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المستخلص 
في هذا البحث حصمنا عمى نتيجتين رئيسيتين متعمقتين بحجم المجموعة القالبية من        
–وتمثمت النتيجتان  في إيجادنا قوسا تاما جديدا  .PG(2,16)في المستوي  4-والنمط8-النمط

ثباتنا أن القوس التام  لم يسبق الحصول عميه في البحوث الحديثة، (129,9) د موجو-(k,13)وا 
وقمنا بتصنيف المجاميع القالبية الاصغرية ذات   k≤197. عندما PG(2,16)في المستوي 

هي  8، وأثبتنا أن المجموعة الاصغرية ذات الحجم  PG(2,4)في المستوي الاسقاطي 8الحجم 
 10وأعطينا بعض خواص المجموعة القالبية الاصغرية ذات الحجم   Rédei –type من النوع

، وحصمنا عمى مثال لممجموعة القالبية الاصغرية ذات الحجم  PG(2,5)اطيفي المستوي الاسق
وأثبتنا أن المجموعة  PG(2,5) ذات قاطع رباعي عمى الأكثر في المستوي الاسقاطي 10

 Rédei –typeهي من النوع  10الاصغرية ذات الحجم 
 

ABSTRACT 
     This paper contains two main results relating to the size of eight  and  

fourth  blocking  set  in  PG(2,16). First  gives  new example for (129,9)-

complete arc. The second result we prove that there exists (k,13)- 

complete arc in PG(2,16), k≤197. We classify the  minimal blocking sets 

of  size eight in PG(2,4).We show that Rédei –type minimal blocking sets 

of size eight exist in PG(2, 4). Also we  classify the  minimal blocking  

sets of  size  ten in PG(2, 5), We  obtain an example of a minimal 

blocking set of size ten with at most 4-secants.We  show  that  Rédei –

type minimal blocking sets of  size ten exists in PG(2, 5). 

 

البحث مستل من الأطروحة:ملاحظة  
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1.1 Introduction: 
      A (k ,n)-arc K in PG(2,q) is a set of k points such that  there   is some 

n but no n+1 of them are collinear. A (k ,n)-arc K is complete if there is 

no (k+1,n)-arc containing it. The maximum value of  k which a (k ,n)-arc 

K exist in PG(2,q) will be denoted  by  m(n)2,q[6]. 

    A t-fold blocking set B in a projective plane, is a set of points   such 

that each line contains at least t points of B and some line contains 

exactly t points of B [1]. For t=1,a1-fold blocking set is   called a 

blocking set. A trivial blocking set B is a blocking set containing a line of 

PG(2,q). A t- blocking set is called minimal (irreducible)when no proper 

subset of it is a t- blocking set [12]. For t=2,3,4,…then t- blocking set is 

called respectively double blocking set, triple blocking set , fourth 

blocking set…etc. (k ,n)-arcs  and  t- blocking sets are in fact  just  

complements of each other in a projective  plane , with  n + t = q + 1. 

   Richardson was the first one to look at larger planes [11]. He showed 

that the minimal size of a blocking set in PG(2 ,3) is 6,and noted  that  

Baer subplanes are  examples of  blocking sets of   size   q+ q +1   in  

projective planes of square order. After   that    things were quiet for 13 

years until Di paola[4]  introduced  the idea of  a projective triangle, 

which gives an example of  a blocking set  of size 3(q+1)/2 in 

Desargusian planes of odd  order. That   projective triangles exist in these 

planes was shown by Bruen , who also obtained the  general  lower bound  

q+ q +1 for the size of  a blocking set  in arbitrary  projective plane of 

odd order q. 

     Further results obtained by Bruen [3 ], giving the upper bound  q q +1 

for  a minimal blocking set in any projective  plane of order q, and make  

the  connection  with Re`dei s   work on  lacunary polynomials[ 10 ]. The 

fundamental results are for the structure of  blocking sets however  was 

only  realized  much later and in this course   the emphasis will be to 

explain in some detail the recent developments   and  the connection 

between Re`dei s work on  lacunary  polynomials  and small blocking 

sets and multiple blocking sets in Desargusian projective planes. 

