Estimation of the physical constants of the electron acceptor 1,4-naphthoquinone from its charge-transfer complexes with various Schiff bases n-type donors

Ali M. Scheriff
Department of Agronomy
Mosul Technical institute
Mosul -Iraq

Received 15/9/2004

Accepted 16/2/2005

الخلاصة

تمت طيفياً در اسة معقدات انتقال-شحنة جديدة لإحدى عشرة قاعدة من قواعد شيف ومشنقاتها ألأيفاتية كمركبات و اهبة للشحنة نوع n مع مستقبل الشحنة أو الإلكترون 1 ، 4 - نفتوكوينون بالمنطقة فوق البنفسجية – المرئية (الإلكترونية) بمذيب الكلوروفورم. حسبت و نوقشت في هذه الدر استة الثوابت الفيزيائيية والقيم المفيدة للمستقبل (Ea,C2,C1,b,a) و كانت كالاتي الدر استة الثوابت الفيزيائيية والقيم المفيدة المستقبل (Ea,C2,C1,b,a) و كانت كالاتي المستقيم المرسوم والمستخرج من معادلة الدرجة الأولى hv = alp + b و hv = alp + b و أم ثوابت الخط المستقيم المرسوم بموجب معادلة الدرجة الأولى hv = alp + b . hv = alp + b .

ABSTRACT

The new charge-transfer complexes (CT) of eleven Schiff bases molecules as n-electron donors with the acceptor 1,4-naphthoquinone were studied spectrophotometrically in chloroform solution. The physical constants (a,b,C1,C2,Ea) of 1,4-naphthoquinone were calculated and they are 0.8385, -4.157, 7.067, 1.92, 1.39 electron volt respectively.where a= slop of straight line of first order equation , hv= alp + b, b=y = interept of first order equation ,(b=hv-alp), C1 and C2 are physical constants of acceptor (eq.3.) ,Ea = electron

Estimation of the physical constants of the electron acceptor......

affinity of 1,4 –naphthoquinone ,which is calculated from equation (1). The physical parameters of the (CT) complexes, of Benesi-Hildebrands equation; (1/(ϵ K))= slop of equation=a, b=1/ ϵ =intercept y of the straight line of benesi-Hildebrands equation (of first order),where the molar extinction coefficient= ϵ and K= the equilibrium constant of the formation of bond n-pi (CT) complexes, the average dissociation energies of the excited state W=4.70 eV were also calculated and discussed.

Key words:

Charge-transfer complexes (CT), 1,4-Naphthoquinone,Physical chemistry of donor, Acceptor,Aliphatic aldehyde,Valence bond theory,Schrodinger equation and quantizatin ,Donor of aliphatic Schiff bases(azomethines) p-N,N-dimethylaminocinnamaylidenes, Aromatic primary amine ,Electromagnetic light photon, 1,4-Quinones and carbonyl conjugation chemistry, Physical calculation, Benesi-Hildebrand's equation ,Aliphatic substituents and their effects, Education and science studies. HOMO LUMO transition.

INTRODUCTION

Previously benzoquinones such as 1,4-benzoquinones, 9,10-anthraquinones ⁽¹⁾, 2,3 - dichloro-5, 6- dicyano-1, 4-benzoquinones ⁽²⁻⁴⁾, 2, 3, 5, 6 - tetrachloro-1,4-benzoquinones-chloranil CA⁽³⁻⁸⁾ and 3,5 ditert-butyl-1,2- benzoquinones⁽¹⁾ had been used as electron acceptors with various Schiff bases as n-electron donors forming n → JI charge transfer (CT) in the (CT) process. Other electron acceptors such as iodine ^(4,9-11,12), pentafluorbezaldehyde PFB⁽⁶⁻⁸⁾, tetracyanoethylene⁽³⁾ and tetracyanoquinodimethane form also (CT) complexes with various kinds of Schiff base compounds.

