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ABSTRACT
The Wiener index is a graphical invariant which has found many
applications in chemistry. The Wiener Polynomial of a connected graph G is
the generating function of the sequence (C(G,k)) whose derivative at x=1 is
the Wiener index W(G) of G, in which C(G,k) is the number of pairs of
vertices distance k apart. The Wiener Polynomials of star-like trees and
other special trees are found in this paper; and hence a formula of the
Wiener index for each such trees is obtained .
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1. Introduction
Let G be a finite connected graph of vertex set V. The distance
between vertices u and v in G is the length of a shortest u-v path.

Let d;(u,v), or simply d(uyv), denote the distance between

vertices u and v. The eccentricity e(v) of a vertex v is the greatest possible
distance from v to all other vertices of G, that is
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e(v)= Tg/xd(u,v)-

The diameter of G, denoted by diamG or 9, is defined as
& =maxe(v)-

veV
The radius of G, denoted by radG or r, is defined as

r:rpel\pe(v).

The Wiener index of G is defined as
W(G)= > d(u,v)
{uv}
where the sum is over all unordered pairs {u,v} of distinct vertices in G. It is
clear that
W(G) =Y o(v)/2

veV

where o(V) is the transmission of a vertex v defined by

o(v) =D d(v,u)-

ueV
The average distance of G is defined as

= 1
B(G)=W(G)/ p(p-D):

where p is the order of G . It is know [2] that
1§5(G)£%(p +1)-

If x is a parameter, then the Wiener polynomial of G is
W(G,X) — Zxd(u,v) ,
uv
where the sum is taken over all unordered pairs {u,v} of vertices in G .
Let d(G,k) denote the number of all distinguishable unordered pairs
of vertices that are of distance k apart. Then

W(G:X) = 3 d(G, K)x* -

It is clear that the Wiener index W(G) is equal to the value of the
derivative of W(G;x), with respect to x , at x=1

Deriving a formula for the Wiener polynomial of some type of
graphs requires that the graphs must have a particular degree of uniformity.
Therefore several authors had obtained Wiener polynomials for special
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graphs and compound graphs (see [4] and [5]).The trees are considered as
the most important and useful kind of graphs.

Therefore many papers have been written about the average distance
of particular graphs including trees. Since Wiener polynomials provide us
with more information about distance, it is useful to find Wiener
polynomials of some type of trees. In 1996, Sagan, Yeh and Zhang [6]
obtained and studied Wiener polynomial for trees called "dendrimer” which
are used in chemistry. In 2002, D. Bonchev and D. J. Klein [1] obtained the
Wiener index of thorn rods and thorn stars that are used in theoretical
chemistry. Therefore it is suitable to find Wiener polynomials for some
other kinds of trees, as we have done in this paper.

2. The Wiener Polynomial of a Star-like Tree
Definition 2.1: A tree T of order p >4 is said to be a star-like tree if T is

homomorphic with a star F, i.e. it is possible to get T from F by inserting
vertices of degree 2 on some edges of F. The tree T has a particular root ¢

which is in the origin the center of the star F. Let u,,U,,...,U, be the end-
vertices of T, and let, be the length of the unique path from 1<i<m, a,
c to U;. Assume that the end-vertices of T are labeled such that
o, <a,<..<a, , then such star-like tree will be denoted by
T(a,, 0, 0,) .

Now we find the Wiener Polynomial for T(a,,a.,,..., ., ), using the
symbol [n] defined by

[N]=1+X+X* +..+X"",
for every positive integer n .

Theorem 2.1: For any star-like tree T(o,,0t,,...,a ) of order p =4, we
have

W((T,a,,0,,..,0.,);X) :Zm:{i(aj _i)xi}+[l+ o, ][1+0a,]

Y[t o ]+t o]+ + Ao ]-T+2)[@+a]-1) Q2D

Proof:
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To simplify the symbols in this proof , we shall denote T(m) for the star-
like tree T(ol, 0Ly, 0L, ) -
It is clear that the order of T, is p=a, +a, +...+ o, +1.
If m=1, then T, is a path from the vertex c to the vertex U,, and of the

degree 1+ a,, and using the formula of the polynomial of a path [4], we get
W(Ty):X) =3 L+, —i)x'-
i=0

which is the same result obtained from (2.1) when m=1.
If m=2, we use Theorem 1 of Gutman [4] , and we get
W(T ;)5 %) = W(Ty; X) + W(F; x) + W(c, T,y s X)W(c, F; X)
- W(CaT(l) 1 X) - W(Cl F; X) ’
where F is a path from the vertex c to the vertex U, of order 1+ c.,, and
T, =T, *F.Hence we have