 

1.2  The projective plane PG(2,16): 
Let f(x)=x

3
+x

2
+x+ be a monic polynomial over GF(16) then companion 

matrix of f(x) 

   

















11

100

010



 T=                  

              

is cyclic projectivety on PG(2,16).Note that in PG(2,16) ,{=-} 
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 Let   =Gf(16)={0,1, 
i
 :i  N14 : 

15
=1}   

We write the elements of    as  1,2,3…,16  instead of  0,1, ,…,
14

, 

respectively. So the cyclic projectivety becomes: 

















223

211

121

                T=   

 The number of point in the  PG(2,16) has 273 points and 273lines  

and every line passes  throw17 points. 

      Let p0 be the point U0 =(2,1,1)then Pi=P0T
 i
, i=0,...,272,are the 273 

points of PG(2,16). See [8,Table(1)] 

 

    Let L1 be the line which contains the points 

0,1,4,16,26,57,64,91,93,99,104,123,143,205,219,228,256, then 

 Li=L1T
i-1

,i=1,...,273, are the lines of PG(2,16), the 273 lines Li are given 

by the rows in [8,Table(2)]. 

 

 2.1 Eight blocking sets in PG(2, 16) 
     The object of this section is to obtain good lower bounds for the size 

of eight blocking sets in PG(2, q),q is square integer. 

 

Theorem( 2.1.1) (q>9,q is a square):  
   Let B be an eight  blocking set in PG(2, q) , q is square such that  

through each of its points there  areq+1 lines, each lines contains at least 

q+8 points of  B and forming a dual Baer subline .Then 

( 1 ) For q>64 , B has at least 8q+2q+8  points.  

( 2 ) For q=16, B has at least 8q+q+10 points. 

 

Proof. ( 1 )Call the lines meeting B in  q+8  or more points long lines . 

If two long lines meet out side of B , then B has at least 2(q+8  )+8(q-

1)= 8q+2q+8 points and the desired bound is obtained . Hence 

|B|8q+2q+8 . So to assume that two long lines meet in B .Take l  , a 

long line ,and p ,a point of B not on l. Then the long lines through p 

contain a dual Baer subline and meet l in  a Baer subline. Let Q be  a 

point on this Baer subline. Consider   long    lines   through  a point on an  

8-secant to Q. These  meet l  in   another Baer subline not containing Q. 

Two  Baer sublines meet in at most  two points and so  l has at least 2q 

points . Since l was arbitrary every long line has at least 2q points and it 

follows that B has at least (q+1)( 2q-1)+1+7(q-q)=9q-6q points. 

Since 9q-6q≥ 8q+2q+8 so that |B|≥ 8q+2q+8 points. 
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Proof. ( 2 ) If two long lines meet out side of B , then B has at least 

2(q+8  )+8(q-1)= 8q+2q+8 points. Hence |B|8q+2q+8 . 

    Let pB, through B , since there are q+1 long lines through p. 

B has at least  (q+1) (q+7)+1+7(q+1-(q+1) )=8q+q+8 points. 

Now |B|≥140 . If this bound is a chafed then (k ,9)-arc has k=133 and that 

impossible .See Table(3)from [2]. If |B|=8q+q+9 then k=132, that 

impossible. Since k≤131, hence |B|≥ 8q+q+10. 
 

Table (3)  

The size  of  the  largest (k ,n)-arc  in  PG(2,q)  for small q 

 
Corollary (2.1.2): 
   There exists (129,9)-arc in PG(2,16). 

 

Proof. Finding a maximum(k,9)-arc is equivalent to finding the minimum 

eight blocking sets by considering complements . 

Theorem(2.1.1 )gives lower Bound for eight blocking set with 

8q+2q+8 , if  two lines with q+8  points intersect outside of the  eight 

blocking set. Eight blocking set must have at least 144 points there were 

eight blocking sets exactly  144 points, and equivalently a (129,9)-arc 

does exist Example(2.1.4). Hence k=129 is a new sharp upper bound for 

(k,9)-arc. See Table(3). 

 

 

q 

n 

3 4 5 7 8 9 11 13 16 17 19 

2 4 6 6 8 10 10 12 14 18 18 20 

3  9 11 15 15 17 21 23 28…33 28…35 31…39 

4   16 22 28 28 32…34 38…40 52 48…52 52…58 

5    29 33 37 43…45 49…53 65 61…69 68…77 

6    36 42 48 56 64…66 78…82 78…86 86…96 

7     49 55 67 79 93…97 94…103 105…115 

8      65 77…78 92 120 114…120 124…134 

9       89…90 105 128…131 137 147…153 

10       100…102 118…119 142…148 154 172 

11        132…133 159…164 166…171 191 

12        145…147 180…181 182…189 204…210 

13         195…199 204…207 225…230 

14         210…214 221…225 242…250 

15         231 239…243 262…271 

16          256…261 285…290 

17           305…311 

18           324…330 
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 2.1.3 The value of m(n)2,q 
     In this section example of large (k ,n)-arcs in PG(2,16) are given. 