In the present work, the (CT) complexes between 1,4-naphthoquinone [1,4-Nq] and some Schiff bases(azomethines) derived from aliphatic aldehyde, p-N,N-dimethylaminocinnamaldehyde, and different anilines were investigated spectrophotometrically in CHCl₃ solutions.

The physical constants of [1,4-Nq] and some physical parameters of the (CT) complexes have been calculated and discussed.

EXPERIMENTAL

Schiff bases, compounds 1-11 (Scheme 1) were prepared and purified as described in the literature ⁽⁶⁻⁸⁾. 1,4- naphthoquinone (97% purity) was of "Aldrich", and chloroform (Spectrosil) was of "Fluka". Beckmann spectrophotometer, Acta-M.VII, thermostat 298K, Schimatzu uv-vis. Recoding Spectrophotometer uv-160 were used to record the electronic spectra using 1.0 cm quartz cell,uncorrected balance,elemental analysis (C,H,N,O,)were carried out by oil research center/ Al-Habibya-Baghadad.

The solution of (CT) complexes in CHCl₃ were prepared by mixing of fixed concentrations of [1,4-Nq[and variable concentration of Schiff bases where [Schiff base]>>[1,4-Nq], Benesi-Hildebrand's equation of absorption is applicable to 1:1 (acceptor- donors) molecular n-pi (CT) complexes only under this condition^(2,5-8,13,14). In every solution of the set the concentration of the aliphatic Schiff base(azomethine) was the same in both the reference cell and the sample cell .

a. Reaction equation of preparation and formation of Schiff bases: The synthesis of cinnamaylidenes Schiff bases and its derivatives from the starting materials, the aldehyde and the anilines (primary aromatic amines) were completed as in the following:

Estimation of the physical constants of the electron acceptor......

$$CH_3$$
 CH_3
 $CH = CH - CH = O + H_2N$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5
 CH_6
 CH_7
 CH

..The prepared and formed Schiff bases and their derivatives are as in scheme 1:

Me
$$\sim$$
 N \sim CH \sim CH \sim Where R represent the

substitutional decreasers and increasers of charge and they are;

- 1. R = -Cl(p),
- 2. R = -Br(p),
- 3. R = -NO2(p),
- 4. R=-COOH(p),
- 5. R = -H,
- 6. R = -CH3(p),
- 7. R = -CH3 (m),
- 8. R = -OCH3(p),
- 9. R = -OCH3 (m),
- 10.R = N(CH3)2(p),
- 11.R = -OH(p).

Scheme (1)Aliphatic Schiff bases(azomethines) formation by reaction pathways

Table (1) illustrates the expected, molecular formula and elemental analysis to the (1-11) above aliphatic Schiff bases (azomethines)structures.

b. Reaction equation of (CT) complexes formation: Synthesis of charge-transfer complexes of n-pin bond was yielded from its starting materials. Schiff bases as n-electron donors and the 1,4-naphthoquinone as new acceptor; The yielded and suggested product CTC[between 1,4- nq acceptor and n-donor Schiff base] was prepared as in the following:

Scheme (2) CTC

The unique product; charge transfer

complex (p-N,N-dimethylaminocinnamaylideneanilines-1,4-naphthoquinone.)

RESULTS AND DISCUSSION

3-1 Estimation of the physical constants of [1,4-Nq]

Table (2) represents the longer wave length absorption bands in the electronic spectra of [1,4-Nq] and molecules 1-11, the ionization potentials (Ip) of (1-11) structures and their transition energies (hv) with the acceptor [1,4-Nq], and their transition energies with the acceptor PFB in CHCl₃.

