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ABSTRACT

This paper contains two main results relating to the size of eight and
fourth blocking set in PG(2,16). First gives new example for (129,9)-
complete arc. The second result we prove that there exists (k,13)-
complete arc in PG(2,16), k<197. We classify the minimal blocking sets
of size eight in PG(2,4).We show that Rédei —type minimal blocking sets
of size eight exist in PG(2, 4). Also we classify the minimal blocking
sets of size ten in PG(2, 5), We obtain an example of a minimal
blocking set of size ten with at most 4-secants.We show that Rédei —
type minimal blocking sets of size ten exists in PG(2, 5).
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The Lower Bounds of Eight and Fourth ...

1.1 Introduction:

A (k ,n)-arc K in PG(2,q) is a set of k points such that there is some
n but no n+1 of them are collinear. A (k ,n)-arc K is complete if there is
no (k+1,n)-arc containing it. The maximum value of k which a (k ,n)-arc
K exist in PG(2,q) will be denoted by m(n),,q[6].

A t-fold blocking set B in a projective plane, is a set of points such
that each line contains at least t points of B and some line contains
exactly t points of B [1]. For t=1,al1-fold blocking set is called a
blocking set. A trivial blocking set B is a blocking set containing a line of
PG(2,q). A t- blocking set is called minimal (irreducible)when no proper
subset of it is a t- blocking set [12]. For t=2,3,4,.. .then t- blocking set is
called respectively double blocking set, triple blocking set , fourth
blocking set...etc. (k ,n)-arcs and t- blocking sets are in fact just
complements of each other in a projective plane, with n+t=q+ 1.

Richardson was the first one to look at larger planes [11]. He showed
that the minimal size of a blocking set in PG(2 ,3) is 6,and noted that

Baer subplanes are examples of blocking sets of size q+\/q_+1 in
projective planes of square order. After that things were quiet for 13
years until Di paola[4] introduced the idea of a projective triangle,
which gives an example of a blocking set of size 3(g+1)/2 in
Desargusian planes of odd order. That projective triangles exist in these
planes was shown by Bruen , who also obtained the general lower bound

q+Ja +1 for the size of a blocking set in arbitrary projective plane of
odd order g.

Further results obtained by Bruen [3 ], giving the upper bound q\/CT +1
for a minimal blocking set in any projective plane of order g, and make
the connection with Re'dei 's work on lacunary polynomials[ 10 ]. The
fundamental results are for the structure of blocking sets however was
only realized much later and in this course the emphasis will be to
explain in some detail the recent developments and the connection
between Re'dei 's work on lacunary polynomials and small blocking
sets and multiple blocking sets in Desargusian projective planes.

1.2 The projective plane PG(2,16):

Let f(x)=x>+x*+x+A be a monic polynomial over GF(16) then companion
matrix of f(x)

T=

N O o
=
e =)

Is cyclic projectivety on PG(2,16).Note that in PG(2,16) ,{A=-1}
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Let & =Gf(16)={0,1, A' :i € Ny4: A°=1}
We write the elements of 7 as 1,2,3...,16 instead of 0,1, A,...,. A%,
respectively. So the cyclic projectivety becomes:
1 21
T=1 1 2
3 22

The number of point in the PG(2,16) has 273 points and 273lines
and every line passes throw17 points. _

Let po be the point Ug=(2,1,1)then Pi=PoT ', i=0,...,272,are the 273
points of PG(2,16). See [8,Table(1)]

Let L, be the line which contains the points
0,1,4,16,26,57,64,91,93,99,104,123,143,205,219,228,256, then
Li=L, T i=1,...,273, are the lines of PG(2,16), the 273 lines L;are given
by the rows in [8,Table(2)].

2.1 Eight blocking sets in PG(2, 16)
The object of this section is to obtain good lower bounds for the size
of eight blocking sets in PG(2, g),q is square integer.

Theorem(2.1.1) (g>9.q is a square):

Let B be an eight blocking set in PG(2, q) , g is square such that
through each of its points there arevg+1 lines, each lines contains at least
\g+8 points of B and forming a dual Baer subline .Then
(1) For g>64 , B has at least 8q+2Vq+8 points.

