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  الملخص

 ق التدرج المترافق باعتبار المعلمةائلطر  Dai-Yuan تعمیم طریقةتم في هذا البحث 
ق ائبثلاث طر   احتساب ثلاث قیم جدیدة للمعلمةإذ تم. في المقام كتركیب خطي 
   . الترافق البحثي واستخدام اتجاه نیوتن,  بافتراض طریقة الانحدارمختلفة

والتجارب  خاصیة الانحدار الحاد والتقارب الشامل للخوارزمیات المقترحة ثباتتم إ
العددیة على بعض الدوال القیاسیة أظهرت لنا تحسن واضح على الطرائق الكلاسیكیة في هذا 

  .المجال
  

Abstract 
In this paper we have generalized the extended Dai-Yuan conjugate 

Gradient method by Considering the parameter  in the denominator of 
 as a convex combination. Three values of  are computed in three 

different ways namely by assuming descent property, Pure Conjugacy  
and using Newton direction.  

The descent property and global convergence for the proposed 
algorithms are established. Our numerical experiments on some standard 
test functions show that there are considerable improvement on other 
classical methods in this field. 

 
1- Introduction: 

Consider the unconstrained optimization problem defined by:  
                                                                                                                (1) 

Where  is continuously differentiable. The line search algorithm 
for (1) often generates a sequence of iterates  by letting  
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                                                     (2) 
where  is the current iterate point,  is a descent search direction i.e. 

  and  is a step length.  
Different choices of  and  will determine different line search 
methods [8-10]. These methods are divided into two stages at each 
iteration: 

a) Choose a descent search direction . 
b) Choose a step-size  along the search direction . 

Throughout this paper, we denote  by by  and  
by  respectively.   denotes the Euclidian norm of vectors. 

One simple line search method is the steepest descent method if we 
take as a search direction at every iteration, which has wide 
applications in solving large-scale minimization problems [11]. However, 
the steepest descent method often yields zig-zag phenomena in solving 
practical problems. Which makes the algorithm converge to an optimal 
solution very slowly or even fail to converge [6]. then the steepest descent 
(SD) not recommended for practical use.  

If  is the search direction at each iteration in the 
algorithm, Where  is an  matrix approximation to the 

, then the corresponding line search method is called 
Newton like method such as quasi-Newton or variable metric etc, on the 
other hand if   the method is called Newton method, Which is 
one of the more the successful algorithm for unconstrained optimization 
if  is symmetric and positive definite and satisfies quasi-Newton 
condition given by  

                                                                                                           (3) 
Where  and   

For the general non-liner objective function the convergence of the 
Newton Algorithm to a solution cannot be guaranteed from an arbitrary 
initial point . In general if initial point is not sufficiently close to the 
solution then the algorithm may not posses the descent property, the other 
drawback of the Newton or quasi- Newton method is required to store 
and compute matrix  at each iteration and these adds cost of storage 
and computation. Accordingly these methods is not suitable to solve large  
scale optimization problems in many cases [7].  

The conjugate gradient method is very useful for solving (1) 
especially when  is large and has the following form: 

                                    
                                                                                             (4) 

Where  is a parameter, in the case when  is a convex quadratic 
function and                             
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The conjugate gradient method is such that the conjugacy condition holds 
[2], namely  

                                                                                                   (5) 
For general non-liner function Dai and Liao in [2] replaced the conjugacy 
condition (5) to the following form  

                                                                                                               (6) 
Which is called pure conjugacy conditions additionally if inexact line 
search is used also see [2], the condition in (6)  can be written as: 

                                                                                                       (7) 
When  is scalar. 
      Several kinds of formulas for  has been proposed. For example 
Fletcher–Reeves (FR). Polak–Ribiere (PR). and Hestenes–Stiegel (HS). 
formulas are well Known and they are given by: 

                                                                                                           (8) 

                                                                                                              (9) 

                                                                                                            (10) 

The global convergence properties of the FR, PR and HS methods 
without regular restarts have been studied by many researchers [1-3].The 
conjugate gradient methods with regular restart was also found in [4]. 
      To establish convergence properties of these methods it is usually 
required that the step size  should satisfy the strong Wolfe conditions 
(SWC): 

                                                                 (11a) 
                                                                                   (11b) 

Where . On the other hand, many other numerical methods 
(e.g. the steepest descent methods and quasi- Newton method) for 
unconstrained optimization are proved to be convergence under the 
standard Wolfe conditions (SDWC). which are weaker than the (SWC): 

