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ABSTRACT
In this paper, we establish sufficient conditions for the existence of
solutions for a class of boundary value problem of fractional integro-
differential inclusions and nonlinear integral conditions, in the cases of
convex and nonconvex valued using fixed point theorems.

1. Introduction

Differential inclusion is a generalization of the concept of ordinary
differential equation, its arise in many situations including differential
variational inequalities, projected dynamical systems, dynamic Coulomb
friction problems and fuzzy set arithmetic. Differential equations of
fractional order have recently proved to be valuable tools in the modeling
of many phenomena in various fields of science and engineering. There
are  numerous applications to problems in viscoelasticity,
electrochemistry, control, porous media, electromagnetics, etc.

The existence of the solutions of differential inclusion was studded
in many works, see [2],[3],[6],[9]. in [6] the authors studded the
existence of the solutions of the boundary value problem with fractional
order differential inclusion and nonlinear integral conditions of the form:

‘Dy(t) € F(t, _}; €3))

90 -y = [ py(s3())ds
[4]
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T
y(T) +y(T) = j pa(s,y(s))ds
4]

In this paper we consider the following fractional Integro-differential
boundary value problem with integral boundary condition

T ~t
°py{t) € F(t,y(L), f ki (t, s, v(s))ds, f k,{t,5,v(s))ds) L
- o <0
ay(©@ — by'(©) = | pu(sy)ds
ey +dy'@ = [ pals.y)ds (@)
0
where a, b, ¢, d are constants , ab+ cd + 0, “D%s the standard Caputo
derivative,1 < a =« 2 , t€/:=[0,T],

ki, ka:JXJXR 2R, pypy i JxR—> R are Carath’eodory functions,
F:] x R xR xR - P(R) is amultivalued function.
Here, for brevity let
T

Ky(t) = f k(tsy(s))ds Kyt = f k,(t,s,v(s))ds
o 0

2. Preliminaries.

In this section, we introduce notations, definitions, and preliminary
facts from set-valued analysis which are used throughout this paper. For
further background and details pertaining to this section we refer the
reader in fractional calculus to [8] and in multivalued function to [1], [5]
and [7].

Let ¢]f, R} denotes the Banach space of all continuous functions
from J into R, normed
lull = sup{lu(®)|: t€ 7}
and L[, R} denotes the Banach space of measurable functionsu: J - R
which are Lebesgue integrable, normed by

' T X
llall, = [ ()l dt,

Let (X,].]) be a normed space, and P{X) be the family of all
nonempty subsets of X.

Py(X) = {Y € P(X): Y is closed},

P,{X) ={Y € P{X): Y is bounded},

P,(Xy = {Y € P(X) Yis compact},

P(X) = {¥ € P(X):Y is convex},

P, AX) = {¥Y € P{X)Y is closed and convex},

P, .(X) = {Y € P(X):Y is compact and convex}.

A set- valued function F: X - P(X) is called convex (closed)
valued if F(x) is convex (closed) for all x € X. F is called bounded
valued on bounded sets if F(B) = U,z (x) is bounded in X for all

%



Sohaib Talal Hasan

%

B € Py(X), F is called upper semi-continuous (u.s. ¢) on X if the set
F7H6) = {x € X : F(x) c A} is open in X for every open set ¢ in X. F is
called  lower  semi-continuous (lsc) on ¥ if the set
FTME) = {x€ X: F{x) C E} is closed in X for every closed set £ in X.
F is called continuous if it is lower as well as upper semi-continuous on
X. The mapping F has a fixed point if there is x € ¥ such that x € F(x).
The set of fixed points of the multivalued operator F will be denoted by
Fix(F). A set-valued function F : J - P(R) is said to be measurable if for
any x € X, the function te d(x,F(t)) = inf {lx —ulru € F(t)} is
measurable.

The following definitions are used in the sequel.

