

85

 J. Edu. & Sci., Vol. (26), No. (1) 2013 

Minimization Algorithm for Training Feed Forward

Neural Network

Khalil K. Abbo Zena T. yaseen
Department Of Mathematic

College of Computer Science and Mathematics
University of Mosul

Accepted Received

10 / 07 / 2011 24 / 04 / 2011

 الملخص
 (BP) التــــي تحــــسن خوارزمیــــةفــــي هــــذا البحــــث اقترحنــــا نــــسبة عامــــل تعلــــیم جدیــــد

Backpropagation أشــتقاق . التقلیدیــة اســتند علــى تقریــب دالــة الخطــأ Eلدالــة تربیعیــة ,
 Spectralةالمقترحـــــــیـــــــة الخوارزم. الأوزانفــــــي جـــــــوار النهایـــــــة الـــــــصغرى المحلیــــــة لمتجـــــــه

Backpropagation (SBP) . نتـــائج الاختبـــار لهـــا أظهـــرت ان(SBP) تحـــسن بعـــض الطرائـــق
 .التقلیدیة المستخدمة في هذا المجال

Abstract

In this paper we suggested a new learning rate  , which improves
the classical Backpropagation algorithm (BP). The derivatation of  are
based on approximating the error function E to the quadratic one in
sufficiently small neighborhood for the optimal weight vector. The
suggested algorithm (Spectral Backpropagation SBP say) is tested and the
experimental results show that the SBP learning strategy improves the
considered methods.

1- Introduction

The batch training of a feed forward Neural network (FNN) is
consistent with the theory of unconstrained optimization [5] and can be
viewed as the minimization of the function E; that is to find a minimizer

n
n Rwww ),...,(**

1
* Such that:

)(* wEMinw nRw
 (1)

 where E is the batch error measure defined as

 2

1 1

2
,,

1
 ,

2
1)(

2
1 CEETOE

MN

j

P

p
ppj

M
pj

P

p
  

 

Minimization Algorithm for Training Feed Forward Neural Network.

86

where 2
,,)(pj

M
pj TO  is the squared difference error between the

actual output value at jth output layer neuron for pattern p and the target
output value. The scalar p is index over input-output pairs

The widely used batch Back Propagation (BP) ,[13] is a first order
neural network training algorithm, which minimizes the error function
using the steepest descent (SD) method [4]:
 kkk gww 1 (2)
where k indicates iterations (k=0,1,…) and)(kk wEg  , the gradient
vector is usually computed by the BP of the error through the layers of
the FNN (see [9]) and  is a constant heuristically chosen learning rate
or (step length). Appropriate learning rates help to avoid convergence to a
saddle point or a maximum. In practice a small constant learning rate is
chosen 1 0  [12] in order to secure the convergence of the BP
training algorithm and to avoid oscillation in a direction where the error
function is steep. It is well known that this approach tens to be inefficient
[11]. For difficulties in obtaining convergence of BP training algorithm
utilizing a constant learning rate see [7]. On the other hand, there are
theoretical results that guarantee the convergence when the learning rate
is a constant [12]. In this case the learning rate is proportional to the
inverse of the Lipschitz constant i. e
 0||,|||||| 11   LwwLgg kkkk (3)

k

T
k

k
T
k

ys
yyL  (4)

where kkk ggy  1 and kkk wws  1

2- proposed spectral Learining

An interesting new idea is the choice of step length that are
proposed by [1] for the steepest descent (SD) method for unconstrained
optimization The key element for derivation of our new algorithm is
based on the following theorem .

Theorem (1) [3]:

The general function behaves like a quadratic function in a
sufficiently small neighborhood of . As a consequence of theorem (1)
the following relation hold
 k sGy kk  (5)

Note that equation (5) true only on small neighborhood of *w and
Gk is the Hessian matrix of the error function, therefore we may use the
Barziui Browein approximation to the [8] i.e.

 nn
k

T
k

k
T
k

k I
ss
ysG **  (6)

Khalil K. Abbo & Zena T. yaseen

87

for the unconstrained optimization problem given in equation (1), as
we know a necessary condition for the point w* be an optimal solution is
 g(w*)=0 (7)

This is a system of non-linear equations which must be solved to get
the optimal solution w*. In order to fulfill this optimality condition the
following continuous gradient flow reformulation of the problem is
suggested [6]. Solve the following system of ordinary differential
equation:

))(()(twg
dt

tdw
 (8)

with initial condition:
 w(0)=w0 (9)

The solution of the system (8) with initial condition (9) is
convergence to optimal solution which is minimum of the function given
in (1) according to the following theorem see [2] .

