(k,n,f) - Arcs in Galois Plane of Order Five

Ban A. Q. Department of Mathematics College of Computers and Mathematical Sciences

Received Accepted 19/3/2006 6/6/2006

الخلاصة

قمنا في هذا البحث بدراسة الأقواس -(k,n,f) من نوع (n-5,n) في المستوي الاسقاطي PG(2,q) ووجدنا مثال على القوس -(11,7,f) من نوع (2,7) عندما يكون عدد النقاط التي لها وزن (-1,7,f) تشكل القوس -(20,5) وكذلك وجدنا مثال آخر على القوس -(6,6,f) عندما يكون عدد النقاط التي لها وزن (-1,7,f) عندما يكون عدد النقاط التي لها وزن (-1,7,f)

ABSTRACT

In this paper we construct (k,n,f) - arcs of type (n-5,n) in PG(2,5), and we prove that a(11,7,f) - arc of type (2,7) exist where the points of weight zero form (20,5)— arc and a (6,6,f) - arc of type (1,6) exist where the points of weight zero form (25,5)-arc.

1. Introduction:

A (k,n) – arc in the finite projective plane PG(2,q) is defined to be the set K which is composed of k points such that there is a line passes through n points but no line can pass through more than n points. Following [1], a (k,n) – arc is called maximal if k=(n-1)q+n. If f is a function from the set θ of points of the projective plane in to the set of natural number N, the value f(p) is called the weight point p and if F is a function from the set θ of lines in to N, the value $F(\ell)$ is called the weight line ℓ i.e $F(\ell) = \sum_{n \in \ell} f(p)$. see [3].

A(k,n,f)-arc K of θ is a set of k points such that K does not contain any points of weight zero. The (k,n,f)- arcs in a projective plane were studied in the papers of D'Agostini [2] and Wilson [6].

The line ℓ of θ is called i-secant if the total weight of ℓ is i, Pj denotes the number of points having weight j for j = 0,1,2,...,w (where $w = \max_{p \in k} f(p)$

and we used V_i^j for the number of lines of weight i through a point of weight j, we also denote the number of lines of weight i by s_i , the integers s are called the characters of K.

$$f(p) = \begin{cases} 1 & \text{if } p \in K \\ 0 & \text{if } p \notin K \end{cases}$$

i.e if the points in the plane are only of weight zero and one, then K is a (k,n) – arc.

Let W denote the total weight of K, so by [2] we have: $m(q+1) \le W \le (n-w)(q+1) + w$ (i)

Arcs for which equality holds on the right are called maximal and arcs for which equality holds on the left are called minimal.

Also [2] has proved to be a necessary condition for the existence of a (k,n,f)-arc K of type (m.n), 0 < m < n is that

$$q \equiv 0 \mod(n-m) \qquad \qquad \dots (i \ i)$$
and $w \leq n-m \qquad \qquad \dots (i \ i \ i)$

The case of m = n - 2 was discussed at length in [2]. By (ii) we must have $q = 2^h$ and then (iii) requires that $w \le 2$. In order to have an arc which is not simply a (k,n)-arc we thus must have w=2 so that (i) gives $(n-2)(q+1) \le W \le (n-2)(q+1)+2$.

It may easily be shown that $W \neq (n-2)(q+1)+1$ and the other two possible values of W are discussed in [2]. Such arcs have points having possible weights 0,1 and 2.

2. The projective plane PG (2,5):

In PG(2,5) which can be constructed by the irreducible polynomial $F(x) = x^3 + 2x^2 + x - 1$. So the cyclic projectivity

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$
 gives the 31 points of this plane as follows:

If the first point is $p_0 = (0,0,1)$, then $pi = p_0 T^i$, i=0,1,...,30, and if the first line L_1 so we have 31 lines defined as $L_1 T^i = L_i$, i=1,2,....,31.

That is if the first line L_1 has the points p_0 , p_3 , p_5 , p_{12} , p_{20} and p_{30} , so by multiplying L_1 by T we have L_2 which has the points p_1 , p_4 , p_6 , p_{13} , p_{21} , and p_0 and so on, we construct all 31 lines in θ .

From now for convenience we use the numbers $0,1,2,\ldots 30$ instead of the points $p_0, p_1, p_2, \ldots p_{30}$.