Definition 2.1. A set-valued function F: ] x R — P{R) is said to be
Carath’eodory if:
(i) t - F(t,u) is measurable for each u € R,
(i) u —» F(t,u) is u.s.c. for almost ¢t € J.
For each y € €(J, R), define the set of selections for F by
Se(¥) = {h € L*(LRY:h(E) € F(t, y(t)) a.e. tE J}.
Let (X,d) be a metric space induced from the normed space (X,|-).
Consider
Hyz P(X) x P(X) > R™ U {oo} given by
Hy{A, B) = max(sup d(a, B) ,supd (B, a))
acd bep
where d(4,b) = inf,e,d(a b) and d(a, B) = inf, .5 d(a, b).
Then (Py,(X), Hy) is a metric space and (P (X),Hy) 1s a generalized
metric space.

Definition 2.2. A set-valued function F : J x B — P, (R) is called

(i) I()—Lipschitz if there exists [ € I} (J, R™) such that
H(F(t,x),F(t,y)) <U®)lx —wll, foreach x,y - ¥

(ii) a contraction if it is I{t)—Lipschitz with [lI]| < 1.

Definition 2.3. A multi-valued map F : X - P (X) is:

(a) compact if its range F{X) is relatively compact in X, i.e., F(X) is
compact in X;

(b) locally compact if every point x € X has a neighborhood v (x) such
that the restriction of F to ¥ (x) is compact;

Remark: it is clear that (a) - (b).

Lemma 2.1. [7] Let F: X —» P(¥) be a closed locally compact multimap.
Then Fisu.s.c. .

Lemma 2.2. (Bohnerblust-Karlin, [4]). Let X be a Banach space, B a
nonempty subset of X, which is bounded, closed, and convex. Suppose
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F:B - P(X)\{0} i1s u.s.c. with closed, convex values, and such that
G(B) C B and G(B) compact. Then F has a fixed point.

Lemma 2.3. (Covitz-Nadler)[6] Let (X, d) be a complete metric space. If
G:X - P(X) is a Contraction, then ¢ has a fixed point.

For completeness, in this section, we mainly demonstrate and study the
definitions and some fundamental

Definition 2.4. [8]Let & >> 0, for a functiony : (0,+w) - R. The the
fractional integral of order & of y is defined by

1 T
I"y(t) = o fe (t — s)* Ly(s)ds

Provided the integral exists.

Definition 2.5. The Caputo derivative of a function y: (0, +00) —» R is
given by

. 1 g
chy{t) — fn—m(D-n},(t)) . m [ {:t . s)ﬂ—a—iy{n){s)ds
—Q)Jo

Provided the right side is point wise defined on (0, +ce),
where n = [a] + 1, and [a] denotes the integer part of the real
numbera.

Lemma 2.4. .[8] Leta > 0. Then the differential equation
‘D¥n(t) = 0O

has the solution

hE) = +eg+ 6t + 6t oot + - + 6y t7 0

Wheree; €ER,i =0,12,....n—1 and n = [a] + L

Lemma 2.5. [8] Leta > 0; Then
I*DEh(t) = h(t) +cy+ oyt + ot + et + - gt}
forsome ¢; ER,i=012...n—~1 and n = [a] + 1.

Lemma 2.6. Let1<a < 2and let h € L*(J,R) and pypy:J—>R be
continuous functions. a function y is a solution of the fractional BVP

D%y(t) = h(t (3)
ay(0) — by'(0) = [, p,(s)ds (4)
cy(T) +dy'(T) = [} p,(s)ds (5)
If and only if 1y is a solution of the fr}glctional integral equation
y(t) = P(t) + f G(t,s)h(s)ds (6)
0
where
" T T
= (e(T — b d
P(t) acT +ad 1 be (c(T — t) + d)! p;(s)ds + (at + b) J’pz(s) s

—
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and
G{s, t}
({t — 5 a1k A -1 o a—2
(t—sp* | {;at + b} (c(?‘. 5) " d(T —s) ) Geiyret |
I () acT + ad + be T {a) IMa—1)
= 4
(at + b) (T —s)*r (T —5)°? o
\ acr+ad —!—bc( ' () r(z—1) FE S
Proof. Assume that y satisfies (3); then Lemma (2.5) implies
y(t) = ¢+ _fo (;:) 5 h(s)ds (7)
Y =co+eyt+ [ “;2) h(s)ds ®)
from (4) and (5), we have
—bey = .IOT P71 (s)ds ©)
T
| | | ( __,s)m—l . | (T __S)a—z
ec, +{cT+ d)e; e — h(s)ds +4 J SR h(s)ds