From the data of table (2) and the electron affinity of PFB ($E_a=1.37 \text{ ev}$)(6-8), the physical constants a,b, C_1 , C_2 and E_a [1,4-Nq] of the acceptor [1,4-Nq] have been calculated using equations (1-3)($^{6-8,12,13,14}$).

$$Ea[1,4 - NQ] = Ea(PFB) - hv(PFB) + hv[1,4 - NQ]$$
 (1)

where E_a = electron affinity, and hv= CT energy

$$hv[1,4-NQ] = a Ip + b$$
 (2)

$$hv[1,4-NQ] = Ip - C_1 + \frac{C_2}{Ip - C_1}$$
 (3)

For the CT complexes of [1,4-Nq] with the donor of Schiff base(azomethine) molecules (1-11) in CHCl₃, Figures (1-11), the values were summarized in table (3).

The values of table (3) agree very well with those of the benzoquinone acceptors(2,5-8,11).

3-2 Estimation of the physical parameters of (CT) complexes:

Table number four(4) shows the values of the molar extinction coefficient of (CT) complexes ε, the equilibrium constant of formation of n-pi (CT) complexes K, and the dissociation energies of the (CT) complexes of the excited states W in CHCl3.(spec.CHCl3 is a good solvent suitable to the CT process and less spectral complication than alcohol as expected.).

. The values of ϵ and K were calculated using Benesi-Hildebrand's equation(4) (5-8,10,11).

$$\frac{1.[1,4-NQ]}{OD_{CT}} = \frac{1}{\varepsilon .K} \frac{1}{[SB]} + \frac{1}{\varepsilon}$$
(4)

Where [1,4-Nq] and [SB] are the initial concentrations of the acceptor 1,4-naphthoquinone and Schiff base respectively (scheme 1); ODCT is the optical density or absorbance of (CT) complexes at electromagnetic light radiation of

photon wave $\lambda \max$, (table (4));

1. is the path length of the light photon absorption cell (=1.0 cm(10 mm.)). The plots of [1,4-Nq].1/ODCT vs. the values of 1/[SB] gave according to the equation (4) a very good straight lines (figures (1-11) show a typical examples) of which the intercept y is equal to $1/(\epsilon \cdot K)$ =a; then from both the intercept and the slop, ϵ and K can be evaluated, table(4) illustrated the results.

The data of tables (2) and (4) show clearly that the presence of strong electron-donating groups(15) such as –OCH3 (p), -N(CH3)2 (p) and -OH (p) in molecules 8, 10 and 11 (scheme 1), enhance the (n — 1) (CT) complexes formation; K=778, 730, 832 mol-1dm3, respectively(tables (2,4)). The presence of electron-donating groups(the increasers) in the structures of such compound increase the electronic density of their azomethine groups, which makes these strong n-electron donors, C—N— in comparison with the other molecules, unlike those, deficiency at nitrogen atom resulted from electrons-withdrawing groups or the decreasers of the process of which have relatively low (CT) complex formation because of less formed electrons transition, [-NO2, K=61, cpd 3], [-COOH, K=97 cpd 4] and this deactivation of the azomethine nitrogen pair of electron in less reactive Schiff bases resulting the destabilized CTC, and this is in a good coincide with reactivity of groups in physical organic chemistry..etc(3,7,13,15).

The CT process is governed by n-electron donation from the azomethine group of aliphatic Schiff base(azomethine) molecule to the empty π orbital of the carbonyl groups of [1,4-Nq] acceptor forming and yielding $\pi \to \pi$ CT complex (HOMO to(\to) LUMO electronic transition and since the more conjugation is added, the longer wave length is obtained, table (2), figures (1-12).

