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ABSTRACT

In this paper, we find the algebra of quotients with bounded
evaluation for operator algebras on a complex Hilbert space, namely:
Hilbert — Schmidt and trace — class operators. Also, we study the behavior in
computing the algebra of quotients with bounded evaluation for totally
prime associative algebra.

1. INTRODUCTION AND PRELIMINARIES.

The notion of rings of quotients and the algebras of quotients with
bounded evaluation (in which two —sided  ideals are used) were introduced by W. S.
Martindale for prime rings in [1] and Cabrera-Mohammed for normed (prime) semiprime
algebras in [2] respectively and the Martindale rings of quotients extended to semiprime
rings by S. A. Amitsur in [3]. It is usual to define these rings of quotients in a concrete
form through partially defined centralizers on nonzero (two —sided) ideals, however for
our interest we prefer to give an abstract presentation (see for example [4] or [S]) as
follows: for a given prime associative algebra 4, the right algebra of quotients of 4,
denoted here by Q(4), is defined as the maximal algebra extension Q of 4 satisfying the
following conditions:(i) if ¢ € Q then there exists a nonzero ideal / of 4 with g/ < 4, (ii)
if g eQ, Iis anonzero ideal of 4, and g/ = 0, then ¢=0. Given g in Q(4), and I
nonzero ideal of 4 such that g/ c A, we denote by Lfl the mapping from 7 into 4 given
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by Lf, (x) =qx for all x in [ . Following [6, Chapter 2], when 4 is additionally a normed

algebra, the (right) bounded algebra of quotients of 4 is defined as the subalgebra of Q(4)
given by :

Ou(A)={q €Q(4) : 3I nonzero ideal of 4 st g/ < A and L,’l is continuous}
endowed with the algebra seminorm ’

| 4l ,=inf{| L, | : 1 nonzeroideal of A s.t. ¢/ < 4 and L is continuous}
It is clear that the inclusion of 4 into Q(4) become a continuous embedding of A4 into
O (4).

The bounded algebra of quotient has a very good behavior in a nice class of
normed algebra called ultraprime and was discussed by Mathieu in [6]. We recall that ,
for a, b in an associative algebra A, the two —sided multiplication operator M, 5 . A —
A is defined by M, » (x) =axb forall x in A . It is well-known that the primeness of A
is characterized in terms of two -sided multiplication operators as follows: 4 is prime if
and only if M, , = 0 implies either a=0 or b=0. This fact was used by M. Mathieu to
give a characterization of ultraprime associative algebra without any reference to
ultrapowers, which become the usual definition now a day. A normed associative algebra
A is ultraprime if there exists a positive number K such that

Kla ||b]s | Maso | foralla binA.
The bounded algebra of quotients provides the appropriate concept of algebra of

quotients in the class of ultraprime algebras in the following sense: If 4 is an ultraprime
algebra, then Q, (4) is an ultraprime algebra and the inclusion of 4 into Oy (A)is

topological. Moreover, if Q is a subalgebra of Q(4) containing 4, and if | . “q is an
algebra norm on Q for which Q is a topological extension of 4, then (Q, | . "q ) is

continuously embedded in Oy (4) (see[7, Theorem 4.1] ) and [8, Proposition 2.8] ).

In section 2 we introduce the notion of algebra of quotients with bounded
evaluation for a normed prime associative algebra, and we study this algebra of quotients
in the class of totally prime algebra introduced in [9]. Our treatment follows as possible
the same objective discussed in the above paragraph for the bounded algebra of quotients.
The starting point is a result of purely algebraic nature asserting that if 4 is a prime
associative algebra and if Q is a subalgebra of Q(4) containing 4, then M(4) (the
multiplication algebra of 4 ) is canonically embedded in AM(Q). Using this result, for each
q in Q(A) and each nonzero ideal / of 4 such that g / < A, we can consider the

A-valued mapping E; obtained by restriction of the evaluation operator in ¢ to suitable

ideal R} of M{(A4). The algebra of quotients with bounded evaluation
Ope (A) for a normed prime associative algebra 4 originates when the role played in the
definition of Qs (4) by the operators Lq’ :I— A( forgin Q(4) and I nonzero ideal of
A such that ¢ I < A ) is transferred to the evaluation operators £, Our construction
turned out to be the appropriate concept of algebra of quotients in the class of totally
prime associative algebras. Concretely , if 4 is a totally prime associative algebra, then
Oe (4) s a totally prime normed algebra, and the inclusion of 4 into Q. (4) and of

M(A) into M(Qy. (4)) are topological. Moreover, if (Q , || . |) is a normed algebra such
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that Q is a subalgebra of Q(4) containing 4 and the inclusion of 4 into Q and of M(4)
into M(Q) are topological , then Q is continuously embedded in Q. (4).