3. The cases of (k,n,f)-arcs of type (n-5,5):

For a (k,n,f) - arcs of type (n-5,5) we need to consider further discussion of maximality and minimality of the arcs.

There are four cases:

(1)
$$L_0 > 0$$
, $L_1 > 0$, $L_2 > 0$, $L_j = 0$, for $j = 3,4,5$.

(2)
$$L_0 > 0$$
, $L_1 > 0$, $L_2 > 0$, $L_3 > 0$, $L_j = 0$, for $j = 4.5$.

(3)
$$L_0>0$$
, $L_1>0$, $L_2>0$, $L_3>0$, $L_4>0$, $L_5=0$.

(4)
$$L_0 > 0$$
, $L_1 > 0$, $L_2 > 0$, $L_3 > 0$, $L_4 > 0 = L_5 > 0$.

In particular we discuss (1). In this case

$$(n-5)(q+1) \le W \le (n-5)(q+1)+5$$

Using the arguments in [2] the values of V_n^j and V_{n-5}^j , j=0,1,2, are fixed in dependently of the point under consideration.

For W maximal, i.e W = (n - 5)(q + 1) + 5 we have in particular

$$V_{n-5}^{0} = q
V_{n-5}^{1} = \frac{4}{5}q
V_{n-5}^{1} = \frac{4}{5}q + 1
V_{n-5}^{2} = \frac{3}{5}q
V_{n-5}^{3} = \frac{2}{5}q
V_{n-5}^{4} = \frac{1}{5}q + 1
V_{n-5}^{4} = \frac{1}{5}q
V_{n-5}^{4} = \frac{4}{5}q + 1
V_{n-5}^{5} = 0
V_{n-5}^{5} = q + 1$$

For these results we can prove the following lemma:

Lemma: There is no point of weight 5 that lies on (n-5)- secant of a (k,n,f)- arc of type (n-5,n).

Now for W minimal, i.e W = (n-5)(q+1) we have in particular

$$V_{n-5}^{0} = q + 1
V_{n-5}^{1} = \frac{4}{5}q + 1
V_{n-5}^{2} = \frac{3}{5}q + 1
V_{n-5}^{3} = \frac{2}{5}q + 1
V_{n-5}^{4} = \frac{1}{5}q + 1
V_{n-5}^{4} = \frac{1}{5}q + 1
V_{n-5}^{5} = 1
V_{n}^{0} = 0
V_{n}^{1} = \frac{1}{5}q
V_{n}^{2} = \frac{2}{5}q
V_{n}^{3} = \frac{3}{5}q
V_{n}^{4} = \frac{4}{5}q
V_{n}^{5} = q$$
(1)

from the above we get

Lemma: There is no point of weight zero on any n – secant of a (k,n,f) – arc.

4. (k,n,f)— arcs of type (n-5,n) with $L_0 > 0$, $L_1 > 0$, $L_2 > 0$, $L_1 = 0$, for j = 3,4,5.

Let s_{n-5} be the number of the lines of weight n-5 and s_n be the number of lines of weight n, then

$$s_{n-5} + s_n = q^2 + q + 1 \tag{2}$$

$$(n-5) s_{n-5} + n s_n = (n-5)(q+1)^2$$
(3)

Solving (2) and (3) give

$$s_n = \frac{1}{5}q(n-5) \tag{4}$$

$$s_{n-5} = \frac{1}{5} (5q^2 + 10 q - nq + 5)$$
 (5)

Now let M be an n – secant which has no point of weight zero and suppose that on M there are α_1 points of weight 1 and α_2 points of weight 2, then counting points of M gives:

$$\alpha_1 + \alpha_2 = q+1.$$

and the weight of points on M gives:

$$\alpha_1 + 2\alpha_2 = n$$
.

