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ABSTRACT

In this paper, we study three types of finite difference methods, to find the
numerical solution of reaction difference systems of PDEs in two dimensions. These
methods are ADE, ADI and Hopscotch, where Gray-Scott model in two dimensions has
been considered. Our numerical results show that the ADI method produces more
accurate and stable solution than ADE method and Hopscotch method is the best
because does not involve any tridiagonal matrix. Also we studied the consistency,
stability and convergence of the above methods.

Keywords: Gray-Scott model in two dimensions, finite difference methods, Alternating
direction explicit method, Alternating direction implicit method, Hopscotch method.

Cuim B Aol Laany) allasl duguiall iy il Jgla (3l A3\ie
S bl cpal dana  giillae Zg s dae o AL (g s
Ghall/deasall daala/cbucalilly Cigulall asle ST
Glyall/ 5315 daala/ashell 4487
200/8/15: Gl 58 gl 2007/4/23: Cad) pdiu) f)
oadlal)
e plail (ga3al) dall alagy ¢Jramiillyy dagiiall cligall (Bl (g gl D apxi ) 138 b
Glgaiall danh oo Gyhall oda ((pae A ALK adadll g55 (e dpdadll e bl dalialinl) Y aleal)
z 3l (Hopscotch) 4aiyhs (ADI) duieall i dleiall cilgaiall diyhag (ADE) 4y all 4 dlaidll
(ADI) duiecall ddleiall Clgaiall dijla of duoaal) bl (e Linitialy «cpass <l3 oliad b Gray-Scott
il & Hopscotch diyh o) daiill ¢Sly (ADE) dasyall 48l cilgaiall Ayl oo Juadl o
DU D il ghaall direa (s5in3 Y L ) ALYl 5uS 033 2 lias Y Ll ADI dinh o
DA @ylall (e SV C)lig duylyiiady d8sh Ly WS W Tridiagonal
4y Hha | day jeall Aflaial) Cllgaiall 48 Hla Ayginal) i 5 dll 33l 5k S gl S 73 sl dpalidal) cilalsl)
St ARk dpaall Alaia) Clgaiall
1. Introduction

Many Mathematical models, such as partial differential equations, can be used
to describe some chemical, physical, biological, fluid flow, electricity systems, etc [6].
Zegeling [16] discussed a Gray-Scott model in two-dimensions for adaptive grid
method that is based an a tensor-product approach. Adaptive grids are a commonly used
tool for increasing the accuracy and reducing costs when solving both PDEs and ODEs.
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A traditional and widely used form adaptively is the concept of equidistribution. Which
is well-defined and well-understood in one space dimension? The extension of the
equidistribution principle to two or three dimensions, however, is far from trivial and
has been the subject of investigation of many researches during the last decade. Besides
the non-singularity of the transformation that defines the non-uniform adaptive grid, the
smoothness of the grid (or transformation) plays an important role as well. The analysis
of these properties and illustrate their importance with numerical experiments for a set
of time-dependent PDE models with steep moving pulses, fronts, and boundary layers.
In this paper we study and apply the finite difference methods to approximate
the solution and study the consistency, stability and convergence of the numerical
solution of a model of nonlinear parabolic partial differential systems which is two
dimensional Gray-Scott models [15]. These methods are combinations of finite
difference method with
- Alternating direction explicit method (ADE)
- Alternating direction implicit method (ADI)
- Hopscotch method.

First we derive the finite differential form of ADE, ADI and Hopscotch methods for
the given model and then present an algorithm for each method. Also we compare
between them.

The consistency, stability and convergence for the above methods have been
examined.

2. The Gray-Scott model in two Dimensions [3]

Reaction-diffusion models of chemical species can produce a variety of patterns,
reminiscent of those often seen in nature. The Gray-Scott equations model can be
consider as reaction. Numerical simulations of this model were performed in an attempt
to find stationary lamellar patterns like those observed in earlier laboratory experiments
on ferrocyanideiodate-sulphite reactions [13]. The chemical reactions for this situation
are described by

U+2V — 3V,
V—->P,

where U, V and P are chemical species. The system of reaction-diffusion equations for
this situation is given by

2 2
u, :al(a_ujL%j—uvz +f(1-u),

ox*
2 2
V, =a2(%+%j+uv2 —(f+g)v.

where u and v are concentrations of two reactions, o, and o, are the diffusion rates in

the process, g represents the rate of conversion of V to P. And f is the rate of the process
that feeds U and drains U, V and P ([15], [11]).

Then we choose the model parameters as o, =8x107°, o, =4x107°, £=0.02

and g=0.066 to get the model showed in equations (1) and (2)
From pattern formation the following reaction diffusion system [3] exhibits complicated
solution behavior:
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2 2
N_ ag+6lj —uv’ +0.02(1-u) , @)
ot ox® oy

2 2
%z()t{%+%}+uvz ~0.086 V. (2)

where 01=8x107° and a,=4x10"°
The initial conditions are

u(x,y,0)=1 0<x,y<I,
v(x,y,0)=1 O<x,y<lI,

on the spatial domain [0,1]x[0,1].