=fyp(as  (10)
by solving (9) — (10), we obtain

to= (7 +a) ! po()ds + b ! p, (s)ds
- - _
[ (F—s)y? @ —gy* _
_b (\C ﬂ _I_E—h‘(ﬁ')d s 4+ d T_T)h(b‘)ds)] (11)
1 ‘ |
R e [_.C J’.pi{s)d'.s +aj Py (s)ds
L o 0
‘ (T —s)*1 ‘ (T — s)*2 e
—a (co —l_m)—~h(s)ds +da m)—h(b)fﬁ)] (12)

From (8),(11), (12) and the factthat [y =f; + [ , we obtain (6).
Conversely, if y satisfies equation (6), then clearly (3)-(5) hold. ol

Note that if @ = b = ¢ = d = 1 then lemma(2.6) will give the lemma(3.4)
of [6], which is a special case of our lemma.

Definition 2.6. A functiony € AC(J,R) is said to be a solution of (1)—
(2), if there exists a function k € I*(J,R) with
h(t) € F(L,y(t). K (L), Ko¥(t)), fora.e. t € J, such that
D%y(t) = h{t) aq.e te]
and the function y satisfies conditions (2).
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3. Main results

I) The convex case

Theorem 3.1. Assume that the following assumptions hold

(H1)F: X RXRXR = B, (R)isa Caratheodory multi-valued map;

ie.

(i) t » F{t,x,v,z)is measurable for each (x,y, z) € R®
(i) {x,¥,z) —= F(t, x,v,z) isu.s.c. for almost ¢ € J.
(H2) There exist g4,q, € L*{J, R*)such that
ke (6 v | < qi(®)lyl (i=12) forallt € ], yER.

(H3) There exist ¢ € [*{J,R*) and a continuous function
P [0,00) X [0,00) X [0,00) - [0,00) which is a non decreasing in
either of its independent variables and such that

IF(Ex,3,2)llp = sup{lhl:h € F(&, %, 3,20} < (% (Ixl, v, 12D
forallt € J and (x,v,2) € R®;

(H4) There exist ¢y, ¢, € L'(J,R*) and a continuous nondecreasing
functions ¢y, 1,:[0,00) — [0, o) such that

It | < @) P lly]) (E=12)forallt € ], y € R

(H5) There exists a number M = 0 such that

1
2 acT + ad + bc

T
(T + d) o, (M) f 1o, ()ds
o

T
+GaT + B) g, (1) [ Iy (s
o

T
+ (M, Q0 M, QM) [ Gt s)Pp ()1 + q,(5) + g (s))ds
o

where @; = J;]T q;{(s)ds {i=1,2), and G{t, s) as in lemma 2.6, then the
BVP (1)—(2) has at least one solution on ;.

Proof: we transform problem (1)-(2) into fixed point problem by
considering the multivalued operator ¥{y):C(J, R) — P(C{},R)) as

T
N) =={v € C{J, R):v(t) = P(t,y(t)) + f G(t,s)h(s)ds 1 h € Sp(¥) }
0

where Sz(y) :={h € L{, R): h(t) € F(t, y(0), K, ¥(t), K,7(t)) a.e. t € )
and

o
Plt.y(®)) = R g {c(T-t)+d) 0[ s, v(s))ds +
T ’ \
(at + B) [ paly(s))ds )
J 4
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and the function 6 (¢, s) is given above. Clearly, from Lemma 2.6, the
fixed points of W are solutions to (6) for some h € S;. We shall show that
N satisfies the assumptions of the Bohnerblust-Karlin theorem (lemma
2.2.) The proof will be given in several steps.

Step 1: N(y) is convex for each y € C{J, R). Indeed, if v, and v, belong
to N(y), then there exi.‘s:t hy, hy € Sp(y) such that, for all ¢ € J, we have

v;(t) = P, y(£) —fl—jo G(t,s)h; (5)ds i=1,2

Let @ < A < 1. Then, foreach ¢ € J, Werhave

vy + (1 — DwE) = P y(t)) + L Gt ) ks () + (1 — Dy (s)]ds,

Since $g(7y) is convex (because F has convex values), we have
(Avy + (1 — Dvy)(E) € Ny ).