So

$$\begin{array}{c} \alpha_1 = 2 (q+1) - n \\ \alpha_2 = n - (q+1) \end{array}$$
 (6)

Counting the incidences between points of weight 1 and n – secant gives :

$$L_1 V_n^1 = s_n \alpha_1$$

By using (1) and the equations (4) and (6) we have:

$$L_1 = (n-5)(2q+2-n) \tag{7}$$

Simillarly, counting incidences between points of weight 2 and n – secant gives:

$$L_2 V_n^2 = s_n \alpha_2$$

Hence, using (1) and the equations (4) and (6) we have

$$L_2 = [(n-5)(n-q-1)]/2$$
 (8)

Since $L_0 + L_1 + L_2 = q^2 + q + 1$

then by equation (7) and (8) we get

$$2q^{2} + (17 - 3n) q + n^{2} - 8n + 17 - 2 L_{0} = 0$$
(9)

Thus a necessary condition such that (9) with the solution, $(n-19)^2-(208-16 L_0)$, be a sequare.

Ban A. Q.

An example was found in PG (2, 5).

Lines	Points	1	:			
$L_{\scriptscriptstyle 1}$	<u>0</u>	3	5	12	20	30
L_2	1*	4*	6*	13*	21*	0
L_3	2*	5	7	14*	22*	1*
L ₄	3	6*	8*	15	23*	2*
L_{5}	4*	7	9*	16*	24*	3
L ₆	5	8*	10*	17*	25	4*
L,	6*	9*	11*	8*	26	5
L ₈	7	10*	12	19*	27*	6*
L,	8*	11*	13*	20	28*	7
L ₁₀	9*	12	14*	21*	29	8*
L_{11}	10*	13*	15	22*	30	9*
L ₁₂	11*	14*	16*	23*	0	10*
L ₁₃	12	15	17*	24*	1*	11*
L ₁₄ .	13*	16*	18*	25	2*	12
L ₁₅	14*	17*	19*	26	3	13*
L ₁₆	15	18*	20	27*	4*	14*
L ₁₇	16*	19*	21*	28*	5	15
L ₁₈	17*	20	22*	29	6*	16*
L ₁₉	18*	21*	23*	30	7	17*
L 20	19*	22*	24*	<u>0</u>	8*	18*
L 21	20	23*	25	1*	9* .	19*
L 22	21*	24*	26	2*	10*	20
L 23	22*	25	27*	3	11*	21*
L 24	23*	26	28*	4*	12	22*
L 25	24*	27*	29	5	13*	23*
L 26	25	28*	30	6*	14*	24*
L 27	26	29	<u>0</u>	7	15	25
L 28	27*	30	1*	8*	16*	26
L 29	28*	0	2*	9*	17*	27*
L 30	29	1*	3	10*	18*	28*
L ₃₁	30	2*	4*	11*	19*	29

where * assign the weight zero to the points while _ assign the weight 2 to the points

(k,n,f) - Arcs in Galois Plane of Order Five

From this example we get 20 point of weight zero which the table bellow explain these points:

i	p(i)	i	p(i)	i	p(i)	i	p(i)
1	(1,-1,-2)	9	(1, 2, 1)	16	(1, -2, -2)	22	(1,1,1)
2	(1, 2, 0)	10	(1, -2, 1)	17	(1, 2, 2)	23	(1, -2, 2)
4	(1,-1,0)	11	(1, -2, 0)	18	(1, 1, 2)	24	(1, 1, -1)
6	(1,-1,-1)	13	(1,-1,1)	19	(1, 1, 0)	27	(1, 2, -2)
8	(1, 1, -2)	14	(1, -2, -1)	21	(1,-1,2)	28	(1, 2, -1)

where the points of weight zero form an (20,5) – arc. From equation (8) we get 1 point of weight 2 and this point is

Then the remaining points of PG(2,5) are assigned weight 1 and these points are

i	p(i)	i	p(i)
3	(0, 1, 2)	20	(0,1,1)
5	(0,1,-1)	25	(1,0,-1)
7	(1,0,2)	26	(1,0,-2)
12_	(0, 1, -2)	29	(1,0,0)
15	(1,0,1)	30	(0,1,0)

So the sum of all these points are $q^2 + q + 1$ and the points of PG (2, 5) of non – zero weight will give an (11, 7, f) – arc of type (2, 7).

Ban A. Q.

