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Abstract

In this paper we have generalized the extended Dai-Yuan conjugate
Gradient method by Considering the parameter ..., in the denominator of
B.., as a convex combination. Three values of 7, ., are computed in three
different ways namely by assuming descent property, Pure Conjugacy
and using Newton direction.

The descent property and global convergence for the proposed
algorithms are established. Our numerical experiments on some standard
test functions show that there are considerable improvement on other
classical methods in this field.

1- Introduction:

Consider the unconstrained optimization problem defined by:
Min f(x), xeR™ (1)

Where f:R™ = R is continuously differentiable. The line search algorithm
for (1) often generates a sequence of iterates {x,] by letting
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Xpay = Xy + @y dy k=01,2,.. (2)
where x; is the current iterate point, d;, 1s a descent search direction i.e.
gld, <0 and a, = 0is a step length.
Different choices of d; and a; will determine different line search
methods [8-10]. These methods are divided into two stages at each
iteration:

a) Choose a descent search direction d,.

b) Choose a step-size «, along the search direction d,.
Throughout this paper, we denote f(x,) by f, Vf(x. )by g, and Vf(x..,)
by g.., respectively. |l.]| denotes the Euclidian norm of vectors.

One simple line search method is the steepest descent method if we
take d, = —g, as a search direction at every iteration, which has wide
applications in solving large-scale minimization problems [11]. However,
the steepest descent method often yields zig-zag phenomena in solving
practical problems. Which makes the algorithm converge to an optimal
solution very slowly or even fail to converge [6]. then the steepest descent
(SD) not recommended for practical use.

If d, =-H,g, 1s the search direction at each iteration in the
algorithm, Where H, is an =nxn matrix approximation to the
[V, ] ' =6,*, then the corresponding line search method is called
Newton like method such as quasi-Newton or variable metric etc, on the
other hand if #, = 6,~* the method is called Newton method, Which 1s
one of the more the successful algorithm for unconstrained optimization
if 6,7* 1s symmetric and positive definite and satisfies quasi-Newton
condition given by
Gusy ¥y = 5y 3)
Where v, = g2y — gy and s, = x,0y — %,

For the general non-liner objective function the convergence of the
Newton Algorithm to a solution cannot be guaranteed from an arbitrary
initial point x,. In general if initial point is not sufficiently close to the
solution then the algorithm may not posses the descent property, the other
drawback of the Newton or quasi- Newton method is required to store
and compute matrix H, at each iteration and these adds cost of storage
and computation. Accordingly these methods is not suitable to solve large
scale optimization problems in many cases [7].

The conjugate gradient method is very useful for solving (1)
especially when n is large and has the following form:
dy = —g k=1
dis1 = —Gx+1 T Br d; 4
Where S, is a parameter, in the case when f is a convex quadratic

i

function and a, = argmin_., f(x, +d,)
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The conjugate gradient method is such that the conjugacy condition holds
[2], namely
diHd; =0 Vi#] (5)
For general non-liner function Dai and Liao in [2] replaced the conjugacy
condition (5) to the following form
disy Vi =0 (6)
Which is called pure conjugacy conditions additionally if inexact line
search is used also see [2], the condition in (6) can be written as:
disy = —tGx+q Sk (7)
When ¢t = 0 is scalar.

Several kinds of formulas for g, has been proposed. For example

Fletcher—Reeves (FR). Polak—Ribiere (PR). and Hestenes—Stiegel (HS).
formulas are well Known and they are given by:

- _.zg;'-',? CEET (8)

Fpdx

-
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prs =ikgess (10

The global convergence properties of the FR, PR and HS methods
without regular restarts have been studied by many researchers [1-3].The
conjugate gradient methods with regular restart was also found in [4].