Step 2: N maps bounded set to itself in C(J,R). Let
B, = {y € C(J,R) = lly¥ll <7} then B, is a bounded closed convex set in
C(J,R). We shall prove that there exists a positive number r* such that
N{B) C B+, let y € B, for some r > 0. Then for each v € N(y) and
t €/, from (H2)—(H4), we have:

| T
1 = ;
@l = |——— bef U —f>+d)! py (s, y(s))ds +
T T
{at + b) fpzfs,y{s))ds) + [ G(t, syh{s)ds
o O

for some k € 8- {(¥)

' o
1 ;
OIS | - +0) af Ipy s ¥(s)lds
: ) .
+(at+ ) [Ip, (s, ysDlds |+ | GG 9)IRGs)lds
0 0

lv(|

-
= acT + ad + be lCT + dJ i\bl(lv]} Gf qb]_ [5)(15‘

T
T+ D [ 6,6 ds |

T : T
+ (Iyl,[lkl(s, vl ds,jlkz (& ynl ds) J Gt s)pls)ds
9 o 0

L85
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v 1 T
Ivlf < acT + ad + be (cT + d) ¢4 (1) ! ¢y(s)ds
T
+{aT + &) 1, () f ¢, (s)ds

T
+3p(r, Qu7. 07) [ 6t ) p(s)ds
o

Now from (HS) there exists a positive number M such that

llwll <

T
acT + ad + bc | (cT +d) o, (M) éj @y (s)ds

T
+ {aT + b) ¢, (M) j $a(s)ds
o

T
+p0,0u4,0,4) | 60, )p@as <
0
and hence N{B,;) c B,

Step 3: N maps bounded sets into equicontinuous sets of C(J, R).
Let t,t, € 7

with &; < t,, let B, be a bounded set in €{J, R) as in Step 2, and let
3 € B, then for each v € N{y). We have

lo(t,) — v(ty)l ;

_ IP(tz,y{.tz)) + f 6ty () ds — Pleyy(er)

. [TG&D S)h(s)ds|
0
lw(t,) — w(t)l

T
~ acT +nad +bc [c(t2 B "’i)fiPz(S,y{s))lds
0
‘
+alty—t,) j |2 (s, y(s) }ds ]
0

+ le(ﬁ,z;S) — G{ty,s) [|h{s)|ds

e———
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T i
= ! {tz - tI) Fod fipl{s,y{sj'}[ds +a ’ ipz(s, }‘f{-s) }lds )
\ ® 0

acl" + ad + be

T
. f 16 (65, 5) — Gt 8) Ihs) ds
O

since 6{t,s) is continuous in ¢, we conclude that as ¢, — ¢,, the right-hand
side of the above inequality tends to zero. As a consequence of Steps 1 to
3 together with the Arzel’a-Ascoli theorem, we claim that
N : C(J,R) - P{C{],R)})is a compact multivalued map.

Step 4: N(y) is closed for each y € C(J,R). Let {v,},=0 € N(¥) be such
that v, —w, as n— o in C(,R). Then, v, € C(J,R) and there exist
h, € Sz(3*), such that for each t € J,

T
7, (8) = P, v(t)) +L G(t,s)h, (s)ds

From the fact that F has compact values, we shall pass to a subsequence if
necessary to obtain that h, converges weakly to k, in £*(f,R) and
therefore h, € S;(¥), then we have for each t € J,

T

v, (L) — v, () = P(L,y(e) +j G(t,s)h.(s)ds

thus, v, € N({¥).

Since N closed and compact multi-valued map. We conclude from
Lemma 2.1 that F is u.s.c. .Hence, we conclude that i is a compact multi-
valued map, u.s.c. with convex closed values on the bounded closed
convex set B,, and N{B,,) c B,, .In view of Lemma 2.2, we deduce that
W has a fixed point which is a solution to problem (1)-(2). =

II) The non convex case

Theorem 3.2. Assume that the following assumptions hold :

(H6) F:] XRxRXR - P,(R) has the property that
F(.x,3.2) : J = P,(R) is measurable, and integrably bounded for
each {x,y,z) € R®.