An another example was found in PG(2,5) which is:

Lines	Points					
L_1 .	0	3	5	12	20	30
L ₂	1*	4*	6*	13*	21*	0
L_3	2*	5	7*	14*	22*	1*
L_4	3	6*	8*	15*	23*	2*
L ₅	4*	7*	9*	16*	24*	3
L ₆	5	8*	10*	17*	25*	4*
L,	6*	9*	11*	18*	26*	5
L ₈	7*	10*	12	19*	27*	6*
L,	8*	11*	13*	20	28*	7*
L ₁₀	9*	12	14*	21*	29*	8*
L ₁₁	10*	13*	15*	22*	30	9*
L_{12}	11*	14*	16*	23*	0	10*
L_{13}	12	15*	17*	24*	1*	11*
L ₁₄	13*	16*	18*	25*	2*	12
L ₁₅	14*	17*	19*	26*	3	13*
L ₁₆	15*	18*	20	27*	4*	14*
L ₁₇	16*	19*	21*	28*	5	15*
$\overline{L_{18}}$	17*	20	22*	29*	6*	16*
L ₁₉	18*	21*	23*	30	7*	17*
L 20	19*	22*	24*	0	8*	18*
L_{21}	20	23*	25*	1*	9*	19*
L 22	21*	24*	26*	2*	10*	20.
L 23	22*	25*	27*	3	11*	21*
L 24	23*	26*	28*	4*	12	22*
L 25	24*	27*	29*	5	13*	23*
L_{26}	25*	28*	30	6*	14*	24*
L 27	26*	29*	0	7*	15*	25*
L 28	27*	30	1*	8*	16*	26*
L 29	28*	0	2*	9*	17*	27*
$\overline{\mathrm{L}_{30}}$	29*	1*	3	10*	18*	28*
L_{31}	30	2*	4*	11*	19*	29*

From this example we get 25 point of weight zero which explain in table bellow:

i	p(i)	i	p(I)	i	p(i)	i	p(i)
1	(1,-1,-2)	9	(1, 2, 1)	16	(1, -2, -2)	23	(1, -2, 2)
2	(1, 2, 0)	10	(1, -2, 1)	17	(1, 2, 2)	24	(1, 1, -1)
4	(1,-1,0)	11	(1, -2, 0)	18	(1, 1, 2)	25	(1, 0, -1)
6	(1,-1,-1)	13	(1,-1,1)	19	(1, 1, 0)	26	(1, 0, -2)
7	(1,0,2)	14	(1, -2, -1)	21	(1,-1,2)	27	(1, 2, -2)
8	(1, 1, -2)	15	(1, 0, 1)	22	(1, 1, 1)	28	(1, 2, -1)
						29	(1, 0, 0)

where the points of weight zero form an (25,5) – arc. From equation (8) we get 6 point of weight 1 and these points are:

i	p(i)	i	p(i)
0	(0,0,1)	12	(0,1,-2)
3	(0,1, 2)	20	(0,1,1)
5	(0, 1, -1)	30	(0,1,0)

and there is no point of weight 2,

So the sum of all these points are $q^2 + q + 1$ and the points of PG(2, 5) of non-zero weight in this example will give an (6,6,f) -arc of type (1,6).

5. Some cases of (k, n, f) -arcs of type(n-5, n) having at least one point of weight 5.

Lets consider the following four cases:

(1)
$$L_0 > 0$$
, $L_1 = 0$, $L_2 = 0$, $L_3 = 0$, $L_4 > 0$, $L_5 > 0$;

$$(2) L_0 > 0, L_1 = 0, L_2 = 0, L_3 > 0, L_4 = 0, L_5 > 0;$$

$$(3) L_0 > 0, L_1 = 0, L_2 > 0, L_3 = 0, L_4 = 0, L_5 > 0;$$

$$(4) L_0 > 0, L_1 > 0, L_2 = 0, L_3 = 0, L_4 = 0, L_5 > 0;$$

we now discussion the case (1):

In this case there are no points of weight 1,2 and 3 with respect to the (k,n,f)-arc. Let us consider the two cases for L_0 .

- Case (1), $L_0 = 1$,

Let ℓ be a line of weight n-5 and let R be a unique point of weight zero, such that $R \in \ell$. Let F be a point of weight 4 (possibly on ℓ). Since $V_{n-5}^4 \ge 2$ and $V_n^0 = 0$, there is at least another (n-5)-secant r through F

besides FR. Let O be a point of weight 5 but this point does not belong to r, in that case r and OR would be (n-5)—secants and this is impossible because $V_{n-5}^5 = 1$.

