbitrary
standard constant.
For our purpose we take (8 —a)® =af(a— f), so

Hﬁ”e’ =laf(a- (X7 +y? + 27 ) =|efla-B)y'®)  --(3.1.2)
And
el e2 e3
ACx AB= QH)<’+%Z x"+52,32) (ﬂ/’+"’72 y"+§2ﬂ2) (ﬂz’+%zz”+§2ﬂ2

(oo<’+%2x"+§la2) (ay'+“72y"+§la2) (oz'+“—;z”+§1a2)
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~ aﬂ(O;— ﬂ)((yrzn ’ lr)e +(Z X' n)e +(X I n)e ) (313)
From equation (3.1.2) and (3.1.3) we get the result

% Case II\ 4 is an Only Regular point:
Since A=y(t,)is an only regular point, then we have y'#0and

yy"=yy" =...= 'y = 0. Therefore expanding the curve y using
Taylor development up to the order g at pointsB=1y(t, +a)
andC =y(t, +B), we get

— g+l + g+l i i i
HBC q _ ‘(ﬂ_a)%l H}/,Hq 1 — ‘Z(?H(_l)lﬂqﬂlal H}/’H q+1
i=0
~ ‘(q + l)aﬂ(ﬂ -1 4 (~1)% 0L ]||7'||q+l .. (3.1.4)
or
e e L R R 2 -(315)
And
€ e,
- k k k ok
ACxAB=Y P X 15,8 Z'B Ay iﬂwazﬂq
k=1 k=1 H
9o X~ q akyk ;o 7" .
2 ;—k! +d,0 kz=1: k! +3,0

-1 _ po-1
aple q! d )((y'z(‘“ —2yD)e, +(ZXV —x'2V)e, + (XY — yx@)e, )--+(3.L6)

From equation (3.1.5) and(3.1.6) we get

2~

-1
q!lly' @)™

(q)(t)‘

Ko (t) =
‘-
a

Since g = ae, which implies £ =0, then
(14
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y' ()% (1)
ally ()™

Ko (t) =

Proof:
Using equations (3.1.4) and (3.1.6) we get

aﬁ(aq_l —,Bq_l ' (q)(t)‘
q! |

B +1)(B* + (-1 ™)y

K. (1) =

(a) (t)
(a+2) @)™

Since ¢ is an odd number, therefore x (t) =

+¢ Case III\ 4 is a Singular point:

Let A=y(t,)be a singular point of order p-/ and g the order of the
first derivative not coplanar with y‘”, then using equation (3.1.5) we get

. p_ P 2 P_ P 2 p_ P 2
BC=((O+---+’3plaxp+i.sJ +(0+---+ﬂ pla yp+i.sj +£0+---+ﬂplazp+i.sJ]

ﬂp—ap

N

ﬂp—ap

; L

1
(X(p>2+y(p>2+z<p)2)2

Thus

7-1
-5 e =

fﬂ

HBC (pﬂpxﬂp_a ) H7WN0H +(3.1.7)

. apﬂp at’ _ﬂq—p
ACx AB= ( o )((y(p’z(q’ —2Py D)o, +(ZPX@ —xPz@)e, +(xPy@ —yPx@ )es) ’
therefore
4P (o _
‘ACxAB (“q P - A p)
p!q!
From equatlons (3.1.7) and (3.1.8) we have;

Hy(p) (1) 7(q)(t)H .(3.18)
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ppe(,d-p _ Qa-p
cn| [P )|Hy<p>(t>xy<q><t>ﬂ

K, (1) = —=
G Bc|’ " CA AR )
(pt)"
Since B=ac which implies 55 0 therefore
(@
e =L pY) q (t)H
a!l
Corollary 3.2

If A=y(t,)is the biregular point ofy, then for any value of
aand 8, the general case of the generalized curvature of 1y is given by
7' )% 7" @)

c- ol

Ko =

Corollary 3.3
If A=y(t,)is the only regular point of y and ¢ is the order of the

first derivative which is not collinear with ¥', andB = y(t+a),
C =y(t+ B)are two points infinitely close to the point A= y(t,), then for
any value of eand £, the generalize curvature of y is given by:

(@) (t)
(a+ 2@

provided that g is an odd number.

Ko (1) =

Corollary3.4
Let A=y(t,)be a singular point of order p-/ and g the order of the

first derivative not coplanar withy®, andB = y(t+a), C=y(t+ f)be
two points infinitely close to the point A=y(t,). Then for any value of
aand g the general curvature of y is given by

(1) [y “”(t)H

K, (1) =
A i1lg!
[p+ ]quy

Proof:
Since we have

a 1s an odd number.