To establish convergence properties of these methods it is usually
required that the step size a; should satisfy the strong Wolfe conditions

(SWC):
flx) = flx, + apdy) = —6a; g d;, (11a)
lg(x, + @, d,)| < —ogid, (11b)

Where 0 < & < ¢ <. On the other hand, many other numerical methods

(e.g. the steepest descent methods and quasi- Newton method) for
unconstrained optimization are proved to be convergence under the
standard Wolfe conditions (SDWC). which are weaker than the (SWC):
f(x.)— fx, + x, d,) = —ba, g: d, (12a)
g(x, + .1'kd;;'jrd,{ = crgg d, (12b)
Line search strategies require the descent condition

gi d, <0 vk (13)
However most of conjugate gradient methods don't always generate a
descent search direction [5], so condition (13) is usually assumed in the
analysis and implementation. Some strategies have been studied which
produce a descent search direction within the framework of conjugate
gradient methods for example:

Hiroshi and Naoki in [5] generalized the Dai and Yuan (DY) [3], which is
defined as follows:

i1 = —Gxsr + B d,

A
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where 2" = EL‘*Q“—‘ (14)

\-J\

Their generahzatlon of (14) as follows: they are assumed that

d-c--l Gy+1 Igrf"‘igr{"' g 'd Gr+1 <0 (15)
Where g, = *_“‘* (16)
The equation (15) is equivalent to
Tysr > Gisy di (17)
And they are suggested three different values for 7, :
1)  1,.,=div,+ Max{d]g,.,, 0} therefore
— d"i- kS
ﬁ*_d;«*rurd Girss 0} (18)
2) Tyay = dyve + 8, Mat{ < }
By =— ’“'.f“ (19)

]
T ot

B
31 an 2 El M gt 1
de ¥Vptt .‘-.r.'.rl T —dy Ui |

LT
'a'.‘:“l\

Where t, =0 and 8, = 6(f, — frss) + 3(9x + 9x21)"5, and u, any
vector with sTu, =0
3) Tpsq = dy vy + a—" Max{@,,0}

13

B, = ——Sxeadi (20)

1 o e Ml G 01
dy Vi e Maxi8;.0)

The algorithms defined in equation (4) with 5, is defined in (18) or (19)
or (20) is called Extension of the Dai-Yuan (DY) method and the search
direction generated by the above algorithms generates descent direction
whenever the condition (17) satisfied for more detail see [5].

This paper is organized as follows: In section 2 we deal with an extension
of the DY method and we give another three different values for 7., this

values are based to the descent property, pure conjugacy condition and
Newton direction. In section 3 the convergence analysis studied and in
section 4 the numerical experiments are reported.

2- New proposed algorithms
In this section, we try to find new values for r, ., that satisfies the

condition given in equation (17), using three different methods:

2.1 Descent property

Hiroshi and Naoki in [5] show that if the condition (17) is satisfied
then the related conjugate gradient (CG) method will be generates always
descent directions for all k. Now consider
ey = )L':' dly, + (1 - }L:' )gf G ﬁ':' € [0,1]

Then the search direction can be defined as:

— =

T
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] ? 5 )

Aory = =G rq +y—RaplReLl__ d, 21

E+1 G+ ’]';;- dl—-"'i' o 1_,.“‘.:_. ?‘l x K ( )

/T — T (& =3 Fievs T -
If Qps1 Or41 = — 0k Opes1 T 70 - 7— A Gysq <0
e .:f_\ I‘l / 1@y gk

With simple algebra

(1) _ digyes
Mo T aly (22)

¥k

Therefore our ﬁrst new algorithm say (MH1-CG) can be define as MH1
dysy = —Grxs1 + A, Y pMEL g (23)

A

I s i (1} - ] 1
Where p"# = —— ‘q“l..i" “~—— and 4, is defined in equation (22)
47 ames (1-47 ok ax

with the condition if A"“ < 0 set /"ti"' =0 and if}fi’ = 0 set A"“ = 1.
In equation (23), we multiply S, by A Y for the purpose of the global

convergence.

2.2 Pure Conjugacy property
The second method to evaluate the value of .., is the pure

conjugacy condition defined in equation (6), we assume that the
following search direction generates conjugate directions

7 N ] Frss Jies T vy =
Aisq Vi = —Gx1 Ve T3 T f T — A Vi =0
A7 dpyet 1-4,7 Ja g

" K

Solve the above equation for A where 2, € [0,1]to get

1(2) _ @h.. Oyses hyx—=0% Gxe: 9% 9
N W e o T (24)
Yo k= ‘: 9..; gx )

Then the second new algorlthm (MH2-CG) say can be defined as
E‘JH G (25)

When pY#? = k=i and 4% in equation (24) and if 2% < 0

A dpa+l1-47 gy g

d" _g\ 1_/"

KT

or A¥ =1 set AP =1
In equation (25), we multiply S, by A * for the purpose of the global

convergence.