The values of Δ or W evaluated from the data of tables(2,3) using equation(5-8,13,14). (5)

$$\Delta or W = Ip - Ea[1, 4 - NQ] - hv[1, 4 - NQ]$$
 (5)

where W=dissociation energies of CTC excited states = 4.70 eV Ip = Ionization potential of donor or Schiff base(azomethine) eV Ea[1,4-Nq.] = Electron affinity of acceptor----- eV hv = CTC energy ----- eV 1,4-Nq = 1,4 -Naphthoquinone

REFERENCES

- 1. Scheriff A. M., Ph.D. Thesis, University of Baghdad (1994).
- 2. Saeed A. A. H. and Al-Bana B. Y. H., Iraqi J. Chem., 17(2), 184 (1992).
- 3. Al-Hussain A. K. A., Ph.D., Thesis, University of Baghdad (1998).
- 4. Al-Razag K. A. A., Ph.D., Thesis, University of Baghdad (1997).
- 5. Saeed A. A. H., Iraqi J. Chem., 16(1),93(1991).
- 6. Saeed A. A. H., Razag K. A. A. and Kunda B. H. B., Iraqi J. Chem., 18(1), 1(1993).
- 7. Saeed A. A. H., Razag K. A. A. and Kunda B. H. B., Spectroscopy letters, 26(2), 403 (1993).
- 8. Saeed A. A. H., Razag K. A. A. and Kunda B. H. B., Iraqi J. Chem., 20(1), 202 (1995).
- 9. Silva T.G., Barvbosa E.S., Heterocyclic communications. Vol.(7), Iss.6, pp. 523-528, www.googlesearch.net (2001).
- 10.El Sharief A.M.Sh., Ammar Y.A., Zahran M.A., Ali A.H., and El-Gaby M.S.A., Molecules, 6, 267-278, www/googlesearch.net (2001).
- 11. Saeed A. A. H., Iraqi J. Chem., 13(1), 173(1988).
- 12. Saeed A. A. H. and Al-Azzawy A. R. J., Spectroscopy letters, 25(6), 777 (1992).
- 13. Foster R. "Organic charge-transfer complexes", 1st ed. London, New-York: Academic press (1969).
- 14. Springer L. "Transfer reactions, 1,4 naphthoquinone", Acta. Chim. Slov., 49, 447, www. .googlesearch.net pdf(2002).
- 15. Azzouz A.S.P., Rahman A.A.A. and Taki A.G., J. Edu. Sci.,15(2-4)p.8 (2003).

Table (1) Molecular formula and elemental analysis of p-N,N- dimethylaminocinnamaylidenes or the prepared Schiff bases as n-type charge (electron) donors

R The substitu-tion	Molecular formula		E	Elemental	analysis		•
	of Schiff bases		Calculated			Founded	
		%C	%H	%N	%C	%H	%N
1-Cl (p)	C ₁₇ H ₁₇ N ₂ Cl	71.70	5.97	9.84		5.90	9.53
2-Br (p)	C ₁₇ H ₁₇ N ₂ Br	62.00	5.16	8.51		5.14	1 8.60
$3-NO_{2}(p)$	$C_{17}H_{17}N_3O_2$	69.15	5.76	14.23		5.60	14.15
4-COOH (p)	$C_{18}H_{18}N_2O_2$	73.46	6.12	9.52		6.00	9.50
5-H (p)	$C_{17}H_{18}N_2$	81.60	7.20	11.20		7.10	11.40
6-CH ₃ (p)	$C_{18}H_{20}N_2$	81.81	7.57	10.60		7.50	10.65
7-CH ₃ (m)	$C_{18}H_{20}N_2$	81.81	7.57	10.60		7.50	10.50
8-OCH ₃ (p)	$C_{18}H_{20}N_2O$	77.14	7.14	10.00		7.14	10.01
9-OCH ₃ (m)	C ₁₈ H ₂₀ N ₂ O	77.14	7.14	10.00		7.17	10.01
$10\text{-N}(CH_3)_2$ (p)	$C_{19}H_{23}N_3$	77.81	7.84	14.33	77.71	7.82	14.10
11 = -OH(p)	$C_{17}H_{18}N_2O$	76.69	6.76	10.52		6.76	10.50

Table (2), The longer wavelength absorption band in the electronic spectra of 1,4-Nq, and the formed Schiff bases molecules 1-11, and their ionization (Ip) and CT transition energies hv and their CT transition energies with the PFB in CHCl3