Section 3 is devoted to the study of the algebra of quotients with bounded
evaluation of some important algebra of operators on a complex Hilbert space H
, namely: The algebra L (H) of all trace —lass operators and the algebra L? (H) of all
Hilbert-Schmidt operators. We will begin by determining the bounded algebra of
quotients for norm ideals: If 4 is a normed algebra which is a norm ideal on H, then
O» (4)=BL(H) ( the Banach algebra of all bounded linear operators on H ). Finally, we

prove that Oy (L'(H))=L'(H) and Q. (L*(H))= L*(H).

2. ALGEBRA OF QUOTIENTS WITH BOUNDED EVALUATION OF A
NORMED PRIME ALGEBRA.

The multiplication algebra M(4) of an algebra 4 is defined as the subalgebra of
L(4) (the algebra of all linear operators on 4 ) generated by the identity operator Id, and
the set {L,,R,: a €4}, where L, and R, will mean the operators of left and right

(respectively) multiplication by @ on 4. We begin with a general result on the
multiplication algebra of prime associative algebra that relies on the theory of generalized
polynomial identities, for which the reader is referred to [2] and [5] for  a complete
proof.

Proposition 1. Let 4 be a prime associative algebra and let Q be a subalgebra of Q(A)
containing A. Then for all F in M(A) there exists a unique element F in M(Q). Such

that F(a)=F(a) for all a in 4, and the mapping F—F becomes an algebra
monomorphism from M(A) into M) .

Proof . See [2, Proposition 1]. ™

For an ideal / of an algebra 4 we denote by R, the ideal of M(4) generated by the

set {R,: xel}.

Lemma 1. Let A be an associative algebra. If Iis an ideal of 4, then R} coincides with
the left ideal of M(A) generated by the set { R, :xel}.

Proof. Let / be an ideal of 4, and let P denotes the left ideal of M(4) generated by the
set { R : x€1}. To prove that P= R} it is enough to see that the set S={F€ M(4):PF< P}
is equal to M(4) . It is clear that S is a unital subalgebra of M(4). Note that if F, is in
M(A) and satisfies that R F, €P for all x in 7, then the set V={T€M(4): TF, €P}isa

left ideal of M(A) containing { R, : xel}, hence P is contained in V. Therefore we can
write S= {FeM(4) : R FEP for all x in I }. Since 4 is associative algebra, the
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equalities RR,= R, and R, L, =L, R, hold for all x in 7 and a in 4. Therefore,

ax ?

L, R liesin S forall a in 4, andso S=M(4). ®

(TR a

Let 4 be a prime associative algebra. By Proposition 1, M(4) can be seen inside
of M(Q(A)), a fact that we will used without mention. Given ¢ in Q(4), it is clear that the
set D={FeM(4) . F(q) €4 } is a left ideal of M(4) and that we can consider the

evaluation mapping £, from D into 4 defined by E (F)=F(q) forall Fin D.If [ is
an ideal of 4 such that g/ A then the set { R, : xeI} is contained in D, hence R/ is also
contained in D as consequence of lemma 1. Thus, we can consider the restriction of £,

to R/, which will be denoted by £, .

Proposition 2. Let A be a normed prime associative algebra. Then
0,.(A) ={ qe Q(4) : 3 I nonzero ideal of A-s.t. gl <4 and E‘; is continuous}

is a subalgebra of Q(A), and ’ l 0,.(4) > R defined by

[q|=int{]| £, | : I nonzero ideal of A s.t. qI <A and E, is continuous}
is an algebra seminorm. Moreover O,,(A) is subalgebra of O,(A) containing A, and
these inclusion are continuous. Precisely l a 'S “ a ” Jor all a in A, and

| all <l q| forallqin O, (4).
Proof . See [2, Theorem 1]. ™

For a normed prime associative algebra A, the seminormed algebra
(0, (4) ,I . ]) is called the algebra of quotients with bounded evaluation of A. Our next

objective is to carry out the study of this algebra of quotient for totally prime associative
algebras. Totally prime algebra was introduced in [9] to provides the nonassociative
extension of the determination of the extended centroid for ultraprime associative
algebras given in [7]. We recall that a normed algebra A4 is totally prime if there exists a

positive number K such that K ” a H ” b || < “ N,, ” foralla, bin A4, where N,
denotes the bilinear mapping from M{4)xM{(4) into 4 defined by N, ,(F, G)=F(a)G(b)
for all £, G in M(4). |