                                                                   (12a) 
                                                                                  (12b) 

Line search strategies require the descent condition  
                                                                                       (13) 

However most of conjugate gradient methods don't always generate a 
descent search direction [5], so condition (13) is usually assumed in the 
analysis and implementation. Some strategies have been studied which 
produce a descent search direction within the framework of conjugate 
gradient methods for example: 
Hiroshi and Naoki in [5] generalized the Dai and Yuan (DY) [3], which is 
defined as follows:  
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where                                                                                              (14) 

Their generalization of (14) as follows: they are assumed that  
                                                           (15) 

Where                                                                                               (16) 

The equation (15) is equivalent to  
                                                                                                        (17) 

And they are suggested three different values for : 
1)  therefore  

                                                                                         (18) 

2)  

                                                                                  (19) 

Where  and  and  any 
vector with  

3)   

                                                                                           (20) 

The algorithms defined in equation (4) with  is defined in (18) or (19) 
or (20) is called Extension of the Dai-Yuan (DY) method and the search 
direction generated by the above algorithms generates descent direction 
whenever the condition (17) satisfied for more detail see [5]. 
This paper is organized as follows: In section 2 we deal with an extension 
of the DY method and we give another three different values for  this 
values are based to the descent property, pure conjugacy condition and 
Newton direction. In section 3 the convergence analysis studied and in 
section 4 the numerical experiments are reported. 
 
2- New proposed algorithms  
 In this section, we try to find new values for  that satisfies the 
condition given in equation (17), using three different methods: 
 
2.1  Descent property  
 Hiroshi and Naoki in [5] show that if the condition (17) is satisfied 
then the related conjugate gradient (CG) method will be generates always 
descent directions for all . Now consider 

      
Then the search direction can be defined as:  
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                                                          (21) 

If     

With simple algebra 
                                                                                                              (22) 

Therefore our first new algorithm say (MH1-CG) can be define as MH1  
                                                                                 (23) 

Where   and   is defined in equation (22) 

with the condition if   set   and if   set . 
In equation (23), we multiply  by for the purpose of the global 
convergence. 
 
2.2  Pure Conjugacy property  
 The second method to evaluate the value of  is the pure 
conjugacy condition defined in equation (6), we assume that the 
following search direction generates conjugate directions  

  

Solve the above equation for   where to get  

                                                                         (24) 

Then the second new algorithm (MH2-CG) say can be defined as  
                                                                                    (25) 

When    and  in equation (24) and if    

or      set      
In equation (25), we multiply  by for the purpose of the global 
convergence. 
 
2.3  Assuming parallel to the Newton direction  
 As we know when initial  is close enough to a local minimum 
point  then the best direction to be followed in  the current point  is 
the Newton direction - . Therefore our motivation is to choose 
the parameter   in (4) so that for every   the direction  given 
by  

    

Can be best direction. Hence using the direction from the equality  
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                                              (26) 

When G-1 is inverse Hessian which is symmetric and positive definite. 
Multiply equation (26) by  noting that  and using equation 
(3) with simple computations we obtain  

                                                        (27) 

Then the third algorithm (MH3-CG) say is given by  
                                                                                 (28) 

Where                                                                     (29) 

Where computed from (27) with the condition if  or   set  
  

In equation (28), we multiply  by for the purpose of the global 
convergence. 
 
3- Convergence analysis  
  In this section we have proved the global convergence property of 
the algorithm MH1. Our proof are based to the theorem given in the paper 
proposed by Gilbert and Nocedal (Gilbert and Nocedal, 1992), They 
show that any non-liner conjugate gradient algorithm that satisfies the 
assumpssion (3.1) below will be globally convergent according to the 
theorem (1) and theorem (2) (given later on). 
 
Assumption (3.1): 
(a) 

1- The level set   is bounded below, where x1 is initial 
estimate for the minimizer. 