(H7) There exists ! € L*(J,R*) such that

Hy(F(t, x4, %2, %3), F (L, Y1, 2, 32)) _ _

< X% — yil+ %2 — yal + 153 — yal)
Yx,¥; € R, (i=1,2,3)
d(0,F{t,0,0,0)) < i{t) a.e. t€ }.
(H8) There exists N;, N, = 0 such that
e, (e.x) — k(6,9 < Nj|x — y] (= 1,2), ¥x,y € R,
(H9) There exists I, € L*(J, R*) such that
(6 %) — pie I S L@Ix — ¥ (i=12) vxye R,

If
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1
V= acT +ad + bc

(creo fus varen uoa |
o ’ |

T
+ j(l + TNy + TN) G(t,8)l(s) ds < 1

or
then the BVP (1)~(2) has at least one solution on J.

Remark:. For each y € € (J,R), the set 5-(¥) is nonempty since, by (H6),
F has a measurable selection (see [5], Theorem II1.6).

Proof: We shall show that & satisfies the assumptions of the Covitz-
Nadler Lemma 2.3 The proof will be given in two steps.

Step 1: N(y) € P,(C(J.R)) . As step 4 in theorem 3.1 we can conclude
that N(y) is closed . and hence N(y) € P,(C (J, R)).

Step 2: N(y) is a contraction multi valued mapping. Then we have to
prove the existence of a constant 0 < y < 1 such that

Hy (NG N(y) < vllx — yll vxyecy.R)

Let x,y € €(J,R) and v; € N(x). Then, there exists k; € F(t,x) such that,

foreacht €}, .

vy (8 = PO+ f 6Ct.h, () ds

B

From (H7) it follows that

Hy(F{t, x(£), Kyx{t), Ky x(t)) Pt y (), Kyy (1), K3 ()

| <(1+ TNy +TNp) () [x(D) — ¥(0)]
Hence, for each t €  there exists w € F(¢, y(£)) such that

I (8) —w| < (1+ TN, + TN,) I{t) |x(t) — y()|

Consider U: J -» P(R) given by
UE) = (W€ R: |y () — w| < (L + TN, +TN,) OO - ¥(E)].3
Since the multivalued operator vV (t) = U({t) n F{¢,y{t)) is measurable
(see [5], Proposition IIL.4), there exists a function h,{t)} which is a

measurable selection for % . Thus, for each tej, we have
h(f) EF (t,yEtg), and
h () — R ()] < (14 TNy 4+ TN,) 1) [x (&) —v(®)]

Now for each t € J, define v,{t} = P{e,¥(£)) + IDTG(t, s)h,{s)ds
Then,
71 (6) — v (6)] = T
P(t, x(t)) = f 6(t, ) hy (s)ds — r(¢, y(t)) — [ G(t,s)h,(s)ds
R Jo

T
: ¢
< acT | ad | be (C(T == t) + d) !Ipi(a’,x{s)] — pl(g‘;’y‘_s}] ds

T
+ {at + b) flp_g(s,x('é')) —pa{s, y(s))ds ]

T
+ [ 669 &) ~ k@ lds
o

—_— i —
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vy (£) — va ()

T

{(CT-HJI ) [ 1,{s) ds

Q

lx -yl
- acT +ad + be

T E
+{aT + B) f L{s) ds |
s |

+ [ 669U e(s) — YL K3 (5) — Koy 1Kox(5)
<3

" - Ky(s)) ds
Therefore, _
_, -yl | r [
vy —wyl] = T+ ad & bc (cT + d) :! L{syds +{aT - b) ef ,{(5) ds

+ llx —yﬁj(t +TN, +TN;) 6(L,8)i(s)ds = yllx —yl

b
By an analogous relation, obtained by interchanging the roles of x and y,
it follows that

Hy(N(x), Ny < 7llx — I

Therefore, N is a contraction, and so by Lemma 2.3, N has a fixed point y
that is a solution to (1.1)—(1.3). The proof is now complete. w
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