Improvements on the  upper bounds of m(n)2,16  obtained from Corollary 

(2.1.2) are  made . Example(2.1.4) constructed  by  taking  random 

subsets of the  internal   points of  a conic. 
Example( 2.1.4)  : The set of  the  following points  

{(1,0,0),(0,1,0),(0,0,1),(1,1,1),(1,
6
,

9
),(1,

8
,

7
),(1,

10
,

5
 ),(1,

5
,

10
) 

 ,(1 , , 
14

) ,(1,
7
,

8
) ,(1,

12
,

3
),(1,

2
, 

13
),(1, 

3
, 

12
 ),(1,

13
,

2
 ) 

 ,(1, 
14

,) ,(1,
9
,

6
) ,(1,

4
,

11
),(1,

11
,

4
),(1, 

8
, 

6
) ,(1, 

14
, 

14
) 

 ,(1,
7
,  

2
),(1, 

9
, ),(1,

3
,

8
),(1,

11
,

5
), (1 , 

10
 , 

13
),(1 , 

5
, 

9
) 

,(1,0, 
7
 ),(0,1 , 

8
),(1,

13
,

4
),(1,

6
 ,0), (1,1 , 

10
),(1 , 

14
, 

13
), 

 (1 ,
13

 ,1) ,(1,
3
,

14
),(1,

8
,

9
),(1,

6
,

3
),(1,  , 

8
),(1 , 

10
 , 

6
),(1 ,

4
, 

12
), 

(1, 
9
, 

7
), (1,1,),(1,

7
,

4
),(1 , 1, 

3
) ,(0,1, 

9
)  ,(1, ,1)  ,(1,0, 

13
) 

,(1 , 
2
, 

7
) ,(1,

12
 ,1), (1, 

9
, 

11
) , (1,, 

5
),(1 ,

11
,

12
),(1,

2
,),(1,

5
,

11
) 

,( 1, 
12

,0) , (0,1,
7
),(1, 

10
,12 ),(1,

5
,

5
)   ,(1,

4
,

2
)   ,(1,

7
,

3
)  , 

 (1,
4
, 

9
),(1 ,1, 

12
) ,(1, 

13
, )  ,(1,0, 

5
),(0,1, 

4
),(1 ,,

11
)  ,(1,

12
,

12
), 

(1, 
8
, 

4
) ,(1, 

6
, 

7
),(1, 

14
,

9
),(1,

12
,

2
 ),(1,

4
,0),(1,

11
,

13
) , 

(1, 
2
, 

6
), (1, 

8
,1)   ,(1, 

10
,0), (1, 

7
, 

5
),(1,0, 

2
),(1,

2
, 

8
), 

(1, 
6
, 

12
),(1, 

11
, 

11
) , (1,0, 

9
), (1,

5
,

6
),(0,1,

13
),(1,

2
,

14
), 

(1, 
5
,),(1,1, 

4
 ),(1 , 

12
, 

4
 ),(1, 

6
, 

8
)  ,(0,1,

6
)  ,(1,

8
,

3
)  , 

(1, ,
9
), (1 , 

4
, 

7
),(1,

14
,

10
) ,(1 ,0,

14
),(1 ,

9
,

14
),(1,

2
,

2
 ), 

 (1, 
13

, 
10

), (1, 
7
,

13
),(1,1,

5
 ) ,(1,

6
,

13
),(1,

8
,

12
),(1,,

10
 ), 

 (1 , 
13

, 
6
) ,(1, 

10
, 

11
 ) , (1, 

8
, ), (1, 

5
, 

3
), (1 , 

4
, 

3
), 

 (1, 
12

, 
11

),(1,
6
,1 ),(1,

9
,

5
),(1,

10
,

4
),(1,

7
,1),(1,

3
,

8
), 

(1, 
14

, 
8
), (1, 

3
,

7
) ,(1, 

3
, 

10
), (1,

4
,

6
)  ,(1,1, 

9
),(1, ,

13
), 

(1, 
7
,0),(0,1, 

2
) ,(1, 

3
,

3
) ,(1, 

11
, 

14
) ,(1, 

9
, 

2
 ),   (1, 

3
,  ) 

,(1, 
11

, 
10

)  ,(1, 
5
,0),  (1, 

14
, 

4
) ,  (1,0, 

11
)  }. Forms  a (129,9)-arc  

in PG(2,16) with secant distribution 

T0=8,T1=9,T2=0 ,T3=0 ,T4=0 ,T5=0 ,T6=0 ,T7 =0,T8=120  and  T9=136. 