(2) For =16, B has at least 8q+Vq+10 points.

Proof. (1 )Call the lines meeting B in \g+8 or more points long lines .
If two long lines meet out side of B , then B has at least 2(Ng+8 )+8(q-
1)= 8g+2Vg+8 points and the desired bound is obtained . Hence
IB[>8q+2Vg+8 . So to assume that two long lines meet in B .Take | , a
long line ,and p ,a point of B not on |. Then the long lines through p
contain a dual Baer subline and meet | in a Baer subline. Let Q be a
point on this Baer subline. Consider long lines through a point on an
8-secant to Q. These meet | in another Baer subline not containing Q.
Two Baer sublines meet in at most two points and so | has at least 2\q
points . Since | was arbitrary every long line has at least 2vq points and it
follows that B has at least (\Ng+1)( 2Vg-1)+1+7(g-Vo)=99-6Yq points.
Since 99-6Vg> 8q+2Vq+8 so that [Bl> 8q+2Vg+8 points.

101



The Lower Bounds of Eight and Fourth ...

Proof. (2) If two long lines meet out side of B, then B has at least
2(Vg+8 )+8(g-1)= 8q+2Vq+8 points. Hence |B|>8q+2Vq+8 .

Let peB, through B, since there are Vg+1 long lines through p.
B has at least (Ng+1) (Ngq+7)+1+7(g+1-(Ng+1) )=8g+\g+8 points.
Now [B>140 . If this bound is a chafed then (k ,9)-arc has k=133 and that
impossible .See Table(3)from [2]. If |B[=8q+Vg+9 then k=132, that
impossible. Since k<131, hence [B}> 8q+Vqg+10.

Table (3)
The size of the largest (k ,n)-arc in PG(2,q) for small g

3 |

i

5 |

o B
7 49 | 55 67 79 93..97 | 94...103 | 105...115
8 65| 77...78 92 120 114...120 | 124...134
o 89...90 105 [FOSBIN 137 147...153
0| 100...102 | 118...119 | 142...148 154 172
i 132...133 | 159...164 | 166...171 191
an 145...147 | 180...181 | 182...189 | 204...210
e IOSINOON 204...207 | 225...230
4 210...214 | 221...225 | 242...250
s 231 239...243 | 262...271
16 | 256...261 | 285...290
| 305...311
18| 324...330

Corollary (2.1.2):
There exists (129,9)-arc in PG(2,16).

Proof. Finding a maximum(k,9)-arc is equivalent to finding the minimum
eight blocking sets by considering complements .

Theorem(2.1.1 )gives lower Bound for eight blocking set with
8q+2Vqg+8 , if two lines with \g+8 points intersect outside of the eight
blocking set. Eight blocking set must have at least 144 points there were
eight blocking sets exactly 144 points, and equivalently a (129,9)-arc
does exist Example(2.1.4). Hence k=129 is a new sharp upper bound for
(k,9)-arc. See Table(3).
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2.1.3 The value of m(n),

In this section example of large (k ,n)-arcs in PG(2,16) are given.
Improvements on the upper bounds of m(n),,s obtained from Corollary
(2.1.2) are made . Example(2.1.4) constructed by taking random
subsets of the internal points of a conic.

Example( 2.1.4) : The set of the following points
{(1,0,0),(0,1,0),(0,0,1),(1,1,1),(1,2°,2.%),(1, A% A, (1, A" A% ),(1,A° A1)
(1, AL @A AR @A, @08 AR, @, A% )@ B

(1, AMA) @AY @t A, @AMt AN, @, A8 4% @, At M

(LAY, 2, 20 0, (@A A8, @A), (1, A1, )@, 21,20

(1,0, 27),(0,1, 28),(1, A8 29,1, ,0), (1,1, 21,1, A1, AB),

(1,212,1) (@23, @89, @A A%, @, &, A8, A1, 19, 28 A,
(1, 2%, A0, ,1,0), @A A9,@,1,2%,0,1, &%) (@, A1) (1,0, A7)
(1,034 A7) (A1), @, A% Aty @, 29),@ AR, @A), @001
(1, 2%20), (0,1,2),(, 21°,12),1,2°2°) @AY @A A

