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 الخلاصة 

الامثلية   في  واسع  بشكل  استخدامها  تم  والتي  خطية  الغير  المترافق  التدرج  بخوارزمية  الدراسة  هذه  تختص 
العا القيود  ذات  الامثلية  مسائل  ان خصوصا  المصفوفات.  خوارزميات  في  خزن  الى  تحتاج  لا  ولكونها  لية 

. والتي تحقق شرط الانحدار الكافي الخوارزمية المقترحة هي تحسين لخوارزمية هيداكي خوارزمية التدرج المترافق
تحسب   (HY) وبمعلمة والتي  الترافق  باستخداموياسوشي  اتجاهشرط  تولد  عادة  المقترحة  الخوارزمية  بحث لا . 

التقارب   لإثباتالانحدار والذي تحقق التقارب باستعمال بعض الفرضيات. ان الفكرة الأساسية من هذا العمل هو  
ولحل  المقترحة  الخوارزمية  فعالية  عن  الاحصائية  النتائج  تكشف  اللاخطية.  المترافق  التدرج  لطريقة  الشمولي 

 مشاكل الاختبار المعطى. 
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Abstract 

This study proposes “a nonlinear Conjugate gradient algorithm that is widely 

used in optimization, especially for large scale optimization problems, because it does 

not require the storage of any matrices algorithm”. This algorithm modifies Hideaki 

and Yasushi’s (HY) “conjugate gradient algorithm”. It satisfies “a parameterized 

sufficient descent condition with a parameter k ”, which is calculated using the 

conjugacy condition. The new proposed algorithm always produces descent search 

directions and it is shown to be convergent under some assumptions. The main idea of 

this work is to prove the global convergence for the modification nonlinear conjugate 

gradient method. The statistical results reveal the effectiveness of the proposed 

algorithm for problems of the given test. 

 
Keywords: Nonlinear Conjugate Gradient, optimization, Hideaki and Yasushi (HY) 

conjugate gradient algorithm. 

 

 

1. Introduction: 
Optimization is an important tool in various fields including engineering, 

production management, economy etc. This study considers the problem of 

unconstrained optimization represented in this equation: 

 nRxxf )(min  (1) 

where “ RRf n →: ” is differentiable continuously and its gradient “ )()( xfxg = ” 

is accessible [3]. Methods of conjugate gradient are related to the most famous 

iterative methods used for solving problems of large scale optimization. The iterative 

equation below is often used as a method of nonlinear conjugate gradient: 

 , 1 kkkk dxx +=+  (2) 
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where “ k ” represents a positive scalar, which is known as “the step length” and 

defined through “a line search”; while “ kd ” is created as follows:   

“ =+1kd  




+−

=−

+

+

0k if      

0k if                     

1

1

kkk

k

dg

g


” 

(3) 

 

In this equation, “ k ” is a scalar that determines the different methods of conjugate 

gradient. The best recognized methods of conjugate gradient are DY [4] and FR [6]. 

k  formulas in these methods are given below: 

k

T

k

kDY

k

k

kFR

k
dy

g

g

g
2

1

2

2

1
,

++
==   

(4) 

A modified method of DY that has been proposed by Andrei [2] is termed as 

A. The “direction 1+kd ” in this method is defined by:  

“ k

A

kkk sgd +−= ++ 11 ” (5) 

Where 

2

2

11

2

1

][

)(

k

T

k

kk

T

k

k

k

T

k

kA

k
sy

gsg

sy

g +++
−=   

(6) 

The equation (6) is a descent direction with the use of a line search of standard Wolfe. 

Moreover, for ensuring the universal convergence of iterative scheme, 1+kd  direction 

has to satisfy “the sufficient descent condition” below: 

“
2

111 +++ − kk

T

k gcdg ” (7) 

Here, “ c ” represents “a positive real-valued constant”. More performance profile is 

given in [9].  

The modified method with a descent property and new algorithms are stated in 

the second section. The universal convergence of the new method is proved in the 

third section. Next, statistical results are reported in the fourth section for testing the 

proposed method and discussing the results. Lastly, the conclusions are presented at 

the end of this paper. 

 

 

2. A modified HY method 
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This section recalls the method of HY conjugate gradient developed by 

Hideaki and Yasushi [7]. The HY method is defined as the following: 

))(/2( 1
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+

−
=

kkk

kHY

k
ff

g


  

(8) 

HY method is a useful method because of its good convergence property. 

Being inspired by the idea of Andrei [2], a modified method of Hideaki and 

Yasushi’s (HY) nonlinear conjugate gradient is proposed in this section. ZMM

k  

formula is presented as follows: 
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(9) 

k represents a positive parameter. It is assumed that 01 − +kk ff , so that Z

k  is 

well defined. The main notion lies in selecting a new “ ZMM

k ”. Through searching a 

particular direction 1+kd ; the new method will possess a sufficient descent property. 