 
2.2 Fourth blocking sets in PG(2, 16) 
      The object of this section is to obtain good lower bounds for the size 

of a fourth blocking sets in PG(2, q) , q  is square. 
 

Theorem ( 2.2.1) (q>9, q is a square) 
       Let B be a fourth     blocking set in  PG(2, q) ,  q is square, such  that 

through each of its points there   are q+1   lines, each containing at least 

q+4 points of  B and forming a dual Baer subline . Then B has at least 

4q+2q+4 points. 

Proof. Call the lines meeting B in  q+4  or more points long lines .If two 

long lines meet out side of B ,then B has at least  
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2(q+4)+4(q-1)= 4q+2q+4 points and the desired bound is obtained .So 

assume  that two long    lines meet in B . let  l be a long line  and p a  

point of  B not on   l.Then the long lines through p contain a dual Baer 

subline and meet l in a Baer subline. Let Q be a point on this Baer 

subline. Consider long lines through a point on a 4-secant to Q. These 

meet l in another Baer subline not containing Q. Two  Baer subline meets 

in at most two points and so  l has at least 2q points .  Since l was 

arbitrary every long line has at least 2q points and it follows that B has 

at least (q+1)( 2q-1)+1+3(q-q)=5q-2q points. 

     For q>16, q square 5q-2q≥4q+2q+4 . If q=16 then 5q-2q=72 and 

(k,13) has 201 points and that is impossible ,see Table(3). Therefore 

 |B|≥ 4q+2q+4. 

Corollary (2.2.2): 
There exists (k ,13)-arc in PG(2,16), k  197 

 

Proof. Finding a maximum(k,13)-arc is equivalent to finding the 

minimum fourth blocking set by considering complements . Theorem 

(2.2.1)gives lower bound for fourth blocking set  with    4q+2q+4  . 

Fourth blocking set must have at least 76 points, so since n=q+1-t, then 

( k,13)-arcs have  k  197 . 

3.1 On Blocking sets: 
      In this section we have given the following information on the 

structure of such blocking sets. 

 

Definition (3.1.1) ( unital):[3] 
 Points,  that every line 1q q      A unital in PG(2,q) is a set U of  

1q   joining two points of U intersects U in precisely 

points. 

      again straight forward counting gives that all other lines of   the plane 

intersect U in precisely one point, and in fact at each point of U   there is  

a unique  tangent. So a unital is a minimal blocking set. In fact it turns out 

to be the largest one. 

 

Theorem(3.1.2)   : [3] 
let B be a minimal blocking set in PG(2, q). Then  |B|≤ q      +1 with 

equality if and only if B is a unital in PG(2, q) ,q is square . 

 

 Theorem (3.1.3)  :[7] 
In PG(2,q),q square , q≥25 or q=9, there is no minimal blocking set of 

size  

 

q

.q q



 

 
105 

     Abdul Khalik,L.Yasin & Nada Yassen Kasm 

Yahya  

 Theorem(3.1.4) :[7] 
For q square , q≥16, there is no minimal blocking k-set  B  

k  1q q  in PG(2,q)  with   

Theorem(3.1.5)  :[7]        
In a Desargusian plane of order at least 4 there exists a blocking set of 

order  k  if  2q-1≤ k ≤3q-3. 

 

3.2  Minimal  Blocking   sets  in   PG(2,4):   
       From now on, let B be a minimal blocking set  of size   eight in  

PG(2, 4),  since B is non-trivial a line l intersect B in at most four points.  

 

Lemma (3.2.1): There's at most two 4-secants through any point of B. 

 Proof. Every  two 4-secant  to B  are  intersect in a point  on B.If  two 4-

secants intersect in p    B then |B|≥2 * 4+3=11 ,which is  impossible , 

Assume    there 

is a three    4-secant    through     a point    p ∈  B, then |B|≥ 1+3*3 =10 

and that 

is impossible. So through every point of  B there is at most two 4-secants. 