W(TiX) = 3L+ 0y X+ 30+ o, i+ (X))

oy oLy
_ ZXI _ ZXI
i=0 i=0

= Zzl{i(ocj —i)x‘}+[l+ o,]1l+a,],

=1 [ i=0
which is the result obtained from (2.1) when we put m=2.
If m=3 we a gain use Theorem 1 of Gutman [4], and we get
W(T(s) : X) = W(T(z) ; X) + W(Q’ X) + W(C’T(z) , X)W(C, Q; X)
= W(c, T, x) —W(c,Q; %),
where Q is a path from the vertex c to the vertex U, of order 1+ o, , and
Ta) =T ©Q Hence, we have
W(T); %) = W(T);X) + W(Q;x) — W(c,Q;X)

+ W(C1T(2) ; X)(W(C, Q; X) - l)

W(T ) = 318, L+ ol
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+([1+ o]+ 1+ 0o, ]-D(A+a,]-1),

which is the result obtained from (2.1) when we put m=3.
Now assume that the formula (2.1) be true for the tree T(k) , Where
3<k<m.
We shall prove that it's true for the tree T, ;.
Using Theorem (1) of Gutman [4], we get
W(T .0 X) = W(Ty: X) + W(R;X) + W(C, T,y s X)W(C, R; X)

- W(C’T(k) ;X) —W(c,R;x)
where R is a path from the vertex c to the vertex U,,, of order 1+ a,,, ,
and that T, .., =T, ®*R.
Then
W(T .0 X) = W(Ty; X) + W(R; X) = W(c,R; X)

+W(c, Ty X)(W(c,R;x) —1).
It's clear that
W(c,T(k);x)zixi +§xi + +§:xi

i=0 i=1

=[l+ao,]+L+o,]+ ... +[L+0o,]-(k-1).
Therefore , substituting for , W(T,,;X) and W(c, T,,;X) and simplify,
we get
W(T(k+1);x) = ki{i(ocj - i)xi}"‘ [1+o,][1+0a,]

=1 =0

+Zk:([l+ o, ]+A+o,]+ .. +[1+a,,]-r+2)([1+a,]-1

r=3

+(+ o] +RQ+a,]+...+1+0o ]-k+D)([1+a,]-1)
AN R RS

j=1 | i=0
k+1

+> (M+o]+R+a,]+.. +Q+a,,]-r+2)([1+a,]-1)
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Since the theorem is true for T, ;) , then it's true for any tree T, , and
thus the proof is completed.

Corollary 2.2: Let T(o,,0,,...,0,,) be a star-like tree of order p >4,
where o, <o, <...<a,,, then its Wiener index is

WCT, 0ty L)) =1ia,-(af ~D 42 a0 o) + o)

Zoc {Z(1+(x) +a (1+Za )—r+2}

2 r=3 i=1
Proof:
Differentiating (2.1) with respect to x and replacing x=1, we get

W((T, 0,05, 00)) = Z{Zl(a —I)}+(1+0L1)ZI+(1+OLZ)ZI

=1 | i=1

{(1+0°1 ta, +---+ar_1)izl:i}+§{ar(;i +;i +...+T§;i)}

2
i

+

M 1M

Il
[N

i

f_H
N |~
Q
—
Q
+
N

—locj(ocj +1)(20c]. +1)}+1(1+ a,)a,(l+a,)

1+ o), A+a,)+= Zoc {(1+Zoc L+, )+ZOL (L+a, )}

2
’55‘

_l) (1+OL1)(1+0L2)((11+OLZ)

i

r-1 r-1 r-1
ar{ar(l+ > o)+1+2> a, +Zoci2}
i=1 i=1 i=1

—1)+%(1+ocl)(l+oc2)(al ra,)

i

0 +
Nl oI NFP OR- N\l—\

MB M M= 1M

OLJ(OLJ

r{ocr(1+ iloci) +i(1+ a,)’ —r+2}. #

Notice that it's possible to find the average distance of a star-like tree
T(a,,a,,..., 0, ) by dividing the Wiener index W(T (a0, ,..., L, )) by

ng,where p=1+ iai )

i=1

+
L
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Definition 2.2: The tree T(o,,0,,...,0,,) of order p>4 is called a Fan
graphif o, = o, 1< j<m, which will be denoted by F(m, ).
Corollary 2.3: The Wiener Polynomial of a fan graph F(m, o) is given by

W(F(m,a);x) = mi(1+ a—i)x + ;m(m “D([+a]l-)*-m+1  --.(22)

Proof:
Using Theorem 2.1 and putting o.; = a for all j=1,2,...,m, we get
W(F(m,a);x) = i{i(a - i)xi}+[1+ o]’
j=1 Li=0
(=D + o] -r+2)[L+ o] 1)

r=3

MY (o= i)x' +[L+ o +[L+al Y1)

~f+al}@r-3)+Y(r-2)
=M (o~ )X + ;m(m “DL+ ol —m(m-2)L+a
+%(m—1)(m—2)

=mY AL+ o)X +;m(m D+ o]-1 —m+1-

#
We notice that when oo =1, the fan F(m,1) becomes a star of order

m+1, and if we substitute ao=1 in the formula (2.2) we get the Wiener
Polynomial of the star of order m+1.