2- In some neighborhood  of  the objective function  is          
continuously differentiable and its gradient is Lipchitz continuous  

3- The step size  satisfies the Wolfe conditions  
(b) The parameter  satisfies the following inequality  

   

 
Theorem (1): 
 suppose that assumption (3.1) hold. consider any method of the form (2) 
and (4). with  in SWC, then the method generator descent 
directions  satisfying  

      

Proof (see Gilbert and Nocedal, 1992) 
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Theorem (2): 
Suppose that assumption (3.1) hold. consider any method of the form (2) 
and (4) with , then   
Proof (see Gilbert and Nocedal). 
Theorem (1) and Theorem (2) shows that for conjugate gradient methods, 
for which  and  satisfies strong Wolfe conditions then the 
methods generates descent direction and they are globally convergent. 
Therefore to prove descent property and global convergent to the MH1 or 
(MH2,MH3)-conjugate gradient methods we need only to show  
                                                                                                       (30) 
To prove the inequality (30). Since ,  are positive scalars     
( ) and  by second Wolfe condition then 
                                                                                  (31) 

 
To establish the second part of the inequality (30) from (31) we have 

       
                                                                              (32) 

Multiply equation (32) by  to set  

  

 
4- Numerical Experiments  
 This section presents the performance of FORTRAN 
implementation of our new conjugate gradient algorithms (MH1,MH2 
and MH3) on a set of unconstrained optimization test problems taken 
from (Andrei, 2008). We select (15) large scale test problems in extended 
or generalized form (see Appendix), for each function we have 
considered numerical experiments with number of variables  and 

. 
 We have compared the performance of these algorithms versus  
given in equation (18) [which is better than from the  given in equation 
(19) or (20) see (Heroshi and Naoki,2005)]. 
 All these algorithms are implemented with the standard Wolfe line 
search conditions with  and , where the initial step-size 

 and guess for other iterations i.e.  ; .  
 In the all cases the stopping criteria is the                         

 and the maximum number of iterations is 
2000. Our comparisons includes the following: 
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1- NOI: Number of iterations 
2- FGN: Number of function and gradient evalutions which are same 

in these algorithms  
3- Lins: number of calling subroutine  compute step-size  

 Table (1) and (2) illustrates the details of the results for  and 
. 

 Table (3) presents the performance of all algorithms in terms of 
percentage where DY method considered as . From table we see that 
all algorithms improves DY-CG method about  in terms of 
NOI. 

 
Table (1): comparison of algorithms w.r. to percentage of NOI, FGN & Lins 

N=100 
FR DY EXDY MH1 MH2 MH3  

NOI / FGN / 
Lins 

NOI / FGN / 
Lins 

NOI / FGN / 
Lins 

NOI / FGN / 
Lins 

NOI / FGN / 
Lins 

NOI / FGN / 
Lins 

1 659/16198/594 57 / 1062 / 48 13 / 29 / 13 22 / 40 / 14 13 / 28 / 13 47 / 395 / 34 
2 19 / 35 / 13 18 / 34 / 13 18 / 33 / 12 18 / 34 / 13 19 / 32 / 10 18 / 34 / 13 
3 47 / 93 / 42 40 / 81 / 34 34 / 67 / 26 40 / 81 / 34 34 / 72 / 28 45 / 89 / 39 
4 43 / 88 /33 34 / 68 / 26 30 / 65 / 25 34 / 68 / 26 38 / 81 / 32 34 / 77 / 32 
5 2001/2025/20 61 / 105 / 42 57 / 91 / 31 60 / 103 / 41 61 / 102 / 38 54 / 99 / 42 
6 25 / 43 /15 22 / 44 / 19 21 / 42 / 18 21 / 42 / 18 21 / 42 / 18 26 / 43 / 14 
7 15 / 25 / 9 16 / 23 / 6 14 / 20 / 5 14 / 20 / 5 7 / 13 / 5 16 / 26 / 9 
8 37 / 67 / 29 40 / 61 / 20 34 / 53 / 18 39 / 59 / 19 37 / 55 / 17 36 / 61 / 24 
9 180/313/132 79 / 151 / 71 59 / 111 / 51 71 / 135 / 63 58 / 110 / 51 78 / 143 / 64 

10 63 / 98 / 33 63 / 98 / 33 55 / 86 / 29 55 / 86 / 29 55 / 86 / 29 55 / 86 / 29 
11 2001/2007/4 14 / 34 / 8 10 / 28 / 9 6 / 7 / 0 6 / 7 / 0 6 / 7 / 0 
12 32 / 64 / 31 10 / 21 / 10 6 / 13 / 6 7 / 15 / 7 7 / 15 / 7 15 / 28 / 12 
13 74 / 123 / 48 87 / 136 / 48 85 / 130 / 44 84 / 132 / 47 76 / 118 / 41 83 / 139 / 55 
14 98 / 157 / 58 104 / 161 / 56 82 / 131 / 48 98 / 153 / 54 89 / 137 / 47 101 / 164 / 62 
15 69 / 1202 / 56 28 / 176 / 22 23 / 44 / 18 23 / 43 / 17 27 / 48 / 18 25 / 48 / 20 