This assumption is proved in the following theorem. 

 

Theorem 1: 

 If “ 01 − +kk ff ”, there will be “ ,11 k

Z

kkk dgd +−= ++ ” ( ZMM

k  is specified 

in equation 9); so: 

“
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1
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4

1
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(10) 

 

Proof: 

     Since “ 00 gd −= ”, there is 0
2

000 −= gdg T
. Suppose that 

2

1 kk

T

k gcdg −  for 

all nk  .  When multiplying )5(  by ,1+kg  with (9), there will be: 
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But 
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(12) 

 

 

By substituting (12) into (11) using several algebra steps that can be reduced 

to (10).  

The numerical algorithms (2), (5) and (9) reveal that the performance of k is 

relatively different according to its different choices. Consequently, for obtaining an 

efficient algorithm, a procedure for calculating k  shall be presented. Principally, this 

depends on the condition of conjugacy “ 01 =+k

T

k dy ”. 

When employing (9) in (5), the direction below is resulted: 

“ k

kkk

kk

T

k

kk

kkk

k

kk s
ff

gsg
s

ff

g
gd

2

1

2

11

1

2

1

11
)])(/2[(

)(

))(/2(
+

++

+

+

++
−

−
−

+−=





. ” 
(13) 

 

This could be written as: 

“ 111 +++ −= kkk gQd .”  

 

where the matrix 1+kQ   is : 
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Now, by symmetrizing 1+kQ  as : 
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(15) 

 

The following direction can be considered: 



New Modification Nonlinear Conjugate Gradient Method for Optimization 

 

275 

 

“ 111 +

−

++ −= kkk gQd .” 
(16) 

In (16), 1+kQ  is symmetrized as 
−

+1kQ  because the computed direction in (14) is similar 

to the methods of quasi-Newton. Nevertheless, this paper only uses the symmetry 

without modifying more “
−

+1kQ ” with the aim of satisfying the equation of “quasi-

Newton”.  

Based on the condition of conjugacy, “ 01 =+k

T

k dy ”, namely: 

“ ,011 =+
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(17) 

The next equation (18) results from the equation (17), as follows: 
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it follows that: 
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Therefore, using (19) in (9), there will be: 
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(20) 

 

Now, the new algorithm can be outlined in the next section. 

3.1 Outline of the new algorithms: 

Step 1.  Initialization: Choose nRx 1  and  the  parameters   0 . 

  Calculate “ )( 1xf  and 1g ”. Consider “ 11 gd −= ”  and  develop  “the initial 

guess 11 /1 g= ”. 

Step 2. Test the continuance of iterations. If 6

1 10−

+ kg , then  stop.  

Step 3. Line search. Compute 01 +k  to determine whether it is satisfying the Wolfe 

line search Condition: 

“ k

T

kkkkkk dgxfdxf  ++ )()( ” (21) 

“ k

T

kkkk

T

k gddxgd  )(       + ” (22) 

 

            Next, update these variables kkkk dxx +=+1 . Calculate “ 11 , ++ kk gf ” and 

“ kkk xxs −= +1 ” and “ kkk ggy −= +1 ”.  

Step 4.  I Calculation of direction.  Calculate “ kkkk sgd +−= ++ 11 ”, where 

             ZMM

k  is calculated as in (9). When satisfying “the restart of Powell criterion 

2

11 2.0 ++  kk

T

k ggg ”, then develop “ 11 ++ −= kk gd ”;  if not, then set “ 1+= kk ” and 

continue with the second step. 

 

3. Convergence analysis 

Consider these assumptions: 

i- “The level set  )()( 0xfxfRxL n =  is bounded”.                                    

ii-  In a part, “U  and )(, xfL ” are continuously differentiable and “their 

gradient id Lipschitz  is continuous”, i.e. there is a constant 0L , so: 

“ UxxxxLxgxg kkkkkk −− +++ ,,)()( 111 ” (23) 

Further details are found in [8,10]. Based on the assumptions on “ ,f ”, there is “a 

constant”, then “a constant 0 ” exists; so: 

+1kg  (24) 
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for all Lx . 

Dai et al. [5] verified that for any method of “conjugate gradient” with “strong 

Wolfe line search”, the result is as follows: 

Lemma (1):  

  Suppose that the assumptions (i) and (ii) are held, then consider the methods 

of “conjugate gradient” )2( and )5( , where “ 1+kd ” is “a descent direction” and k  is 

obtained by “the strong Wolfe line search” in )3(  and )4( . If 

“
 +

=
0

2

1

,
1

k kd
”   

(25) 

 

then  

“ 0inflim 1 =+
→

k
k

g ”. (26) 

For “uniformly convex functions”, it can be proved that the direction norm created by 

(5) and (20) is bounded above. So, based on Lemma 1, the following result can be 

proved. 