Corollary 2.4: The Wiener index of a fan graph F(m, o) of order p >4 is
W(F(m,a) = %moc(l+ a)(3ma. — 2a. + 2) ,

and its average distance is
D(F(m,a»=<1+a){1_ 20.+1 }

3(ma +1)
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Proof:
The Wiener index W(F(m, o) follows from corollary 2.2 by

substituting o; = o forj=1,2,...,m.
And since the number of vertices of F(m,a)is p=ma +1, then
its average distance is

D(F(m, o)) =;W(F(m,a))
(ma +1)ma
_ @+ 0)@Bma—20+2) 1 1 200+1 |
- 3(mo. +1) = 0‘){ ~ 3(ma +1)}
#

Its clear from the above result that D(F(m,a)) <1+ o, and this
inequality generally means that the average distance of the tree F(m,a.)is
bounded above by 1+e(c), where c is root .

3. Other trees

Definition 3.1: Let M, ., De a tree constructed from a path whose
vertices (in order ) are W,,W,,...,W_ with a fan graph F(a, o) which has
W, as its center , and another fan graph F(b,3) of centerw,, as shown in
Fig. 3.1.
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Fig. 3.1,. The tree M, b5
Notice that the order of M, u., 1S P=ac+bB+y, its

diameter o+ +vy—1, and will suppose that y > o >3.
To simplify the symbol M, ) s), We'll denote it by M in the

following results.

Theorem 3.1: The Wiener Polynomial of a tree M is given by
o
W(M:x)= 2d(M k)xK,

k=0
where d(M,0) =p=aa + bp + 7 , and for all k>1, we have

. k+(k—1){2j+@]}; when1<k<p

u p—k+(k—1)(aj+[25+l_kj{g} when B<k<a

2 1
d(M,k) =
p_k+(2a+1—k](aj+(23+1—kj(b} whena <k <7
- 1 2 1 2
a(oc+y—kj+b([}+y—kj+[2a+1—k}(aJ
— 1 1 1 2
(2B+1—kj{bj
+ + mab; wheny <k <8
1 2
in which
K—1v; wheny<k<y+p-1
m = B; when y+B<k<y+a

d—k+1 when y+a+1<k<$
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and d=a+pB+y-1
Proof:

We partition the set of the vertices of the tree M into three subsets
V,,V

1 2,V3 , Where
V, = Wy, Wy, W J,

\Z :OVZi , Va :{ul,iluz,iv---’ua,i}’ 1<i<a,

i=1

b
V,=UVa o Vo ={vi Vpi V. 1<i<b,
i=1
It's clear that each of the induced sub graphs <Vy; >and, is a <Vg; >

path.
To explain the proof we divide it into two parts.

First: When 1<K <1, this part is divided into the following three cases
(@When 1<k <3, we note that

1. If the two vertices were in the set V., or if one of the two vertices

is in the set V,, and the other vertex is in the setV,, forall 1<i<a,

then we have o, of the pairs that are distance k apart , and this case
leads to aat unordered pairs for all these values of i .

2. If the two vertices were in the set V,,, or if one of the two vertices

is in the set V;; and the other vertex is in the setV,, forall 1<i<b,
then we have 3, of the pairs that are distance k apart , and this case leads
to b unordered pairs for all these values of i .

3. If the two vertices are in the set V,, then we have y — K pairs .
4. If one of the two vertices was in the set V,, and the other was in the
set V,; for each i j, then we have (K —1) unordered pairs , and this leads

to (k _1)@} when we take all the cases for 1,j=1,2,...,a.
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Similarly, we have

(k_l)(b] unordered pairs if one of the two
2

vertices is in the set V;; and the other is in the set V;; for each i # J, and

for all values of i,j=1,2,...,b.
Hence, the total number of unordered pairs of vertices that are
distance k apart, when 1<K <3 is

ac+bB+y—k+(k —1)@ +(k —1)@ -
Therefore

d(l\/l,k)=p—k+(k—1)+{[2)+(2}}; when 1<k<f

(b) When B<k<a, then the numbers of unordered pairs of vertices
mentioned in case (a) are all hold except for the case in which one of the
two vertices is in the set V; and other is in V;; for all i j, in which if,

k <2[, then the number of the pairs is 2B +1—K, and if k> 2[3, the
number of the pairs is zero. Therefore

d(M, k) = p—k+(k—1)@+[2B +11‘ kJ@ when B<k<a.