Compound	Compound	CT with 1,4-Nq		CT with PFB(*)		
No.	Longer λ/nm	λ/nm	hv/eV	λ/nm	hv/eV	Ip/eV
1,4-Nq	333	_	-	-	-	· -
1	394	536	2.30	528	2.35	8.42
2	396	540	2.29	530	2.34	8.41
3	388	544	2.28	570	2.17	8.22
4	398	447	2.78	544	2.28	8.34
5	390	525	2.36	510	2.43	8.51
6	386	557	2.42	506	2.45	8.53
7	385	526	2.36	514	2.44	8.41
8	392	528	2.35	508	2.44	8.52
9	386	516	2.40	516	2.40	8.47
10	382	544	2.28	236	2.31	8.37
11	388	513	2.42	510	2.43	8.51

• Data taken from reference (8)

Table (3), The values of the physical constants of the acceptor 1,4-Nq from its CT complexes with molecules of aliphatic Schiff bases(azomethines) 1-11 in CHCl₃

The CT with compound	a/eV	b/eV	C ₁ /eV	C ₂ /eV	E _a /eV	Δ or W of CTC
1-11	0.8385	-4.157	7.067	1.9 2	1.39	4.70

Table (4), The molar extinction ε of the CT complexes, the equilibrium constant K of the formations, and the dissociation energies of the CT complexes at excited states W or (Δ) in CHCl₃

Compound No.	CT with [1,4- NQ]					
Compound 140.	ε/m²mol ⁻¹	K/mol ⁻¹ dm ³	W or (△) eV			
1	16600	330	4.78			
2	1650	313	4.78			
3	20020	61	4.60			
4	12400	97	4.22			
5	8002	631	4.81			
6	2600	482	4.77			
7	2200	312	4.71			
8	6669	728	4.83			
9	2600	321	4.73			
10	1670	730	4.75			
11	785	832	4.75			
Average	_	-	4.70			

Fig.1 -Cl(p)

$$\lambda_{\text{max}} = 536nm$$

Fig.2 - Br(p)

$$\lambda_{\text{max}} = 540 nm$$

 $Fig.3 - NO_2(p)$

$$\lambda_{\text{max}} = 544nm$$

Fig.4 –COOH(p)

$$\lambda_{\text{max}} = 547 nm$$

Fig.9 -OCH₃(m)

$$\lambda_{\text{max}} = 516nm$$

 $Fig.10-N(CH_3)_2(p)$

$$\lambda_{\text{max}} = 544nm$$

Fig.11 –OH(p)

$$\lambda_{\text{max}} = 513nm$$

Where:

 $Y=\times 10^{-4}$ mole /dm³ =[Aa]/ODctc

 $X=\times 10^4$ mole /dm³ =1/[SB]

Figurers:1-11 plots of Benesi – Hildebrands equation

Where concentrations of aliphatic Schiff base (azomethine): $(1=50 \times 10^{-4} \text{ M}) (2=45 \times 10^{-4} \text{ M}) (3=42 \times 10^{-4} \text{ M}) (4=30 \times 10^{-4} \text{ M}) (5=25 \times 10^{-4} \text{ M}) (6=15 \times 10^{-4} \text{ M}) (7=10 \times 10^{-4} \text{ M})$

Figure 12: Longer wave lengths of electromagnetic light photons and absorptions of electronic spectra of different concentrations of CTC (1) (Schiff base + acceptor) all have maximum absorptions at unique max. wave length = 536 nm

Pure and uncomplexed Schiff bases concentrations (1-7), (10-50) 10^{-4} mole/liter & absorbs at max .wave length =395nm Pure and uncomplexed acceptor concentration = 10^{-4} mole/liter & absorbs at max .wave lengths=333nm &250nm (intense) in CHCl₃ solvent .