In this model self-replicating spots have been observed. These are regions in
which the (chemical) concentrations of some of the species exhibit large amplitude
perturbations from a surrounding homogenous state.

3. Numerical Methods

We solve the mathematical model in (1) and (2) with the combination of the finite
difference methods with ADE method, ADI method and Hopscotch method.

3.1 ADE Method [14]

This method is referred to as alternating direction since a single cycle of
computation requires the solution of two different finite difference approximations
written in different physical directions. The end result of the two cycles is taken as the
answers on the (n+1) plane [7].

When we consider a square region 0 < x <1, 0<y <1 and u, v are known at all
points within and on the boundary of the square region. We draw lines parallel to X, y,
t— axis as

x=ih, i=0,1,2,..
y=jk, j=0,1,2, ...
t=ndt, n=0,1, 2, ...

Then the explicit finite difference approximation to Gary-Scott model in two-
dimensions are given by

ui,j,n+1'ui,j,n =0 (ui-l,j,n _Zui,j,n +ui+1,j,n j_Hx (ui,j-l,n '2ui,j,n +ui,j+1,n J
1 1

St h? K’ 3)
2
U, V2, +0.02(1-u”.1n)
Vi,j,n+1 _Vi,j,n —a Vi—l,j,n _2Vi,j,n +Vi+1,j,n T Vi,j—l,n _2Vi,j,n +Vi,j+1,n
St 2 h? ? k? (4)
+u,,.v;, —0.086v,
Multiply eq.(3) and eq.(4) by 6t and set h=k, O;ft =r, and %?t =r, then we get
ui,j,n+1 = (1_ 4r1 —0.02 St)ui,j,n + rl(u i-1,j,n + ui+1,j,n + ui,j—l,n + ui,j+1,n) (5)

—u.. Vv> 8t+0.025t

i,j,n i,j,n
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and
V,,n = (1—4r,—0.086 5t )v

+Uu.. V2 &t

1LJ,n LJ,n

2 (Vi—l,j,n +V + Vi,j—l,n + Vi,j+1,n )

i,j,n i+1,j,n

(6)

3.2 ADI Method [8]

The ADI method is developed by peaceman and Rachford in 1955 [12] and is
called Alternating Direction Implicit (ADI) Method. This two-step approach requires
minimal computer storage and is quite accurate. Further, ADI method is unconditionally
stable. The method involves the alternate of two different finite difference
approximations to the two-dimensional space [1].

In the ADI approach, the finite difference equations are written in terms of
quantities at two x levels. However, two different finite difference approximations are
used alternately, one to advance the calculations from the plan n to a plane (n+1) and
the second to advance the calculations from (n+1) plane to the (n+2) plane [7].

With this method, each of the two steps involves diffusion in both the x and y -
directions. In the first step the diffusion in x is modeled implicitly while diffusion in y
modeled explicitly with the roles reversed in the second step [9].

Then we advance the solution of the Gary-Scott model, from nth plane to

2 2
(n+1)th plane by replacing a_ and a_ by implicit finite difference approximation at
X X
2 2

the (n+1)th plane. Similarly 2y—lj and 27\2/ are replaced by an explicit finite difference

approximation at the nth plane. With these approximations eq.(1) and eq.(2) in Gary-
Scott model can be written as.

ui,j,n+1 - ui,j,n —a |:ui—1,j,n+1 2u|]n+1 |+1j,n+1:|+ a. |:ui,j—1,n - 2ui,j,n + ui,j+1,n :|
1 1

8t h? k? @)
~u,,V* +0.02(-u,,,)
and
Viins ~Vign _ [VMJM =2V, 0+ Vigna } iy {vm,n =2V, Vs }
St ? h? 2 K2 (8)

+u,,.v;,, —0.086 Vv,

i,j,n Vijn

We set h=k, than we have a square region and multiply eq.(7) and eq.(8) by &t and let

0,0t ao.,0t
rl:—ﬁz and r,= ;2

'rlui-l,j,n+1+(1+2r1) Uiiner iUisgjnen =Mijan (l-2|’ )uij n Ui 9
-3t uyj,vE,+0.02 8t (1, ) ©

and
Vit imert (1420 Vi Vit ina =R Vipan T(1-26 ) Vi FVigan )

ot u;;, Vi, 2 -0.086 ot Vij
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Now we advance the solution from the (n+1)th plane to (n+2)th plane by

replacing U and O°V with explicit finite difference approximation at (n+1)th plane
ox? oX*
then U and OV by an implicit finite approximation at the (n+2)th plane. Then eq.(1)
oy* oy’

and eq.(2) in Gary-Scott model becomes

2
Wi Wi _ {“11 it =20 n+1+“i+1,j,n+l} +u |:“i,j-1,n+2 =204 Ty m}
it

ot h? Ik?
Vi H0.02(1uy )
LJ i 1, (ll)
and
V].,J n2 V],_] n+l =q Vi—l,j,n+1 2V1J;1+1+V1+1’];1+1 +a 1i"'71.,,.] ln+2 -'VJ.,_] IH'2+V],J+1,11+2
8t ? h? ? k?
+|. 1.,]11 1.]11-0 Dgﬁ V (12)
a16t a28t
2

for a square region,

- r1ui,j—1,n+2 +(1+ 2r1)ui,j,n+2 I ul j+HLn+2 — =r ui—l j.n+l +(1_2r ) i,j.n+l +r u|+1 j.n+