(425 A9, .1, A% @, A8, ) (1,0, 2°),(0,1, A, @ A (@A,
(1, A5, A% L@, 28 AN, A0, @A 02),(,04,0), @A

(1, 24 19, (@, 2%1) (@, A™°0), (1, 17, 2°),(1,0, 27),(1,27%, 1),

(1, 2% A1), A Aty (@,0, 4%, (1,2°29),00,1,11),(1,2% 11,

(1, 2°0),(L1,1, A*), @, A% )., A% 28 0,128 @823 |

(1, 2,29, (@, 2% AN, @AM A0 (@,0M),@ A% M), @,020%),

(1, A5, A1, @, A AB),(0,1,0°) (@28 A1), (1,28 A1), (1,4,01),

(@, A% 2% ,@ A" Ay, @ A% ), (@, A% A%, (@, 25 A%,

(1, A2, A1), (1,4%2),@,2°0°), (1,20 0%, (1,17,1),(1,23 A8,

(1, A 48, (@, 340 ,@, 23219, @A A% @1, A%, ),

(1, 17,0),(0,1, 2%) (1, A3 %) (@, At A (@, A% %), (@, 23 0)

(1, A1 A1) (@, 220, @AM A%, 1,0, A" ). Forms a (129,9)-arc
in PG(2,16) with secant distribution
T0=8,T1=9,T,=0,T3=0,T,=0,T5=0,T¢=0,T7=0,Tg=120 and T4=136.

2.2 Fourth blocking sets in PG(2, 16)
The object of this section is to obtain good lower bounds for the size
of a fourth blocking sets in PG(2, q) , g is square.

Theorem (2.2.1) (g>9, q is a square)

Let B be a fourth  blocking setin PG(2, q), qis square, such that
through each of its points there are \g+1 lines, each containing at least
Vg+4 points of B and forming a dual Baer subline . Then B has at least
4q+2~\g+4 points.

Proof. Call the lines meeting B in Vg+4 or more points long lines .If two
long lines meet out side of B ,then B has at least
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2(Ng+4)+4(g-1)= 4g+2Vg+4 points and the desired bound is obtained .So
assume that two long  lines meet in B . let | be a long line and p a
point of B not on 1.Then the long lines through p contain a dual Baer
subline and meet | in a Baer subline. Let Q be a point on this Baer
subline. Consider long lines through a point on a 4-secant to Q. These
meet | in another Baer subline not containing Q. Two Baer subline meets
in at most two points and so | has at least 2Vq points . Since | was
arbitrary every long line has at least 2Vq points and it follows that B has
at least (Vg+1)( 2Vg-1)+1+3(g-V)=59-2q points.

For g>16, q square 5q-2Vg>4q+2Vq+4 . If g=16 then 5g-2Vg=72 and
(k,13) has 201 points and that is impossible ,see Table(3). Therefore
B> 4q+2Vqg+4.
Corollary (2.2.2).
There exists (k ,13)-arc in PG(2,16), k < 197

Proof. Finding a maximum(k,13)-arc is equivalent to finding the
minimum fourth blocking set by considering complements . Theorem
(2.2.1)gives lower bound for fourth blocking set with  4gq+2Vg+4
Fourth blocking set must have at least 76 points, so since n=qg+1-t, then
( k,13)-arcs have k <197.
3.1 On Blocking sets:

In this section we have given the following information on the
structure of such blocking sets.

Definition (3.1.1) (‘unital):[3]
Points, that every line q\Jg +1 A unital in PG(2,q) is a set U of

Ja+1 joining two points of U intersects U in precisely
points.

again straight forward counting gives that all other lines of the plane
there is intersect U in precisely one point, and in fact at each point of U
a unique tangent. So a unital is a minimal blocking set. In fact it turns out
to be the largest one.

Theorem(3.1.2) :[3]
let B be a minimal blocking set in PG(2, ). Then |B|< qya +1 with
equality if and only if B is a unital in PG(2, q) ,q is square .