Lemma 2. Let A be a totally prime associative algebra and assume that K is a positive
constant such that K ” a “ ” b ” < ” N,, " Jorall a, bin A. Let g be inO,,(4) and
let I be a nonzero ideal of A such that qIc A and E, is continuous. If J a nonzero

ideal of A such that g J< A, then E,f is continuous and
K| E <8 |
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Proof. Let J be a nonzero ideal of A such that ¢J < 4. For x in Iwith | x |=I,
Fin R! and S, T in M(4) we have

NI"((/)‘.\' (S, )=SF(q)T(x)= RT(.\‘) SF(q)= E‘ﬁ (R»,-(_,)SF),

hence

2

| Vi ST 1= 1 Eg (RSB [ < |2, | |S | [P

and so
| Moo 1< 1E T LE |-
Since A is a totally prime algebra, it follow that
K|r@ < 1E | |F ]

and so £/ is continuous and K | E; | < I£; |.

The following result is similar to that obtained in [2].

Theorem 1. Let A be a totally prime associative algebra, and assume that K is a
positive constant such that K “a “ “b " < " Ny » |[ Joralla, binA. Then O, (A) isa
totally prime normed algebra, and the inclusions of A into 0,.(4) and of M(A) into
M(0,,(A)) are topological . Precisely, K "a || .<_‘ a | < H a “ forall ainA, and
K \F “ S| F | < || F H for all F in M(4) . Moreover, if (Q, ” ||‘I ) is a normed

algebra such that Q is a subalgebra of Q(4) containing A and the inclusions of A into Q
and of M(A) into M(Q) are topological, then Q is continuously embedded in Q. (A).

Proof. By Proposition 2, QOp. (4) is an algebra extension of 4 and | ) ] is an algebra
seminorm on O,,(4)such that | @ | < | @ | for all a in 4. Let g be in Qp (4)
satisfying ] q | =0. By Lemma 2, E; =0 (hence q/=0) for all nonzero ideal I of A
~ such that g/c 4, and so ¢ = 0. Therefore | . | isanormon Qs (4). Let a bein 4 and
I be a nonzero ideal of A4 for x in 7 with u X H =Jand F, G in M(A) we have

Na + (F, G)=F(a)G(x)=Ro F(a) = E, (R
hence

“ Na, x(F, G) H E; (RG(x)F) ” < “ E; " G || F "

and so
|Na, x| < | £ |-

Since A4 is a totally prime algebra it follow$ that K || a ”S " E! " Now, taking

infimum on  we obtain that K || a | <] al .
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Our next objective is to prove that the inclusion of M(A4) into Oy (4) is
topological. Fix F' in M{4). If q isin Qs (4) and I is a nonzero ideal of 4 such that

qlc A4, then F(g)Ic R F(q) < R} (q) <4 and, for G in R,” we can write

| 2y @ |= |oF@ |= &, | |G | £ |
therefore | £, | < | £, | |F | Consequently, | F(g) | < | E/ | |F | and,

by taking infimum on 7, | Fg) | < | gq| |F |. From this it follows that
| F| < |F | .Moreover, forallainA we have
K|F@ |<| F@| <| F||a| <| F| [a],
therefore K|F |<| F|.
Now we prove that Q. (4) is a totally prime algebra. Let ¢, ¢> fixed in Que(d)

and consider /; | I, nonzero ideals of 4 such that ¢,/; < A and q;1; < A. For F| in R,”l s

F>in R}, and S, T in M(4) we have
Nrq). Fytay) (S D=SF (q) TF2 (g2)= N (SF,, TF>),

L

where N' * * denotes the restriction to R}, x Rf, of N . Hence

4

K U Ve vas S D | =K | NG 5SFL TR s | W02 (s, 77y |

S| NS IS R T RS MR IS TR LT[R
and so
K | Ny vy 1] N5 B LR
therefore

K Futq) || Fatgd || Moo | F] ]
because 4 is a totally prime algebra . From the last inequality it follows that
Keg | hEs T<l vo gl

G 9

and so
Kl al ¢ <| N3¢

Finally, let(Q , | . ”q ) a normed algebra such that Q is a subalgebra of Q(4)
containing A and assume the existence of positive numbers a, 8, g, & such that
a la|s fa| sp |a|for al @ in 4, and p |F|< |F I, <6 |71
for all ' in M{(A). Let ¢ be in O, and assume that / is a nonzero ideal of 4 such that
gl < A.Forall Fin 1{’,”l we have
L2, |-l Fal<e?| F@ l, <« FlLa |,<e” 8] F ],

hence Evis continuous and || Ef’/“ <a’s |q IL, , and so ¢ lies in Q 4. (4) and

| q] a5 |q ”(,' Therefore Q is continuously embedded in Q 4. (4). ™

137




Amir A. Mohammed

Remark 1. Note that under the assumptions of Theorem 1 we have actually prove that