, provided that
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a, B T
G _ [,Bp p!ap} H},(p)(t)

ey
=WZCW D'(B") (@) |y

i
p

‘BC

i
P

b

thus

941

L R -++(3.1.9)

e :

e (%+l]apﬂp (ﬂq-p +(-1) 2 )

1
(P

therefore, using equations (3.1.8) and (3.1.9) we get
q

1o (0 (1) x @ (t
K, (t) = (P =7 E )H provided that — is an odd number.
(}1 ’ @muwm Ol i

Theorem 3.5

Let ybe a standard curve of type C~inR®that admits at each point
three vector derivatives not coplanar, denoted by ', y@and y©,
where p, ¢ and s are the smallest integers such that y™ xy@ %20,
},(p) ><7,(5) # 0and },(p) x },(q)

given by

#0. Then the generalized curvature of yis

. _(p!)%‘},(mx},(q)‘ |

- q
ally "

Proof:
Let B=y(t+a) and C =y(t+ag) where a,6=0 be two
points infinitely close to the point A=y(t). Then expand the curve y

using Taylor development up to the order s at each of the points
B=y(t,+a) andC =y(t, +B), we get:

. p_ P 2 p_ P 2 p__ P 2
BC:((O+~--+ﬂp'ax"+i.sJ +(0+~--+ﬂ pla y"+i.sJ +(0+~--+ﬂp|az"+i.sJ]

thus

[N
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_.g+l=HBCH BCHP_1~( pﬂpXﬂp_ap) ”}/(p)(t)u -++(3.2.1)
therefore
el €, €
. S K. k s pgkok
ACxAB—k +6,8 Zﬂy +6.8 kz:ﬂki tof =
=1 - = ’
s S S5
~ = k! k=t K=
a' B (a - B )(y 25 —yz9) le, +
Slql
=L (le:lﬂ p)(XZ z°) Jes+
a’ BP (" - B ")( P_xPz%) e
q'p! 3
Thus
s — %+1 _ s—q _ Ms-
KG(t)E‘ASABL (p)r" B "(olt -p q)(yqzs_yszq) e, +
| s 2] |y
ove (2]
(XpZ sts) e, +
‘; -1
ORE
J
er(-(2))
y o qup) e,
q![[zj _1J Hy“’)@)%”
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i |
Since aand pgare arbitrary chosen so we may assume that Eis
a
infinitesimal, thus we get
(p!)ﬂp‘x‘p)y(‘”—x(q’y‘p)‘ ‘},(m <q)‘
!l ]

Theorem 3.6

Let ybe a standard curve of type C®inR°®which admits at each

(p) (a)

andy'™, where p

and ¢ are the smallest integers such thaty™ xy@ 0. Then the

0

point two vector derivatives not coplanar denoted by y

generalized curvature of yis equal to the shadow

Proof:
Form the Decomposition Theorem we have

. _ L, (@ (¢ y©
€1V1+8182V2+8182€3V3 =}/T(|0)5p+"'+}/q—(|0)5q+'“ ( )
Where 7 = 0.Dividing equation (3.3.1) by ¢,, we get

(p) p (a) q (s) s s
rr) st oyt st )88

p! &, q! e, st g, £,

L olgc 4 psc - (3.3.0)

V,+¢,V,+¢,6,V, = - (3.3.2)

thus
— (g, )6° 7 (P(ty) p! =;'(p)('fo)
e e o |

The cross product of V, by equation (3.3.1) implies

.-(333)

(P) y 4,@)

—_— — —_— — X
EEN XV, +£6,6,XV, XV, = %

(p) (s)
~ Xy s aS 333
qlly

O et (p)
sl e

Since each of V,and V,are orthonormal unit vectors then equation (3.3.3)
becomes
) H},(p) x},(q)H

(P) ., (a
yrixy that is |5132| ;W &

£167 EW 54

Moreover from equation (2.4.3) of the proof of Decomposition Version of

(P
Generalized Curvature Theorem, we have || guyp—ju‘g P‘
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Now rising |¢,| to the power ¢ and |¢,¢,|to the power p, we have

(pt):

-

(p) (@)
L)y <y,
a, | = 41 - KG ’
glp q!H}/(p) 3
thus
0 &o
Kg = q
9.
€10
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