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  الملخص
 (BP) التــــي تحــــسن خوارزمیــــةفــــي هــــذا البحــــث اقترحنــــا نــــسبة عامــــل تعلــــیم جدیــــد   

Backpropagation  أشــتقاق  .  التقلیدیــة اســتند علــى تقریــب دالــة الخطــأ Eلدالــة تربیعیــة  ,
 Spectralةالمقترحـــــــیـــــــة الخوارزم. الأوزانفــــــي جـــــــوار النهایـــــــة الـــــــصغرى المحلیــــــة لمتجـــــــه 

Backpropagation (SBP) . نتـــائج الاختبـــار لهـــا أظهـــرت ان(SBP) تحـــسن بعـــض الطرائـــق 
  .التقلیدیة المستخدمة في هذا المجال

  
Abstract 

In this paper we suggested a new learning rate  , which improves 
the classical Backpropagation algorithm (BP). The derivatation of   are 
based on approximating the error function E  to the quadratic one in 
sufficiently small neighborhood for the optimal weight vector. The 
suggested algorithm (Spectral Backpropagation SBP say) is tested and the 
experimental results show that the SBP learning strategy improves the 
considered  methods.        
 
1- Introduction 

The batch training of a feed forward Neural network (FNN) is 
consistent with the theory of unconstrained optimization [5] and can be 
viewed as the minimization of the function E; that is to find a minimizer 
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  where E is the batch error measure defined as  
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where 2
,, )( pj

M
pj TO   is the squared difference error between the 

actual output value at jth output layer neuron for pattern p and the target 
output value. The scalar p is index over input-output pairs     

The widely used batch Back Propagation (BP) ,[13] is a first order 
neural network training algorithm, which minimizes the error function 
using the steepest descent (SD) method [4]: 
       kkk gww 1                                                 (2)  
where k indicates iterations (k=0,1,…) and )( kk wEg  , the gradient 
vector is usually computed by the BP of the error through the layers of 
the FNN (see [9]) and   is a constant heuristically chosen learning rate 
or (step length). Appropriate learning rates help to avoid convergence to a 
saddle point or a maximum. In practice a small constant learning rate is 
chosen 1   0   [12] in order to secure the convergence of the BP 
training algorithm and to avoid oscillation in a direction where the error 
function is steep. It is well known that this approach tens to be inefficient 
[11]. For difficulties in obtaining convergence of BP training algorithm 
utilizing a constant learning rate see [7]. On the other hand, there are 
theoretical results that guarantee the convergence when the learning rate 
is a constant [12]. In this case the learning rate is proportional to the 
inverse of the Lipschitz constant i. e 
     0||,|||||| 11   LwwLgg kkkk                      (3)  
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where kkk ggy  1  and kkk wws  1  
 
2- proposed spectral Learining 

An interesting new idea is the choice of step length that are 
proposed by [1] for the steepest descent (SD) method for unconstrained 
optimization The key element for derivation of our new algorithm is 
based on the following theorem . 
 
Theorem (1) [3]:   

The general function behaves like a quadratic function in a 
sufficiently small neighborhood of . As a consequence of theorem (1) 
the following relation hold 
        k  sGy kk                                                           (5) 

Note that equation (5) true only on small neighborhood of *w  and  
Gk  is the Hessian matrix of the error function, therefore we may use the 
Barziui Browein approximation to the   [8] i.e.  
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for the unconstrained optimization problem given in equation (1), as 
we know a necessary condition for the point w* be an optimal solution is 
         g(w*)=0                                                             (7) 

This is a system of non-linear equations which must be solved to get 
the optimal solution w*. In order to fulfill this optimality condition the 
following continuous gradient flow reformulation of the problem is 
suggested [6]. Solve the following system of ordinary differential 
equation: 

        ))(()( twg
dt

tdw
                                                 (8) 

with initial condition: 
        w(0)=w0                                                             (9) 

The solution of the system (8) with initial condition (9) is 
convergence to optimal solution which is minimum of the function given 
in (1) according to the following theorem see [2] . 
 
Theorem (2) [2]: Consider that w* is a point satisfying (7) suppose that: 

)/( *2 wEG  is positive definite, if the initial point w0 is close enough to 
w*,  then w(t) is the solution to the (8) and tends to w* as  t→∞. 
 
Theorem (3) [2]: 

Let w(t) be the solution of (8), for fixed t0 ≥ 0  if  g (w(t))  0  for 
all t>t0.  then E(w(t)) is strictly decreasing with respect  to t for all t > t0 . 
   for proof of theorem (1) and (2) see [2]. 