Kl al | a:] <| Ny,

.ll

forall ;. g2 in O 4 (4) and I, I; nonzero ideals of 4 such that q; [, <4 and ¢.[> < 4,

where N;: \ ,’I denotes the restriction to R: X sz of N, ,. This condition
characterize topologically to the subalgebras of Q 4. (4) in the following sense :
if (0, | . |) isanormed algebra such that Q is a subalgrbea of O(4) containing 4 and

the inclusions of 4 into Q and of M(4) into M(A4) are topological, and there exists a
positive constant K such that
K " q1 ”4 "q-’ ”q = " N;:: : |
forall ¢;, g> in Q and [I;, I> nonzero ideals of A such thatq; I; €A and q.l> <A,
then Q is topologically embedded in Qp.(4).
Indeed , let (O, | . |) be such a normed algebra and consider @, B, . S as
in  the end of the proof of Theorem 1. We know that
| ¢| a6 | ¢ | forallginQ.Fix ¢inQ, and assume that / is a nonzero ideal of

A such that ¢ I cA. Take ain 4 with | a |=1. For each o<e</ there are F in R/

with
| /|, =land G in M(4) with |G ||=I such that
oK g 15 INee ) |
therefore
ek |q |, < [FG@ |, < | Fa) |, |6@ | ,<p |Fa |

<p e, | IF [<pe” |, |
This shows that K | ¢ |, <Bp’ IE, |-

Consequently K || q [ .S ,Bgo"] q! , as required. ™

. ALGEBRA OF QUOTIENTS WITH BOUNDED EVALUATION FOR
TRACE —-CLASS AND HILBERT - SCHMIDT OPERATORS.

For a given complex Hilbert space (H, <, >), we denote by L(H) the algebra
of all linear operators on H, and by BL(H) the Banach algebra of all bounded linear

operators on H with the operator norm, which will be denoted by ” . ” » + As usual,

forx,yinH, x® y will denote the rank — one operator on H defined by
(x®y) (z) =<z, y>xforall zin H.
It is well-know that the subset FL (H) of BL(H) consisting of all finite - rank
operators can be expressed as follows

FL(H).={ ix, ®y,: neN, x;, yi € H(I<i<n) }
i=] :
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It is easy to see that if 4 is a subalgebra of BL(H) containing FL(H), then A is an
irreducible algebra of operators on A such that the centralizer
v={TeL(H) : TF=FTforall F in 4}
is equal to Cid,, where id, means the identity operator and C - the complex

field. Moreover, FL(H) is the sum of all minimal left ideal of 4 (the socle of 4) and it is
a minimal ideal of 4 contained in every ideal of A. Recall also that a norm ideal on H is

anideal 4 of BL(H) endowed withanorm | . | satisfying the following conditions:

D |x®y | = | x| |»|forall x yinH (cross-property),
i) |FTG | < |F oo |T | |G | forall F, Gin BL(H) and T'in 4 .

Our first goal is to determine the bounded algebra of quotients of normed algebras
that are norm ideals.

Proposition 3. Let H be a complex Hilbert space and let (4, N . " ) be a normed
algebra which is a norm ideal on H. Then ( Qy(4) , ] . [ ) = (BL(H), “ , ”m )

Proof. See [2, Theorem 2]. ™
The following Proposition yield information about properties of the algebra of
goutients with bounded evaluation of a normed algebra which is norm ideal.

Proposition 4. Let H be a complex Hilbert space and let (4, " . “) be a normed
algebra which is a norm ideal on H. Then Qp.(A) is a right ideal of BL( H ) and [ . , is

an.algebra norm satisfying the following assertions:

i) T s | T |forallT in4,

i )| T |.<| T| forall T in Que(4),

i)| x®y| = | x ||y |sfraix, yind,

) | TF || T| | F . forall T in Qse(4) and F in FL(H),
v)| TF| <| T| | F|. foralTin Qs(4) and F in BL(H).