Theorem (2) [2]: Consider that w* is a point satisfying (7) suppose that:

)/(*2 wEG  is positive definite, if the initial point w0 is close enough to
w*, then w(t) is the solution to the (8) and tends to w* as t→∞.

Theorem (3) [2]:

Let w(t) be the solution of (8), for fixed t0 ≥ 0 if g (w(t))  0 for
all t>t0. then E(w(t)) is strictly decreasing with respect to t for all t > t0 .
 for proof of theorem (1) and (2) see [2].

As we have seen solving the unconstrained optimization problem
(1) has been reduced to that of integration of the ordinary differential
equation (8) with initial condition (9). One simple algorithms for solving
(8) and (9) is the following [2]:

])1[()()(
1

1


 


kkkk
k

kk gg
h

twtw  (10)

Where kkk tth  1 , 0 10  kttt and  [0,1] is scalar. If  = 0
the above discretization is the explicit forward Euler's scheme on the
other hand where we have used the implicit backward Euler's
scheme. But
 gk+1=gk+Gksk (11)
from (10) and (11) we get:

][1
kkkk

k

kk sGg
h

ww 


Or (wk+1 – wk) + hk k Gk(wk+1 – wk) = – hkgk
 [I + h k G] (wk+1 – wk) = – hk gk
Or wk+1=wk–hk[I+h k Gk]-1gk (12)

Minimization Algorithm for Training Feed Forward Neural Network.

88

The method based on the algorithm (12) has quite good
performance if Gk is positive definite and have desirable feature but not
recommended for practical use, the major drawback of the algorithm is
computing [I + h k Gk]-1. At each iteration and also there is no specified
value of h. However one can deduce a simple implementation of the
algorithm given in (12) with preserving useful theoretical features as
follows:

Since E (w) is continuously differentiable therefore the gradient
vector gk is Lipshitz continuous that satisfies equation (3), without loss of
generality we may take hk = Lk i.e.:

k
T
k

k
T
k

k ys
yyh  (13)

From (6), (12) and (13) we get:

kkkkkk
k

gGhIww
h

1
1][)(1 
  

Or k
k

T
k

k
T
k

k
T
k

k
T
k

kk g
ss
ys

ys
yyd

1

1










 

 k
k

T
kkk

T
k

k
T
k

k g
yyss

ssd


 (14)

therefore we can adjust the weight vector according to the following
equation:

 kkkk gww 1 (15)

where:
k

T
kkk

T
k

k
T
k

k yyss
ss





 (16)

 We summarize the above algorithm (15-16) (the specral step size SBP)
as follows:
Step (1): Initialization: number epochs k = 1, k  (0,1), error goal = eg,

weight vector = wk stopping criteria = , gk =E(wk)

k =
2||||

1
kg

.

Step (2): Check for convergence:
 If ||gk||2 <  or E (wk) < eg, stop wk is optimal else:
 wk+1 = wk – k gk and go to step (3).
Step (3): Compute gk+1 =  E (wk+1), sk = wk+1 – wk

 yk=gk+1–gk, E(wk+1),
k

T
kkk

T
k

k
T
k

k yyss
ss





1

step (4): k = k+1 go to step (2).

Khalil K. Abbo & Zena T. yaseen

89

3- Experiments and Results:
A computer simulation has been developed to study the

performance of the learning algorithms. The simulations have been
carried out using MATLAB version 5.4. The performance of the specral-
step size BP (SBP) has been evaluated and compared with batch versions
of BP, constant learning BP (CBP) known as (traingd) see Appendix, in
the neural net work toolbox, adaptive BP (ABP) (traingda) and BP with
momentum MBP (traingdx). Toolbox default values for the heuristic
parameters of the above algorithms are used unless stated otherwise. The
algorithms were tested using the same initial weights, initialized by the
Nguyen-Widrow method [10] and received the same sequence of input
patterns. The weights of the network are updated only after the entire set
of patterns to be learned has been presented.

For each of the test problems, a table summarizing the performance
of the algorithms for simulations that reached solution is presented. The
reported parameters are: min the minimum number of epochs, mean the
mean value of epochs, max the maximum number of epochs, Tav the
average of total time and succ. The succeeded simulations out of (100)
trials within the error function evaluations limit.

If an algorithm fails to converge within the above limit, it is
considered that it fails to train the FNN, but its epochs are not included in
the statical analysis of the algorithms one gradient and one error function
evaluations are necessary at each epoch.