As we have seen solving the unconstrained optimization problem 
(1) has been reduced to that of integration of the ordinary differential 
equation (8) with initial condition (9). One simple algorithms for solving 
(8) and (9) is the following [2]: 
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Where kkk tth  1 , ...  .....    0 10  kttt  and  [0,1] is scalar. If  = 0   
the above discretization is the explicit forward Euler's scheme on the 
other hand where  we have used the implicit backward Euler's 
scheme. But  
       gk+1=gk+Gksk                                                    (11)  
from (10) and (11) we get:  
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Or    (wk+1 – wk) + hk k  Gk(wk+1 – wk) = – hkgk   
    [ I + h k  G] (wk+1 – wk) = – hk gk  
Or  wk+1=wk–hk[I+h k Gk]-1gk                                (12) 
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The method based on the algorithm (12) has quite good 
performance if Gk is positive definite and have desirable feature but not 
recommended for practical use, the major drawback of the algorithm is 
computing [I + h k  Gk]-1. At each iteration and also there is no specified 
value of h. However one can deduce a simple implementation of the 
algorithm given in (12) with preserving useful theoretical features as 
follows:  

Since E (w) is continuously differentiable therefore the gradient 
vector gk is Lipshitz continuous that satisfies equation (3), without loss of 
generality we may take hk = Lk i.e.:  
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From (6), (12) and (13) we get:  
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therefore we can adjust the weight vector according to the following 
equation:  

 kkkk gww 1                                          (15)  

where:   
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   We summarize the above algorithm (15-16) (the specral step size SBP) 
as follows: 
Step (1): Initialization: number epochs k = 1, k  (0,1), error goal = eg, 

weight vector = wk stopping criteria = , gk =E(wk) 

k = 
2||||

1
kg

.  

Step (2): Check for convergence:  
 If ||gk||2 <  or E (wk) < eg,  stop wk is optimal else:  
  wk+1 = wk – k gk and go to step (3).  
Step (3): Compute gk+1 =  E (wk+1),  sk = wk+1 – wk  

 yk=gk+1–gk, E(wk+1),    
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step (4):  k = k+1 go to step (2).  
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3- Experiments and Results:  
A computer simulation has been developed to study the 

performance of the learning algorithms. The simulations have been 
carried out using MATLAB version 5.4. The performance of the specral-
step size BP (SBP) has been evaluated and compared with batch versions 
of BP, constant learning BP (CBP) known as (traingd) see Appendix, in 
the neural net work toolbox, adaptive BP (ABP) (traingda) and BP with 
momentum MBP (traingdx). Toolbox default values for the heuristic 
parameters of the above algorithms are used unless stated otherwise. The 
algorithms were tested using the same initial weights, initialized by the 
Nguyen-Widrow method [10] and received the same sequence of input 
patterns. The weights of the network are updated only after the entire set 
of patterns to be learned has been presented.  

For each of the test problems, a table summarizing the performance 
of the algorithms for simulations that reached solution is presented. The 
reported parameters are: min the minimum number of epochs, mean the 
mean value of epochs, max the maximum number of epochs, Tav the 
average of total time and succ. The succeeded simulations out of (100) 
trials within the error function evaluations limit.  

If an algorithm fails to converge within the above limit, it is 
considered that it fails to train the FNN, but its epochs are not included in 
the statical analysis of the algorithms one gradient and one error function 
evaluations are necessary at each epoch.  
 
3.1 Problem (1): (SPECT Heart Problem):  

This data set contains data instances derived from Cardiac Single 
Proton Emission Computed Tomography (SPECT) images from the 
university of Colorado [8]. The network architectures for this medical 
classification problem consists of one hidden layer with 6 neurons and an 
output layer of one neuron. The termination criterion is set to E  0.1 
within limit of 1000 epochs, table(1) summarizes the result of all 
algorithms i e for 100 simulations the minimum epoch for each algorithm  
are listed in the first column (Min), the maximum epoch for each 
algorithm are listed in the second column, third column contains (Tav) 
the average of time for 100 simulations and last columns contains the 
percentage of succeeds of the algorithms in 100 simulation.  

 
Table(1): Results of simulations for the Heart problem 

Algorithms  Min       Max       Mean      Tav        Succ 
CBP 
ABP 
MBP 
SBP 

  fail        --             --             --              0.0%    
 124     828          563.09       2.82s      71.65%  
 114     444          262.12       1.63s      67.34% 
 119     571          298.40       1.82s      70.13% 
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3.2 Problem (2): 
Continuous function  Approximation:  

The second test problem we consider is the approximation of the 
continuous trigonometric function: 

f(x)=sin(x)*cos(3x).  
The network architectures for this problem is 1-15-1 FNN (thirty 

weights, sixteen biases) is trained to approximate the function f(x), where 
x  [-,] and the network is trained until the sum of the squares of the 
errors becomes less than the error goal 0.1. The network is based on 
hidden neurons of logistic activations with biases and on a linear output 
neuron with bias. Comparative results are shown in table (2). Figure (1) 
shows performance of SBP. 

 
Table(2): Results of simulations for the function approximation 

problem 
Algorithms Min       Max       Mean      Tav        Succ 

CBP 
ABP 
MBP 
SBP 

907        1965      1050.0     12.35s       46% 
77          170        112.2       1.79s      100% 
97          108        101.9       1.61s      100% 
78          158        102.6       1.72s      100% 

 

 
              (a) Approximated function                   (b) Target function 

Figure(1); Performance of SBP 

 
Appendix  
1- traingd: is matlab function (in the matlab toolbox) utilize steepest 

descent direction with constant step-size to minimize error function 
E (training the network) known as standard Backpropagation. 

2- traingda:  is matlab function (in the matlab toolbox)  utilize steepest 
descent direction with adaptive step-size to minimize error function 
E (training the network) known as standard Adaptiv 
Backpropagation.  

3- traingdx:  is matlab function (in the matlab toolbox)  utilize steepest 
descent direction with momentum and computes step-size by line 
search procedure to minimize error function E or (training the 
network). 
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