 

Lemma (3.2.2): If B has no 4- secants, then B has at least one secant 

with at least three points. 

Proof.  Suppose there are only 1-,2-secants,let the number of them be 

denoted by 

a and b. Then  the  following equations must hold by standard counting 

arguments. 

a+b =21   ...(1) 

a+2b =40 ...(2) 

2b=56  ...    (3) 

From  equation(3), we get  b=28  which is impossible. 

 

Lemma (3.2.3): If B has no 3-secant, then  B has at least one  4-secant. 

Proof. Suppose there are only 1-,2-,and 4- secants. let   the number of 

them be denoted by a ,b, d  recp. Then  the  following equations must 

hold by standard counting arguments. 

a+ b+ d =21     .. .(1) 

a+2b+4d =40    ...(2) 

2b+12d=56  ...     (3) 

 

From these  equations, we get d=3  . 

   

2 1q q 


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Theorem( 3.2.4)  : Let B be a non-trivial  blocking set . Let  the   

number of 1-, 2-, 3- and 4-secants be denoted by a, b, c, d resp . Then we 

have one of the following possibilities: 

a B c d Possibilities 

8 10 0 3 ( i ) 

9 7 3 2 ( ii ) 

10 4 6 1 (iii ) 

11 1 9 0 ( iv ) 

 

Proof. The standard counting arguments give: 

a  + b+   c  + d=21   ...                                 ( 1 ) 

a  + 2b+   3c+   4d = 40...                            ( 2 ) 

2b+   6c+ 12d =56         ...                         ( 3 ) 

From these we can deduce 

a = 11- d; 

b =1+3d; 

c =9-3d; 

Since c 0, then 0 d 3 . 

   We  first  show that first   and  fourth   solution of  Theorem (3.2.4) are  

not possible: 
 
Theorem( 3.2.5): 
    The first solution (8,10,0,3)  and fourth solution (11,1,9,0) of Theorem 

(3.2.4) do  not exists. 

Proof. (i)let B be a blocking set having the  solution (8,10,0,3), and 

assume l1,l2,l3 be the three 4-secants of B: If  l1∩l2∩l3 ={p}. Then  p  must 

be  in B, and that contradicts  Lemma(3.2.1). Now if l1,l2,l3 are triangular , 

so |B|9  and that is impossible . So solution (8,10,0,3)does  not exist. 

(iii) Let B be a blocking set having the  solution (11,1,9,0).Since c>0,let 

 be a 3-secant. Now any two 3-secant must be intersect in a point of B. 

Since if  two3-secant  intersect   in a point p B, then |B|≥2*3+3*1=9   

which    is impossible. On every p  B there are   at most three 3-secants 

passing through p. 

      Now since T3=9 then the remaining eight 3-secants pass through the 

three  points of    B , So we have a point of   B with at least four 

3-secants,  and  that is  impossible. Hence (11,1,9,0) does  not exist. 

      The following  lemma  gives crucial information on the structure of 

such  a blocking  set . This  lemma  was   proved  by    Ga´cs [5]   using  

the  Re´dei-polynomial [10]. It will enable us to eliminate the existence of    

such minimal blocking sets. 
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 Lemma( 3.2.6) :Ga´cs [5]. In PG(2,q)let B be a minimal blocking set 

of  size 

q+ k, and suppose there is a line l intersecting B in exactly k - 1 points. 

Then there is a point O B such  that every line joining O to  a point of  l\ 

B contains two points of B. Hence  k≥ (q+3)/2. 

 

  The only possibility for  a minimal  blocking set of  size  eight  in 

PG(2,4) that remains is a blocking set containing a 4-secant ; in other 

words  a blocking set of Rédei –type. 

Theorem( 3.2.7)  . There is a minimal blocking set of size eight of   

Rédei –type  in PG(2,4) . 

Proof. Let(x, y , z) denote the coordinates of a projective point. Let l  be a 

3-secant to B. Let l be  the line  at infinity (z=0) of  the   corresponding 

affine plane, and let {P1, P2}= l\ B. By Lemma (4.2.6) , there is an   

affine point O B for which the lines OPi, i = 1,2, are bisecants . These 

lines contain four  affine points of B. Let U be the 5th affine point of B\l. 

Since   the points Pi only lie on bisecant and   three  tangents, the lines 

UPi  are tangents for i =1, 2. 