Theorem (3.1.3) :[7]
In PG(2,0),q square , ¢>25 or g=9, there is no minimal blocking set of
size g4q.
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Theorem(3.1.4) :[7]

For q square , ¢>16, there is no minimal blocking k-set B
<k <q+g +1in PG(2,) with G+2q +1
Theorem(3.1.5) :[7]

In a Desargusian plane of order at least 4 there exists a blocking set of
order k if 29-1<k <3q-3.

3.2 Minimal Blocking sets in PG(2,4).
From now on, let B be a minimal blocking set of size eight in
PG(2, 4), since B is non-trivial a line | intersect B in at most four points.

Lemma (3.2.1): There's at most two 4-secants through any point of B.
Proof. Every two 4-secant to B are intersect in a point on B.If two 4-
secants intersect inp B then |B>2 * 4+3=11 ,which is impossible ,
Assume there

isathree 4-secant through apoint p € B, then [B]> 1+3*3 =10
and that

Is impossible. So through every point of B there is at most two 4-secants.

Lemma (3.2.2): If B has no 4- secants, then B has at least one secant
with at least three points.

Proof. Suppose there are only 1-,2-secants,let the number of them be
denoted by

aand b. Then the following equations must hold by standard counting
arguments.

atb =21 ...(1)

a+2b =40 ...(2)

2b=56 ... (3)

From equation(3), we get b=28 which is impossible.

Lemma (3.2.3): If B has no 3-secant, then B has at least one 4-secant.
Proof. Suppose there are only 1-,2-,and 4- secants. let the number of
them be denoted by a ,b, d recp. Then the following equations must
hold by standard counting arguments.

atb+d=21 .. .»2)

at2b+4d =40 ..(2)

2b+12d=56 ... (3)

From these equations, we get d=3 .
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Theorem( 3.2.4) : Let B be a non-trivial blocking set . Let the
number of 1-, 2-, 3- and 4-secants be denoted by a, b, ¢, d resp . Then we
have one of the following possibilities:

a B c d Possibilities
8 10 0 3 (1)
9 7 3 2 (ii)
10 4 6 1 (iii )
11 1 9 0 (iv)

Proof. The standard counting arguments give:

a+b+ c+d=21 .. (1)

a+2b+ 3c+ 4d =40... (2)

2b+ 6¢c+ 12d =56 (3)

From these we can deduce

a=11-d;

b =1+3d;

¢ =9-3d;

Since ¢> 0, then 0<d <3.
We first show that first and fourth solution of Theorem (3.2.4) are
not possible:

Theorem( 3.2.5):

The first solution (8,10,0,3) and fourth solution (11,1,9,0) of Theorem
(3.2.4) do not exists.
Proof. (i)let B be a blocking set having the solution (8,10,0,3), and
assume Iy, 5,15 be the three 4-secants of B: If 1;NI,NIs={p}. Then p must
be in B, and that contradicts Lemma(3.2.1). Now if Iy,l,,l3 are triangular ,
so |B[>9 and that is impossible . So solution (8,10,0,3)does not exist.
(iii) Let B be a blocking set having the solution (11,1,9,0).Since ¢>0,let
{ be a 3-secant. Now any two 3-secant must be intersect in a point of B.
Since if two3-secant intersect in a point p € B, then [B>»2*3+3*1=9
which is impossible. On every p € B there are at most three 3-secants
passing through p.

Now since T3=9 then the remaining eight 3-secants pass through the
three points of ¢ M B, So we have a point of £ M B with at least four
3-secants, and that is impossible. Hence (11,1,9,0) does not exist.

The following lemma gives crucial information on the structure of
such a blocking set. This lemma was proved by Ga'cs [5] using
the Re’dei-polynomial [10]. It will enable us to eliminate the existence of
such minimal blocking sets.
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Lemma( 3.2.6) :Ga’'cs [5]. In PG(2,q)let B be a minimal blocking set
of size
g+ k, and suppose there is a line | intersecting B in exactly k - 1 points.

Then there is a point O B such that every line joining O to a point of I\
B contains two points of B. Hence k> (q+3)/2.

The only possibility for a minimal blocking set of size eight in
PG(2,4) that remains is a blocking set containing a 4-secant ; in other
words a blocking set of Redei —type.