3.1 Problem (1): (SPECT Heart Problem):

This data set contains data instances derived from Cardiac Single
Proton Emission Computed Tomography (SPECT) images from the
university of Colorado [8]. The network architectures for this medical
classification problem consists of one hidden layer with 6 neurons and an
output layer of one neuron. The termination criterion is set to E  0.1
within limit of 1000 epochs, table(1) summarizes the result of all
algorithms i e for 100 simulations the minimum epoch for each algorithm
are listed in the first column (Min), the maximum epoch for each
algorithm are listed in the second column, third column contains (Tav)
the average of time for 100 simulations and last columns contains the
percentage of succeeds of the algorithms in 100 simulation.

Table(1): Results of simulations for the Heart problem

Algorithms Min Max Mean Tav Succ
CBP
ABP
MBP
SBP

 fail -- -- -- 0.0%
 124 828 563.09 2.82s 71.65%
 114 444 262.12 1.63s 67.34%
 119 571 298.40 1.82s 70.13%

Minimization Algorithm for Training Feed Forward Neural Network.

90

3.2 Problem (2):
Continuous function Approximation:

The second test problem we consider is the approximation of the
continuous trigonometric function:

f(x)=sin(x)*cos(3x).
The network architectures for this problem is 1-15-1 FNN (thirty

weights, sixteen biases) is trained to approximate the function f(x), where
x  [-,] and the network is trained until the sum of the squares of the
errors becomes less than the error goal 0.1. The network is based on
hidden neurons of logistic activations with biases and on a linear output
neuron with bias. Comparative results are shown in table (2). Figure (1)
shows performance of SBP.

Table(2): Results of simulations for the function approximation

problem
Algorithms Min Max Mean Tav Succ

CBP
ABP
MBP
SBP

907 1965 1050.0 12.35s 46%
77 170 112.2 1.79s 100%
97 108 101.9 1.61s 100%
78 158 102.6 1.72s 100%

 (a) Approximated function (b) Target function

Figure(1); Performance of SBP

Appendix
1- traingd: is matlab function (in the matlab toolbox) utilize steepest

descent direction with constant step-size to minimize error function
E (training the network) known as standard Backpropagation.

2- traingda: is matlab function (in the matlab toolbox) utilize steepest
descent direction with adaptive step-size to minimize error function
E (training the network) known as standard Adaptiv
Backpropagation.

3- traingdx: is matlab function (in the matlab toolbox) utilize steepest
descent direction with momentum and computes step-size by line
search procedure to minimize error function E or (training the
network).

Khalil K. Abbo & Zena T. yaseen

91

References

1) Abbo. K. (2007). "Modifying of Barzilai and Borwein Method for
solving large scale unconstrained optimization problem", Iraqi J. of
statical science Vo. (11). No.(7).

2) Andrei N. (2003). "Gradient flow algorithm for unconstrained
optimization", Research Institute for informatics center for
advanced Modeling optimization 8-10 Aver-escu Avenue,
Bucharest.

3) Fletcher R. (1987). "Practical Methods Of Optimization", 2nd
Edition. John Wilely Chichester.

4) Gill P., Murrag W. and Wright M. (1981). "Practical Optimization",
Academic Press, NY.

5) Johansson. E. Dowla F. and Goodman G. (1990). "Back
propagation learning for Multi-Layer Feed–forward Neural"
Networks using the Conjugate Gradient method Lawrence,
Livermore National Laboratory . preprint UCRL-JC-104850.

6) Khalaf, B. and Al-Wagih, K.(2001). "Parallel shooting Method for
unconstrained numerical optimization", Raf. J. Sci. Vol(12). No.(2).

7) Kuan G. and Hornik K. (1991). "Convergente of Learning
algorithms with constant learning rates", IEEE Trans. Neural
Networks, (2).

8) Livieris I., Sotiropoulos D. and Pintelas P. (2009). "On Descent
spectral CG algorithms for Training Recurrent Neural Network",
IEEE Computer Society. 13th Panhellenic Conference on
Informatics.

9) Moller. F. (1993). "A scaled conjugate gradient algorithm for fast
supervised learning", Neural networks. (6).

10) Nguyen D. and Widrow B. (1990). "Improving the learning speed
of 2-layer neural network by choosing initial values of the adaptive
weights", IEEE First International Jaint Conference on Neural
Networks, (3).

11) Nocedol J. (1992). "Theory of algorithms for unconstrained
optimization", Acta Numerica, Vol. (199), No. (242).

12) Plagianakos. V., Sotiropouls D. and Vrahatis. M. (1998).
"Automatic adaptation of Learning rate for Back-Propagation
Neural networks", Recent advances in circuits and systems, Nikos
E. Mastoraksi, ed, world Scientific.

13) Rumethart D., Hinton G. and Williams R (1986). "Learning Internal
representations by Error propagation in Parallel Distributions
Processing"; Exploration in the Microstructure of Cognition, Eds.
D. Rumelhart .J.L. Mc Cleland, MIT press Cambridge. MA.