Furthermore, the line OU is a line passing through a point of B∩ l.  

     Let   P1 =(1,0,0)  , P2 =(0,1,0) ,  Assume OU passing through (1,1,0). 

Since no three   of   {P1,P2,O,U}are collinear we can consider O=(0,0,1) 

,U=(1,1,1). 

  Consider now the affine plane PG(2,4)\ l.  Let B'= B\(l   {U}). Then 

two points of B' lie on  X = 0 , two on Y = 0.Since these  are the  lines 

OPi ,  i =1,2 . Moreover , on    every    horizontal   line Y= k  ,  vertical   

line X = k, and on every line there is one point of B ,in particular on   line 

y=1,x=1,y=x  which all passing through U there is no point of B', Let the 

points of  AG(2,4) be . 

 ( 0,0 )  ,( 0,1)   , (0 ,w)  , (0,w
2
) 

 ( 1,0 )  , ( 1,1)  , (1 ,w)   , (1,w
2
) 

( w,0 ) ,( w,1)  , (w,w)   ,(w,w
2
) 

  (w
2
,0 ) ,( w

2
,1) ,( w

2
,w) ,( w

2
,w

2
) 

On OP1 ;Y =0, the remaining  two   points which are not   belonging  to 

any line through U are l1={( w,0 ),(w
2
,0 )}  . 

   On OP2 ;X =0, the  remaining  two  points which are not belonging  to 

any line through U are  l2={(0 ,w) , (0,w
2
)}. Chosen the point ( 0 ,w), ( 

0,w
2
), on x=0 does not  eliminate any points of  l1  also chosen  ( w, 0) 

,(w
2
,0 ) does not  eliminate  any points of l2 ; in B.So the set B∩ l  { 

(w,0,1),(w
2
 ,0,1),(0,w,1),(0,w

2
,1),(1,1,1)}= 

{(1,1,0),(w,1,0),( w
2
,1,0), (w,0,1),(w

2
 ,0,1),(0,w,1),(0,w

2
,1),(1,1,1)} form 

a minimal blocking  set of  Rédei –type. 
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Minimal  Blocking   sets  in   PG( 2 , 5 ):      3.3 
    The following lemmas give the  properties of   minimal  blocking sets 

of size ten. 

Lemma( 3.3.1): Every blocking set of size ten in PG(2,5) has at  least 

four points on a line. 

Proof. Suppose there are only 1-,2-, and 3-secants.let the number of them 

be denoted by a, b , c, resp. Then  the  following equations must hold by 

standard counting arguments. 

a+b+c =31      ...(1) 

a+2b+3c =60  ...(2) 

2b+6c=90  ...     (3) 

From these  equations, we get  b= -3 which  is impossible. 

 

Lemma (3.3.2): There are at most three 4-secant through any point of B. 

 Proof. Every two 4-secants   to B   are     intersected  in a point   on  B, if 

two  4-secant intersect in p     B then|B|≥2 * 4+4=12 , which is impossible 

 , New   assume  there are four 4-secants through a point p ∈  B,  then 

 |B|≥ 3*4+1=13  and  that is  impossible. So through   every  point  of  B 

there are  at most  three 4-secants. 

 

Lemma( 3.3.3): There are  no minimal blocking sets of size ten with 4- 

secant but no 3-secant  . 

Proof. Suppose there are only 1-,2-,and 4- secants.  Let the numbers of 

them be denoted by a,b,d,resp .Then  the  following equations must hold 

by standard counting arguments. 

a+ b+ d =31     .. .(1) 

a+2b+4d =60    ...(2) 

2b+12d=90  ...     (3) 

From these  equations we get  3d=16 which is not possible for 3 does not 

divide 16 . 

 

Lemma (3.3.4): If B has no 2-secant, then  B has at least one 4-secant  

Proof. Suppose there are only 1-,3-,and 4- secants. Let the number of 

them be denoted by a, c ,d .Then  the  following equations  must  hold by 

standard counting arguments. 

a+ c+ d =31     .. .(1) 

a+3c+4d =60    ...(2) 

6c+12d=90  ...     (3) 

From these  equations  we get d=1. 

    It is easy to prove. 

Lemma( 3.3.5)  : Let l1 be a 4-secant to B and  l2 be a 3-secant to B then 

l1∩l2 be a point in B.  


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 Lemma( 3.3.6)  : Let l be  a 4-secant to  B  then  through  any  point  of 

 l ∩ B there is at most three 3-secant. 