2.3 Assuming parallel to the Newton direction
As we know when initial x, is close enough to a local minimum

point x" then the best direction to be followed in the current point x,., is
the Newton direction - G;%, g..,. Therefore our motivation is to choose
the parameter f,.,
by

dysq = _I:?;Li T T T Taas ket d

k O T A COATE k
Ay dpyp+il A 18y 8%

in (4) so that for every k =1 the direction d,., given

Can be best direction. Hence using the direction from the equality
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-1 = Hies Tiss
=Gy Gxe1 T " Gka1 T T PERCRY, dy (26)
A SpdeT\l-Ar lok gk

When G is inverse Hessian which is symmetric and positive definite.
Multiply equation (26) by y;, noting that G * v, = s, and using equation
(3) with simple computations we obtain

o (of. gv.)(aT 32 )=oT gv (57 g .57 ge
i e e @
Then the third algorithm (MH3-CQG) say is given by

dysy = —Gxss + 2y B 4, (28)
Where pY#* = = dzgt.]gj;’ - (29)

Where 2;”computed from (27) with the condition if 27 < 0 or 2% = 1 set
ﬁ..'f"' = 1
In equation (28), we multiply 5, by A: for the purpose of the global

convergence.

3- Convergence analysis

In this section we have proved the global convergence property of
the algorithm MH1. Our proof are based to the theorem given in the paper
proposed by Gilbert and Nocedal (Gilbert and Nocedal, 1992), They
show that any non-liner conjugate gradient algorithm that satisfies the
assumpssion (3.1) below will be globally convergent according to the
theorem (1) and theorem (2) (given later on).

Assumption (3.1):

(a)
1- The level set L = {x:f(x) = f(x,)] is bounded below, where x; is initial

estimate for the minimizer.

2- In some neighborhood N of L the objective function f is

continuously differentiable and its gradient is Lipchitz continuous
3- The step size «, satisfies the Wolfe conditions

(b) The parameter g, satisfies the following inequality
0< B < BEF vk=0

Theorem (1):

suppose that assumption (3.1) hold. consider any method of the form (2)
and (4). with 0< o < 1 in SWC, then the method generator descent
directions d, satisfying

1 _gpdy - 2-1
—— ik o k=123 ..
1=z -1 L 1=z

Proof (see Gilbert and Nocedal, 1992)

)
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Theorem (2):
Suppose that assumption (3.1) hold. consider any method of the form (2)
and (4) with 0 < ¢ < X then lim, .. infllg,:,ll =0
Proof (see Gilbert and Nocedal).
Theorem (1) and Theorem (2) shows that for conjugate gradient methods,
for which 0 < g, < gi* and «, satisfies strong Wolfe conditions then the
methods generates descent direction and they are globally convergent.
Therefore to prove descent property and global convergent to the MH1 or
(MH2,MH3)-conjugate gradient methods we need only to show

0 < BMHL < BFR (30)
To prove the inequality (30). Since A,', «, are positive scalars
( AN a, €[01]) and d] v, = 0 by second Wolfe condition then

L dr) '*[l—f}gxgx- 0 (31
v (9F+1 Guss) -
A ::f' Vi --(l—A'I )g:'g.
To estabhsh the second part of the 1nequa11ty (30) from (31) we have
Al df :gx 9 — % Ok 92 > g% Ox — Ay Ok 9x 2 Ay, Gk G
a0 S T4 . (32)

Mu1t1p1y equation (32) by 2" 5.1 gr.4 to set

’-; i Th+e & gn." Hier _ IG FR

f-._-‘_l': d_"{:"i'" I.l—,'-.._J'I g:l g - gy O

K

4- Numerical Experiments

This section presents the performance of FORTRAN
implementation of our new conjugate gradient algorithms (MH1,MH2
and MH3) on a set of unconstrained optimization test problems taken
from (Andrei, 2008). We select (15) large scale test problems in extended
or generalized form (see Appendix), for each function we have
considered numerical experiments with number of variables n = 100 and
n = 1000,

We have compared the performance of these algorithms versus 25,
given in equation (18) [which is better than from the £, given in equation
(19) or (20) see (Heroshi and Naoki,2005)].