Notice that its not true in this case to write the number {23”— kJ in
1

the form 23 +1—Kk, since, if K> 2 + 1, then this combination will be
zero, this style of expression will be used later in similar cases.

(c) When o < k <y, then the numbers of unordered pairs of vertices
mentioned in case (b) are all hold all except for the case in which one of the
two vertices is in the set V,; and other is in V,; forall i+ j, in which if,

k < 2o, the number of the pairs is 2ot +1— K, and if K > 2o, the
number of the pairs is zero. Therefore

d(M,k):p—k+(2a+l_kJ(aJ+(2B+1_kJ(bj, when a<k<y.
1 2 1 2

Second: When , the unordered pairs of vertices that are distance k apart are
of the following five kinds:
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(1) One vertex in the set V, and the other in the set V,; the number of the
these pairs is

+v-k
1
(2) One vertex in the set V, and the other in the set V,; the number of the
these pairs is

+y—k
o[ YK
1

(3) One vertex in the set V,; and the other in the set V,; ; forall i # J; the
total number of these pairs is

al2o+l-k)

2 1
(4) One vertex in the set V;; and the other in the set V;;; forall i # j; the
total number of these pairs is

bY2B+1-k

2 1
(5) One vertex in the set V, and the other in the set V, (i.e. a vertex in V,,

and other in V;;) where 1<i<a,1<j<b, then the number of such pairs

of vertices is mab in which the values of m depend on k, and we find it
easily from Fig. 3.2.

\'
ﬁ’t\ /u(x,s
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Therefore if y <K <y+B—1,then m=Kk —vy;
if y+Bp<k<y+a,then m=p;
if y+a<k<d,then m=35+1-K.
Hence by taking the numbers of pairs in the cases (1),(2),(3),(4) and

(5), we get the formula mentioned in the statement of the theorem when
v <K <8. Thus the proof is completed .

Remark

The Wiener Polynomial of the tree M,y ), €an be expressed in
the terms of Wiener Polynomial of the path graph Q =<V, >, the fan
graph F(b,[3), and the fan graph F(a,a), by using Theorem (1) of
Gutman [4], as it is given in the next theorem.

Theorem 3.1: For the tree (M =) =M, )., We have
W(M; x) = W(Q; x) + W(F(b,B); x) + W(F(a,a); X) — 2

+b(k§;xk)(§xk)
Fal> X)X +b'S X .. (3.,

k=1
Proof:

" Let H=QeF(b,p), then
W(H; x) = W(Q;x) + W(F(b,B); x) +{W(w,,Q;X) ~THW(w,, F(b,); x) - -1
=W(Q;X)+W(F(b,B);x))+b(gxk)(gxk)—1 .. (1)

Since M=H e F(a,a), then
W(M;x) = W(H; x) + W(F(a,a); X)

+{W(w,,H;x) - B{W(w ,F(a,0); x) -} -1 ..2)
But
W(Wy,H;x)=1+Yixk +bV+Z“Bilxk ..(3)
and W(w._,F(a,a);x) =1+ a> x" .4
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Thus, substituting (1),(3) and (4) in (2) , we get the required relation
(3.2).

Notice that Theorem 3.2 is more general than Theorem 3.1, because
it doesn’t require the condition Y > o > 3 ; but it's possible to find formulas

for d(M,k) when o>y >3 or a >3 >y, as in Theorem 3.1.

But Theorem 3.1 is more useful than Theorem 3.2 when we want to
find the coefficient of a particular power of x.

Corollary 3.3: The Wiener index of the tree M =M, ), IS

W(M) = é{y(yz —-1)+b(3b-2)p* +a(3a - 2)a’ + (ac + bB)(3y* —1)}

T ;{b(b ~1)B? +a(a—1)a? + b(aa +7)p? +a(bp +y)o? |+ abafy -

Proof:
To get the Wiener index of M, g, - differentiate the formula

(3.1) with respect to x then substitute x=1, as follows:
W(M;x) =W'(M.1) =W(Q) + W(F(b,)) + W(F(a, )

1 B -1 +B-1 o
+bBS k+b(y—)Y k+ac(Sk+b > k) +a(y—1+bp)>k
k=1 k=1 k=1 k=y k=1

:%W D+ %bB(1+B)(3bB _2p+2)

+ %aa(l-l- o)(3ao — 20, + 2) + %bBy(y -1+ %b(y -DBP+1)

1 1 1
raol Zyr-0 bR+ JB-1)) + 22l -1+ BB+ 1)
Simplifying the above expression , we get
W(M) = é{y(yz ~1) + b(3b— 2)B° +a(3a — 2)a® + (acL + bP)(3y® — 1)}

4 ;{b(b ~1)B? +a(a—1)a? + b(ac +7)p? +a(bp +y)o? |+ abafy -
#
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