total  673 / 2255 / 
456 

541 / 943 / 
353 

592 / 1018 / 
387 

548 / 946 / 
354 

639 / 1439 / 
449 

 
Table(2): comparison of algorithms w.r. to percentage of NOI, FGN & Lins 

N=1000 
FR DY EXDY MH1 MH2 MH3  

NOI / FGN / 
Lins 

NOI / F3GN 
/ Lins 

NOI / FGN / 
Lins 

NOI / FGN / 
Lins 

NOI / FGN 
/ Lins 

NOI / FGN 
/ Lins 

1 1585/44127/1566 13 / 27 / 13 12 / 26 / 12 13 / 27 / 13 17 / 33 / 15 66 / 1515 / 
66 

2 38 / 65 / 22 38 / 65 / 22 29 / 54 / 20 27 / 50 /18 30 / 58 / 23 28 / 53 / 20 
3 78 / 131 / 44 39 / 85 / 35 38 / 81 / 32 38 / 83 / 34 34 / 75 / 29 43 / 91 / 40 
4 46 / 92 / 38 34 / 74 / 29 32 / 64 / 24 32 / 69 / 27 37 / 85 / 32 45 / 95 / 36 
5 2001 / 2005 / 3 201 / 329 / 

120 
191 / 308 / 

109 
189 / 311 / 

114 
204 / 332 / 

120 
174 / 287 / 

105 
6 46 / 741 / 46 26 / 56 / 25 23 /51 / 23 23 / 51 / 23 27 / 50 / 18 21 / 47 / 21 
7 127 / 3531 / 124 11 / 19 / 7 9 / 16 /9 10 / 17 / 6 7 / 13 / 5 10 / 17 / 6 
8 73 / 115 / 40 64 / 101 / 35 46 / 72 / 24 63 / 99 / 34 55 / 89 / 32 67 / 110 / 
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41 
9 2001 / 2110 / 108 85 / 156 / 70 79 / 148 / 68 76 / 139 / 62 66 / 125 / 

58 
74 / 130 / 

55 
10 61 / 96 / 32 64 / 102 / 35 55 / 87 / 29 52 / 84 / 29 52 / 83 / 28 52 / 84 / 29 
11 2001 / 2025 / 11 31 / 65 / 12 9 / 20 / 5 18 / 19 /0 18 / 19 /0 18 / 19 / 0 
12 77 / 129 / 51 15 / 29 / 13 12 / 24 / 11 12 / 23 /10 11 / 22 / 10 10 / 21 / 10 
13 370 / 616 / 245 250 / 421 / 

170 
189 / 314 / 

124 
242 / 406 / 

163 
255 / 428 / 

172 
232 / 383 / 

150 
14 314 / 519 / 204 296 / 469 / 

172 
341 / 529 / 

187 
271 / 427 / 

155 
304 / 466 / 

161 
326 / 500 

/173 
15 98 / 1967 / 86 37 / 349 / 27 34 / 59 / 20 26 / 46 / 16 28 / 51 / 19 24 / 47 / 19 

total  1204 /2347 
/785 

1099 /1853 
/697 

1092 /1851 
/704 

1145 /1929 
/722 

1190 /3399 
/771 

 

 
Table(3): comparison of algorithms w.r. to percentage of NOI 

 

N Measure DY EXDY MH1 MH2 MH3 
100 NOI 100% 80.7% 88.3% 81.8% 91.7% 
1000 NOI 100% 90.8% 90.5% 95% 98.7% 

 
 
Appendix 
1- Extended Freudenstein & Roth Function 

  
  

 

2- Extended Trigonometric Function 

  

 

3- Extended Rosenbrock Function 
  

 
 

4- Extended White & Holst Function 

  

 
 

5-  Diagonal2 Function 
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6- Generalized Tridiagonal-1 Function 
  

 
 

7- Extended Three Exponential Terms Function 

  
 

 

8- Generalized Tridiagonal-2 Function 

  
 

 

9- Extended Powell Function 

  
 

 

10- Extended Block Diagonal BD1 Function 

  

 
 

11- Extended Cliff Function 

  
 

 

12- Extended Tridiagonal-1 Function 

  

 
 

13- Partial Perturbed Quadratic 
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14- Almost Perturbed Quadratic 
, 

 
 

15- VARDIM Function (Cut) 
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