Theorem( 3.2.7) . There is a minimal blocking set of size eight of
Rédei —type inPG(2,4) .

Proof. Let(x, y, z) denote the coordinates of a projective point. Let | be a
3-secant to B. Let | be the line at infinity (z=0) of the corresponding
affine plane, and let {P1, P2}= I\ B. By Lemma (4.2.6) , there is an

affine point O B for which the lines OPi, i = 1,2, are bisecants . These
lines contain four affine points of B. Let U be the 5th affine point of B\I.
Since the points Pi only lie on bisecant and three tangents, the lines
UPi are tangents for i =1, 2.

Furthermore, the line OU is a line passing through a point of BN 1.

Let P;=(1,0,0) , P, =(0,1,0), Assume OU passing through (1,1,0).
Since no three of {P,P,,0,U}are collinear we can consider O=(0,0,1)
,U=(1,1,1).

Consider now the affine plane PG(2,4)\ I. Let B'= B\(I v {U}). Then
two points of B' lie on X =0, two on Y = 0.Since these are the lines
OPi, i1=1,2. Moreover,on every horizontal line Y=k , vertical
line X =k, and on every line there is one point of B ,in particular on line
y=1,x=1,y=x which all passing through U there is no point of B', Let the
points of AG(2,4) be .

(0,0) ,(0.2) ,(0.w),(Ow)

(1,0) ,(1,1) , (1w ,(@w)

(w,0).(w,1) , (ww) ,(ww?)

W2,0) ,(wWA1) ,(wWiw) (w2 wd)
On OP; ;Y =0, the remaining two points which are not belonging to
any line through U are l,={( w,0),(w*,0)} .

On OP; ;X =0, the remaining two points which are not belonging to
any line through U are 1,={(0 ,w) , (O,w?)}. Chosen the point ( 0 ,w), (
0,w?), on x=0 does not eliminate any points of l; also chosen ( w, 0)
(w20 ) does not eliminate any points of I, ; in B.So the set BN | U {
(w,0,1),(w? ,0,1),(0,w,1),(0,w? 1),(1,1,1)}=
{(1,1,0),(w,1,0),( w*1,0), (w,0,1),(w* ,0,1),(0,w,1),(0,w? 1),(1,1,1)} form
a minimal blocking set of Rédei —type.
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3.3 Minimal Blocking sets in PG(2,5):

The following lemmas give the properties of minimal blocking sets
of size ten.
Lemma( 3.3.1): Every blocking set of size ten in PG(2,5) has at least
four points on a line.
Proof. Suppose there are only 1-,2-, and 3-secants.let the number of them
be denoted by a, b, c, resp. Then the following equations must hold by
standard counting arguments.
atb+c =31 ..(1)
a+2b+3c =60 ...(2)
2b+6¢=90 ... (3)
From these equations, we get b= -3 which is impossible.

Lemma (3.3.2): There are at most three 4-secant through any point of B.
Proof. Every two 4-secants to B are intersected inapoint on B, if
two 4-secant intersegt inp B then|B>2 * 4+4=12 , which is impossible
, New assume there are four 4-secants through a point p € B, then
IB>3*4+1=13 and that is impossible. So through every point of B
there are at most three 4-secants.

Lemma( 3.3.3): There are no minimal blocking sets of size ten with 4-
secant but no 3-secant .

Proof. Suppose there are only 1-,2-,and 4- secants. Let the numbers of
them be denoted by a,b,d,resp .Then the following equations must hold
by standard counting arguments.

atb+d=31 . .(1)

a+2b+4d =60 ...(2)

2b+12d=90 ... (3)

From these equations we get 3d=16 which is not possible for 3 does not
divide 16 .

Lemma (3.3.4): If B has no 2-secant, then B has at least one 4-secant
Proof. Suppose there are only 1-,3-,and 4- secants. Let the number of
them be denoted by a, ¢ ,d .Then the following equations must hold by
standard counting arguments.
atc+td=31 ..Q2)
a+3c+4d =60 ...(2)
6c+12d=90 ... (3)
From these equations we get d=1.