All these algorithms are implemented with the standard Wolfe line

search conditions with § = 0.001 and ¢ = 0.9, where the initial step-size

1 . . . _— . d_.
ay = — and guess for other iterations i.e. k > 1; a, = a;_, * =
I =5

In the all cases the stopping criteria is  the
llgpseqll <= 1075 = max[1,|f,.,|] and the maximum number of iterations is

2000. Our comparisons includes the following:
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1-
2-

3.

NOI: Number of iterations
FGN: Number of function and gradient evalutions which are same
in these algorithms

Lins: number of calling subroutine t = compute step-size «,

Table (1) and (2) illustrates the details of the results for » = 100 and
n = 1000,

Table (3) presents the performance of all algorithms in terms of
percentage where DY method considered as 100%. From table we see that

all algorithms improves DY-CG method about (2% — 20%) in terms of

NOL
Table (1): comparison of algorithms w.r. to percentage of NOI, FGN & Lins
N=100
FR DY EXDY MHI1 MH2 MH3
NOI/FGN/ | NOI/FGN/ | NOI/FGN/ | NOI/FGN/ | NOI/FGN/ | NOI/FGN/
Lins Lins Lins Lins Lins Lins
1 659/16198/594 | 57/1062/48 | 13/29/13 | 22/40/ 14 13/28/13 | 47/395/34
2 19/35/13 18/34/13 18/33/12 18/34/13 19/32/10 18/34/13
3 47/93 /42 40/81/34 34/67/26 | 40/81/34 34/72/28 45/89/39
4 43/88/33 34/68/26 30/65/25 | 34/68/26 38/81/32 34/77/32
5 2001/2025/20 | 61/105/42 | 57/91/31 | 60/103/41 | 61/102/38 | 54/99/42
6 25/43/15 22/44/19 21/42/18 21/42/18 21/42/18 26/43/ 14
7 15/25/9 16/23/6 14/20/5 14/20/5 7/13/5 16/26/9
8 37/67/29 40/61/20 34/53/18 | 39/59/19 37/55/17 36/61/24
9 180/313/132 79/151/71 | 59/111/51 | 71/135/63 | 58/110/51 | 78 /143 /64
10 63/98/33 63/98/33 55/86/29 | 55/86/29 55/86/29 55/86/29
11 2001/2007/4 14/34/8 10/28/9 6/7/0 6/7/0 6/7/0
12 32/64/31 10/21/10 6/13/6 7/15/7 7/15/7 15/28/12
13 74 /123 /48 87/136/48 | 85/130/44 | 84/132/47 | 76/118/41 | 83/139/55
14 98/157/58 | 104/161/56 | 82/131/48 | 98/153/54 | 89/137/47 | 101 /164 /62
15 | 69/1202/56 | 28/176/22 | 23/44/18 | 23/43/17 | 27/48/18 25/48/20
total 673 /2255/ 541/943/ | 592/1018/ 548 /946 / 639 /1439 /
456 353 387 354 449
Table(2): comparison of algorithms w.r. to percentage of NOI, FGN & Lins
N=1000
FR DY EXDY MHI1 MH2 MH3
NOI/FGN/ NOI/F3GN | NOI/FGN/ | NOI/FGN/ | NOI/FGN | NOI/FGN
Lins / Lins Lins Lins / Lins / Lins
1 1585/44127/1566 | 13/27/13 12/26/12 13/27/13 | 17/33/15 | 66/1515/
66
2 38/65/22 38/65/22 | 29/54/20 27/50/18 30/58/23 | 28/53/20
3 78 /131 /44 39/85/35 | 38/81/32 38/83/34 | 34/75/29 | 43/91/40
4 46/92 /38 34/74/29 | 32/64/24 32/69/27 | 37/85/32 | 45/95/36
5 2001 /2005 /3 201/329/ 191 /308 / 189/311/ 204 /332/ | 1747287/
120 109 114 120 105
6 46/ 741/ 46 26/56/25 23/51/23 23/51/23 | 27/50/18 | 21/47/21
7 127 /3531/ 124 11/19/7 9/16/9 10/17/6 7/13/5 10/17/6
8 73/115/40 64/101/35| 46/72/24 63/99/34 | 55/89/32 | 67/110/