Hence, every point of the line r has weight 4, since r is an (n-5) – secant we get (n-5)=4 (q+1) whence n=4q+9. Every line through R has weight n-5=4(q+1). Since there are only points of weight 4 or 5 possible a part from R, we have a contradiction.

<u>Theorem:</u> When $L_0=1$, $L_1=0$, $L_2=0$, $L_3=0$, $L_4>0$, $L_5>0$, there is no (k,n,f)—arc of type (n-5,n) with W=(n-5)(q+1). By similar proof for this when $L_5=1$, we have the following results:

Theorem: When $L_0 > 0$, $L_1 = 0$, $L_2 = 0$, $L_3 = 0$, $L_4 > 0$, $L_5 > 0$, there is no (k,n,f)-arc of type (n-5,n) with W=(n-5)(q+1)+5.

- Case (2), with $L_0 > 1$

Let R and P be distinct points of weight o, both R and P lie on a line ℓ . If X is a point, it will not belong to ℓ (where ℓ is a line of weight n-5). Since $V_n^0 = 0$, then XR and XP are both (n-5)- secants; and because $V_{n-5}^5 = 1$, X is not of weight 5, hence X is a point of weight 4. Thus all point not on ℓ have weight 4. Hence, considering a(n-5)-secants through R we have n-5=4q, so n = 4q + 5.

Let A be a point on ℓ with f(A) = 4, any line through A different from ℓ will have 4(q+1), which is impossible. Thus, the points on ℓ have only weight 5 or weight 0. Therefore K consists of (4/5)q collinear points, each of weight 5 and the q^2 points not collinear with them, each of weight 4. Hence, we deduce the following theorem:

Theorem: Let K be a (k,n,f) – arc having $L_0>0$, $L_1=0$, $L_2=0$, $L_3=0$, $L_4>0$, $L_5>0$ of type (n-5,n) with W=(n-5) (q+1). Then K consists of (4/5)q collinear points, each of weight 5 and q^2 points not collinear with them, each of weight 4.

By similar proof for this case when $L_5>1$, we have the following results:

Theorem:

Let K be a (k,n,f)- arc having $L_0 > 0$, $L_1 > 0$, $L_2 = 0$, $L_3 = 0$, $L_4 > 0$, $L_5 > 0$ of type (n-5,n) with W= (n-5) (q+1) +5. Then K consists of (4/5)q collinear points each of weight 0 and the q^2 points not collinear with them each of weight 4.

Further n = 4q+5.

Theorem: When $L_0=1$, for all cases (2)–(4) there is no (k,n,f)–arc of type (n-5,n) with W=(n-5) (q+1).

Theorem: When $L_5 = 1$, for all cases (2)–(4) there is no (k,n,f)–arc of type (n–5,n) with W = (n-5)(q+1) + 5.

Theorem: when $L_0 > 1$, for all cases (2) - (6) a (k,n,f) – arc of type (n-5,n) with W = (n-5)(q+1) exists.

Theorem: When $L_5 > 1$, for all cases (2) - (6) a (k,n,f)-arc of type (n-5,n) with W=(n-5) (q+1) + 5 exists.

REFERENCES

- 1-Ball, S; Blokhuis, A. and Mazzocca, F. (1997) "Maximal arcs in Dsarguesian planes of odd order do not exist" Combinatorica 17 (1), p.p. 31 41.
- 2-D' Agostini, E. "Sulla caratterizzazione delle (k,n,f)-calottedi tipo (n-2,n)" Attisem. Mat. Fis. Univ. Modena, XX1X, (1980), 263 275.
- 3- Hameed. F. k. "Weighted (k,n) arcs in the projective plane of order nine" PH.D. Thesis. University of London (1989).
- 4-Hirschfeld J. W. P. "Projective Geometries over finite fields" Oxford, (1979).
- 5-Mohammed, M. J. "Classification of (k,3)— arcs and (k,4)—arcs in Projective Plane over Galois field" M. Sc. Thesis, University of Mosul, Iraq, (1988).
- 6- Wilson, B. J. "(k,n,f)-arc and caps in finite projective spaces "Annals of Discrete Mathematics 30 (1986), 355-362.