It is easy to prove.
Lemma( 3.3.5) : Let |, be a 4-secant to B and |, be a 3-secant to B then
I;Nl, be a point in B.
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Lemma( 3.3.6) :Letlbe a4-secantto B then through any point of
| N B there is at most three 3-secant.

Proof. Let p be a point of | N B and assume there are four 3-secant
through p,then [B>4+2*4=12 which contradict the size of B.

Theorem (3.3.7): Let B have at most four points on a line. Let the
number of 1-, 2-, 3- and 4-secants be denoted by a, b, ¢, d resp. Then
these numbers satisfy one of the following possibilities:

a b c d Possibilities
13 12 1 5 (1)
14 9 4 4 (i)
15 6 7 3 (i)
16 3 10 2 (iv)
17 0 13 1 (v)

Proof. The standard counting arguments give:

a+b+ c+d=31 (1)

a+2b+ 3c+ 4d=60 .. (2)

2b+ 6¢+ 12d =90 (3)

From these we can deduce

a=18-d;

b =-3+3d;

¢ =16-3d;

Since ¢ > 0, we get d <5.

Theorem(3.3.8): The solution (17,0,13,1)of Theorem(3.3.7)does not
exist.

Proof. Let | be a 4-secant.Since there are thirteen 3-secants, and since
every 3-secant must intersect the 4-secant | in a point in B, so we have a
point p in B Through which pass at least four 3-secants, and that
contradicts to Lemma (3.3.6).

3.3.9 Minimal blocking sets of size ten with at most 4-

secants:
We find an example of minimal blocking sets of size ten with ten points.

Example (3.3. 10) :In PG(2,5) the set of the points{(1,2,0),(1,-
1,0),(0,1,-1),

(1,-2,0),(0,1,-2),(1,1,2 ),(1 ,1,0),(1,1,1),(1,0,-1),(1,0,-2)} is minimal
blocking set with T1=14,T,=9, T3=4,T,=4,Ts=0.
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3.3.11 Minimal blocking sets of size ten with 5-secants:
The following theorems prove that the existence of minimal blocking
sets of size ten, T5>0, T4#0.

Theorem(3.3.12): Let B have at most 5 points on a line. Let the
numbers of 1-, 2-, 3-,4- and 5-secants be denoted by a, b, ¢, d ,e resp .
Then these numbers satisfy one of the following possibilities:

a b C d e Possibilities
11 16 1 1 2 (i)
12 13 4 0 2 (i)
12 14 1 3 1 (iii)
13 11 4 2 1 (iv)
14 8 7 1 1 (v)
15 5 10 0 1 (vi)

Proof. The standard counting arguments give:

a+ b+ c+d+e=31 (1)

a+2b+ 3ct+ 4d+5e =60 ... (2)

2b+ 6¢+ 12d+20e =90 (3)

From these we can deduce
c = -3b-6a +115;

d= 8a+ 3b-135;
e=-3a—b+51;

Since d> 0, we get e <2.

Theorem(3.3.13): There are Rédei —type minimal blocking sets of
size ten in PG(2, 5) .

Proof. Let B be a blocking set with e>0, d#0 . Let | be a 4-secant to B.
and assume | is the line at infinity of the corresponding affine
plane(z=0), and let{P1, P2}be the points I\ B. By Lemma (3.2.6), there is

a point O B such that OP,, OP, are bisecants to B . Let U;,U, be the
remaining points of B ,and assume P; =(1,0,0), P,
=(0,1,0),0=(0,0,1),U;=(1,1,1).Nowthe affine lines joining OP,, OP, are
y=0,x=0. The lines joining P,U1,P,U, either tangent to B or pass through
U,,On OP;; Y =0, we need to select two points of the set
1,-{(1,0,-2),(1,0,- 1), (1,0,2)}, and on OP, ;X =0, we need to select two
points of the set 1,-{(0,1,-2),(0,1,- 1), (0,1,2)}.Choose(1,0,- 2),(1,0,- 1)
from I3, and (0,1,-2), (0,1,2), and U,=(1,-2,2) with the four points at z=0
in B and U; these ten points form minimal blocking set.
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