Theorem 2:  

Suppose that the assumption is held, then consider methods (2) and (5), where 

Z

k  is “a descent direction” specified by (20) and “ k ” is found by “the Wolfe line 

search”. Suppose that “ f ” is “a uniformly convex function” on L , namely, there is “a 

constant 0, M ”; so: 

“
2

)())()(( yxMyxyfxf T −−− ” (27a) 

or equally, there is a constant 0 ; so: 

2
zzGzT   (27b) 

for any “ ,, Lyx  ” then: 

“ 0lim 1 =+
→

k
k

g ”. (28) 

Proof: 

Based on (27), it follows that 
2

kk

T

k ssy  . Since there is “a descent 

direction”, it follows that “ k

T
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T
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T
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T

k sysgsysg ++1 ”. By employing “Wolfe 

condition” (22), the result is: 
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Therefore, 

“








 −
+











 −
+

+














2

)1(
1

2

)1(
1

2

1

k

k

k

k

kkZMM

k

s

L

s

sgL

” 

(32) 

Hence: 
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Specifically, (25) is true. Consequently, (28) is obtained from Lemma 1 which 

corresponds to (30) for “uniformly convex functions”. 

4. Numerical Results  

Fifteen problems of classical unconstrained optimization were studied 

respectively [1] in order to test the new proposed algorithm. Fortran 90 was used to 

implement all tests.  Firstly, 001.0= and 9.0=  were set. If 
6

1 10−

+ kg , then 

the process would stop. Table 1 shows the statistical results of modified HY and FR 

method. 

In Table 1, the results of algorithms are written as NI/NR/NF, referring to the 

iteration number, the restart calls number and function evaluations, respectively. The 

dimension of the test problems is denoted by Dim. 
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Table 1: “A Comparison of different CG-algorithms with different test functions and different dimensions” 

                                    Algorithm of FR                               Algorithm of ZMM  

P. No.               Dim                   NI             NR             NF             NI              NR            NF 

78 21 37 93 18 47 100 1 

78 19 35 131 45 78 1000  

79 20 36 88 18 43 100 2 

69 16 32 92 19 46 1000  

26 7 13 52 15 32 100 3 

28 8 15 42 10 22 1000  

25 6 9 27 6 10 100 4 

49 15 23 191 16 24 1000  

15 4 7 64 13 32 100 5 

26 7 13 129 46 77 1000  

63 17 42 67 8 37 100 6 

98 27 61 115 27 73 1000  

17 6 8 31 9 15 100 7 

15 5 7 17 6 8 1000  

137 25 72 313 60 180 100 8 

164 25 85 F F F 1000  

154 32 67 174 32 89 100 9 

180 37 72 211 40 107 1000  

85 6 47 231 41 124 100 10 

307 32 176 711 196 445 1000  

53 11 28 110 35 71 100 11 

56 10 29 84 15 47 1000  

180 51 80 217 40 101 100 12 

180 50 82 214 40 101 1000  

54 12 23 65 12 32 100 13 

88 20 37 116 22 53 1000  

175 35 113 196 49 130 100 14 

589 108 376 593 119 364 1000  

126 24 78 218 65 121 100 15 

344 65 210 634 169 345 1000  

3374 696 1828 5226 1191 2848  Total 

Fail: The algorithm fails to converge.   

Problems numbers demonstrate that: 1. is the Extended Rosenbrock, 2. is the Extended White & 

Holst, 3. is the Extended Beale, 4. is the Penalty, 5. is the Extended Tridiagonal 1, 6. is the Generalized 

Tridiagonal 2, 7. is the Extended PSC1, 8. is the Extended Powell, 9. is the Extended Maratos, 10. is the 

Quadratic Diagonal Perturbed, 11. is the Extended Wood, 12. is the Extended Hiebert, 13. is the 

Extended Quadratic Penalty QP2, 14. is the Quadratic QF2, 15. is the DIXMAANE (CUTE). 

 

The performance of the two algorithms is shown in Table 1. Under the same 

computing environment, some conditions indicate that this modified method of 
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conjugate gradient significantly outperforms the previous methods of conjugate 

gradient. 

5. Conclusions 

This study has confirmed that the new modified algorithm is effective in the 

computational solving of unconstrained optimization problems, and the statistical 

results reveal the effectiveness of the proposed algorithm for problems of the given 

test. 
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