Proof. See [3, Proposition 3]. ™

The algebra of trace — class and Hilbert — Schmidt are relevant examples of
normed algebras which are norm ideals on a complex Hilbert space . Now, we collect
some aspects of these algebras that are interesting for our development and that can be
seen for example in [10] or in [I11]. Let us fix a complex Hilbert space
(H, <., .»), and consider the algebra involution F— F* (the adjoint of F relative to
the inner product <., .> ) on BL(H). Suppose that { e, } ,_ is an orthonormal basis for H,

we define for each F in BL(H)
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|F =X e [ and  |F =3 <| F] €r)e,>
Aea

Aen

where | F| =(F " F)'? ( these definitions are independent of the choice of basis) and
we say that F is an Hilbert ~Schmidt operator if ]|F ”3 < + 0, and we say that F'is a

trace-class operator if |F |; < + oo. will denote the set of all Hilbert - Schmidt

operators on M and L' (H) will denote the set of all trace —class operators on H.
Fori=1,2, (L'(H), | . |i) isaBanach algebra which is a self-adjoint norm ideal

of BL(H) and the involution * is | . || - isometric. Moreover, the trace of a trace-

class operator F is defined by

r(f)=3 <Fle,), e,>

A€
(again this definition is independent of the chice of basis), and the function
tr: L' (H)— C

is a continuous commutative linear form.

Theorem 2 . Let H be a complex Hilbert space. Then
DOQuw(L (), | .| )=(L"H. |. 1)
i) Qu (L), | .| )=(L'H), |. ]2

Proof. /)-By Proposition 4, Qbe(Lz (H)) is aright ideal of BL(H). We claim thatif T
is a positive operator in Q pe (L' (H)), then T lies L' (H) and ” T “/ < | T l , - Let
T be a positive operator in Q p, (L' (H)), and suppose that {e, }, . isan orthonormal
basis for /1. For each finite non - empty subset S of A consider the projection

PSFZ ¢, ®e,
Aes '

and note that
Y, <Te,). e;>=73 <TPs(e,), e,>=tr(TPY <| TPs |, <| T |;] Ps ||

Aes Aen

=Tl

where the continuity of the trace function and Proposition 4.iv) have been used . As a
consequence , the family of non-negative real numbers{<7(e, ) e, > } aéA is

summable with sum less or equal to | T | 1, and so T is a trace - class operator and
AT lsl Tl |

Now , let Fbein Q s (L' (H)). By th¢ polar decomposition of F* there exist a

unique partial isometry W such that F* = ¥ | F* |, and moreover | F* |= w* F*(

see [9; Theorem 2.3.4] ) . By Proposition 4.v ), [ F* | = FW belongs to Q pe (L' (H))

and : ‘
[[F* = FW |1 <| F Lo | W Jo=]| F.
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Since | F* | is positive , from the first part of the proof we have that | F* [is a trace

- class operator and ||| F*| |, < | F|;. Now, taking into account that
| F | =|F | = I F* | ", , It follows that F is a trace-class operator and
“ F ”, < , F [, . The converse inequality holds by Proposition 4.i ).

ii ) — Again by Proposition 4, Q. ( L’ (H))isaright ideal of BL(H). Let T be in
Obe (L’ (H), and suppose that {e, },_. is an orthonormal basis for /. If S is a finite

non—empty subset of A and if we consider the projection Ps =Z e, ®e,, then

Aes
2 2 2 2 2 2
ST F=3 ey ol ) s 1) ey 1)

Aes Aen

where we have used Proposition 4. Iv). As a consequence, the family of non-negative

numbers {| T¢e,) ||’}

2
is summable with sum less or equal to | Tl and so T'is
2

A

a Hilbert- Schmidt operator and ” T ”7 él T Ig . The converse inequality holds by

Proposition 4.i.). ™

REFRENCES
Martindale Il W, S. . Prime rings satisfying a generalized polynomial identity,
J. Algebra 12: 576-584 (1969).

Cabrera M. and Mohammed.A. A. Algebra of quotients with bounded
evaluation of a normed semiprime algebra, Studia. Math. 154 (2): 113-135 (2003).
Amitsur S. A. On rings of quotients. Symposia Mathematica 8: 149-164(1972).
Passman D. S., J. Algebra 105 : 207-235 (1987).

Beidar K. ., Martindale 11l W. S., and Mikhalev A. V.. Ring with generalized
identities, Marcel Dekker, New York (1996).

Mathieu M.. Applications of ultraprime Banach algebras in the theory of

elementary operators, Thesis, Tubingen (1986).

Mathieu M.. Proc. Center Math. Anal. Austral Nat. Univ. 21:297-317 (1989).

Mathieu M.. The symmetric algebra of quotients of an ultraprime Banach algebra, J.
Austral. Math. Soc. (Series A) 50 (1991), 75-87.

Cabrera M. and Rodriguez A., J .Math. Oxford (2) 43: 1-7 (1992),

(0. Schatten R. . Norm ideals of completely continuous operators, Springer

Verlag, New York (1970).

{1. Murphy G. J. . C*-algebras and operator theory, Academic Press, San-Diego

(1990).

141