Proof. Let p be a point of l ∩ B and assume there are four 3-secant 

through p,then |B|≥4+2*4=12 which contradict the size of B. 

 

Theorem (3.3.7): Let B have at most four points on a line. Let the 

number of 1-, 2-, 3- and 4-secants be denoted by a, b, c, d  resp. Then 

these numbers satisfy one of the following possibilities: 

a b c d Possibilities 

13 12 1 5 ( i ) 

14 9 4 4 ( ii ) 

15 6 7 3 ( iii ) 

16 3 10 2 ( iv ) 

17 0 13 1 (v) 

Proof. The standard counting arguments give: 

a  + b+   c  + d=31          ...                          ( 1 ) 

a  + 2b+   3c+   4d = 60      ...                      ( 2 ) 

2b+   6c+ 12d =90               ...                   ( 3 ) 

From these we can deduce 

a = 18- d; 

b = -3+3d; 

c =16-3d; 

Since c  0, we get d ≤5. 

 

Theorem(3.3.8): The solution (17,0,13,1)of  Theorem(3.3.7)does not 

exist. 

Proof. Let l  be a 4-secant.Since there are  thirteen 3-secants, and  since 

every 3-secant  must  intersect the 4-secant l in a point in B, so  we have a 

point p in B Through which pass at  least four 3-secants,  and     that 

contradicts to  Lemma (3.3.6). 

 

3.3. 9  Minimal  blocking  sets  of  size  ten  with  at most 4-
secants: 
   We find an example of minimal blocking sets of size ten with ten points. 

 

Example (3.3. 10) :In PG(2,5) the set of the points{(1,2,0),(1,-

1,0),(0,1,-1), 

(1,-2,0) ,(0,1,-2),(1,1,2 ),(1 ,1,0),(1,1,1),(1,0,-1),(1,0,-2)} is  minimal 

blocking set  with T1=14,T2=9, T3=4,T4=4,T5=0. 
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3.3.11  Minimal blocking sets of size ten with 5-secants: 
   The following theorems prove that the existence of  minimal blocking 

sets of size ten, T5>0, T4≠0. 
 

Theorem(3.3.12): Let B have at most 5 points on a line.  Let the 

numbers of 1-, 2-, 3-,4- and 5-secants be denoted by  a, b, c, d ,e resp . 

Then these  numbers  satisfy  one  of  the following possibilities: 

a b c d e Possibilities 

11 16 1 1 2 (i) 

12 13 4 0 2 (ii) 

12 14 1 3 1 (iii) 

13 11 4 2 1 (iv) 

14 8 7 1 1 (v) 

15 5 10 0 1 (vi) 

Proof. The standard counting arguments give: 

a  + b+   c  + d+e=31                ...                    ( 1 ) 

a  + 2b+   3c+   4d+5e = 60      ...                    ( 2 ) 

2b+   6c+ 12d+20e =90          ...                    ( 3 ) 

From these we can deduce 

c =  -3b -6a +115; 

d =  8a + 3b -135; 

e = -3a – b +51; 

Since d≥ 0, we get e ≤2. 

 

Theorem(3.3.13): There are Rédei –type minimal  blocking   sets   of 

size ten  in PG(2, 5) . 

Proof. Let B be a blocking set with  e>0, d≠0 . Let  l  be a 4-secant to B. 

and assume l is the line  at infinity of the  corresponding affine   

plane(z=0), and let{P1, P2}be the points l\ B. By Lemma (3.2.6), there is 

a point O  B such that  OP1, OP2  are bisecants to B . Let U1,U2 be the 

remaining  points of B ,and assume P1 =(1,0,0), P2 

=(0,1,0),O=(0,0,1),U1=(1,1,1).Nowthe affine lines joining OP1, OP2  are 

y=0,x=0. The lines joining P1U1,P2U2  either tangent to B or pass through  

U2.On OP1 ;   Y =0,   we   need  to   select   two   points  of   the   set  

l1={(1,0,-2),(1,0,- 1), (1,0,2)}, and on OP2 ;X =0, we need to select two 

points of the set l2={(0,1,-2),(0,1,- 1), (0,1,2)}.Choose(1,0,- 2),(1,0,- 1) 

from l1, and (0,1,-2), (0,1,2), and U2=(1,-2,2) with the  four points at z=0 

in B and U1 ,  these  ten points form  minimal blocking set. 
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