S
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41
9 |2001/2110/108 | 85/156/70 | 79/148/68 | 76/ 139/ 62 66/125/ 74/ 130/
58 55
10 61/96/32 64/102/35 | 55/87/29 52/84/29 | 52/83/28 | 52/84/29
11 2001 /2025/11 | 31/65/12 9/20/5 18/19/0 18/19/0 18/19/0
12 77/129/51 15/29/13 12/24/11 12/23/10 11/22/10 | 10/21/10
13 370/ 616/ 245 250/421/ 189/314/ 242 /406 / 255/428/ | 232/383/
170 124 163 172 150
14 314/519/204 296 /469 / 341/529/ 271/427/ 304 /466 / 326 /500
172 187 155 161 /173
15 98 /1967 / 86 37/349/27 | 34/59/20 26/46/16 | 28/51/19 | 24/47/19
total 1204 /2347 1099 /1853 1092 /1851 1145/1929 | 1190 /3399
/785 /697 /704 /722 /771
Table(3): comparison of algorithms w.r. to percentage of NOI
N Measure DY EXDY MHI1 MH?2 MH3
100 NOI 100% 80.7% 88.3% 81.8% 91.7%
1000 NOI 100% 90.8% 90.5% 95% 98.7%
Appendix
1- Extended Freudenstein & Roth Function
n
f[l} = Z::;(_IB + Xy 4 + ((5 o -]’“-2:'}-"52:' - 2)1-2:')“ +
(=29 + x5,y + ((ra; + Dxyy — 14)x,,) ",
x, = [0.5,-2,0.5,-2,...,0.5,-2]
2- Extended Trigonometric Function
_$'n -Yil1 — Y cina Y
f(x)=3n. ((n E;‘=1 cos .1,;-):(1 Cos ,t}-) sin ,t:-) ,
x, =[0.2,0.2,...,0.2].
3- Extended Rosenbrock Function
n
N w3 2 2 . -
fx) =27, (g —x3y) + (=250,
X, =[-121,..,—-121)]. c¢=100
4- Extended White & Holst Function
n
= 2 . .
f{:t’) = Zi-Zl C(\‘-':E - 'rg:—l) + (l - ‘r::—ljh '
X, =[-12]1,..,-1.21]. ¢=100
5- Diagonal2 Function

fx) =X, (E‘l’p (x;) — J‘T) )
x,=[1/1,1/2,..,1/n].
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6- Generalized Tridiagonal-1 Function
f) =250 +x0 — 3%+ (x; — Xy +1)*
X, =[22,..,2].
7- Extended Three Exponential Terms Function

f(x) = Z?zl(erp(xz‘.-_l +3x,, — 0.1) + exp(xy;_4 —
3%, — 0.1) + exp(—x,, — 0.1)) ,
xo = [0.1,0.1,...,0.1].
8- Generalized Tridiagonal-2 Function
fx)=((5-3x, —xPx;—3x, + '1)2 + 3yl ((5 -
3%, —x3)x; — X1 — 3%, + 1): +((5-3x, —x2)x, —

Xy +1)°
Yo = [-1,—1, ..., —1].

O
1

Extended Powell Function

flx) = Z:zlix-;z'—a + 10x,;_5)% + 5(x_; —x4)% +
(Xgimn — 2x45-1)% + 10(x4_3 — x45)*
x, = [3,-1,0,...,3,-1,0].

10- Extended Block Diagonal BD1 Function

flx)= Zz'z=1(x§a'—1 + .1?%:- - 2)- + (exp(xy; — 1) -

Xp0)*

X0=[0.1,0.1,...0.1].
11- Extended Cliff Function
n 2
2 Xgi—1—3\" . . -
fx)=27, (T) — (-1 — X¢) + 9«1”?5'(20(1::—1 -
X21))
X, = [0,-1,...,0,—1].
12- Extended Tridiagonal-1 Function
flx)= 2:-2=1(-172:'—1 + X — 3)*+ (Xpmq — X + 1)*
X, = [2,2,...,2].
13- Partial Perturbed Quadratic
Y o el n o i . . AL
fx)=xi+ XL, (ui +— (X, 4+ x, 4+ +x;) ) )
x, = [0.5,0.5,...,0.5].

nFE
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14- Almost Perturbed Quadratic
) = iy ixf + 5 (v + 2,2
x, = [0.5,0.5,...,0.5].
15- VARDIM Function (Cut)

F00) = B - 17+ (S i —222) 4

n' n'’ n
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