(13)
—&tu, V2, +002&(-u; )
and
“LVijane (1"' 2r, )Vi,j,n+2 Vi =hVigjea t (1_ 2r, )Vi it T Vi jna (14)
+cStu,Jn in— 0086V,

These systems are a tridiagonal linear system of equations and can be solved by
the LU algorithm.

3.3 Hopscotch method

This technique, which lies somewhere between explicit ADE and implicit ADI,
was suggested by Gordeon [4] and marketed by Gourlay [5] under the name of
Hopscotch [10].

The Hopscotch method is an interesting combination of the forward-time
centered-space (FTCS) method and the backward-time centered-space (BTCS) method.
The basic idea of the Hopscotch method is to make two sweeps through the solution
domain at each time step. On the first sweep, the explicit FTCS method is applied at
every other grid point. On the second sweep, the implicit BTCS method is applied at the
remaining points. That is the explicit equation is first used for those points with (i+j) is
even and then implicit equation for those points with (i+j) is odd [8].

Now we transform the Gary-Scott model in two dimensions to Hopscotch finite
difference formula. Thus the explicit formula has the form:

ui,j,n+l _ui,j,n —a |:uil,j,n _2ui,j,n +ui+1,j,n ]HZ |:ui,jl,n _2ui,j,n +ui,j+1,n:|
- 1

& h? k? (15)

—u, +0.02(-u, )

|1n|1n

and
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Viina ~Vijn _ o Vigin = 2Vijn +Viain e Viian = 2Vijn +Vijun
2 ? k? (16)

+ U —0.086V.

|Jn|Jn i,j,n

multiply eq.(15) and eq.(16) by 6t and when h=k, we assume that 0:]1? =, 0‘;2& =r,

then we get
|Jn+1 (1 4r—002&)u|1n (|ljn+u|+1jn+u|1ln+u|1+1n) (17)
—Ujn IJn&JrOOZét
and
|Jn+1 (1 4r _0086&)V|1n (|1]n+V|+ljn+V|J1n+vlj+1n) (18)
+U| ,jn |21 n &
and the implicit formula are
u. ..-U.. U... ..-2U.. ..+U. .. u.. 22U +U. .
ijn+l Yijn _ i+1,j,n+1 ijn+l i-1,j,n+1 ij-1,n+1 ijn+l ij+ln+
5t _a{ h? } +a1[ K2 } (19)
Uyj Vi 0.02(1-uy, )
and
Vi Vijn | Vit "2 Vigmen TVik et Vijt ekt "2 Vigntt Vi
= Uy 7 Ty .
ot h Iz
g, vE L -0.086 v 20)
We multiply eq.(19) and eq.(20) by 5t and also when h=k and assume r, = arl]& and
_ a,0t
2
(l+ 4rl)ul J,n+l (1 0 02&)u| j.n ( i-1,j,n+1 + ui+1,j,n+l + ui,j—l,n+1 + ui,j+1,n+1) (21)
—AqU; .V, IJn+0028c
and
(1+ 4r2 )VI jon+l T (1 0 OBGét)Vl j.n ( i-1,j,n+1 + Vi+1,j,n+1 + Vi,j—l,n+1 + Vi,j+1,n+1) (22)
+a ul j,n | j.n

4. Numerical Consistency

A scheme is said to be consistent if the local truncation error tends to zero as h tends
to zero [8]. In the context of the diffusion equation, the numerical scheme must be
consistent with the original partial differential equation.

A numerical algorithm is said to be stable if the round off error does small errors in
stay bounded during the numerical process.

A scheme converges if it is both consistent and stable as temporal and spatial
discretisation is reduced [2].

4.1 Consistency of ADE Algorithm

The ADE algorithm for equation (5) where r, = O‘ﬁ?t
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ui,j,n+1 | j.n +T ( i-1,j,n _2ui j.n +u|+1 j, n)+ r‘l(ui,j—l,n _2ui,j,n +ui,j+l,n) (23)

—Ui Vv ,Jné’[+002c3t(l U.,n)
When we examine the consistency we eliminate all terms that not effect on the
consistency, non linear terms and constant terms.

Thus the eq.(23) becomes
u. =r

i+l Yijn 1(ui—1,j,n —2u
~0.028tu,,,

u +ui+1,j,n)+ rl(u _2ui,j,n +ui,j+1,n)

i,j.n i,j-1,n

(24)

Now each term in eq.(24) is replaced by its Taylor series expansion taken about
(xi,yj) at time tn.

Uy ey U0 =085 Uy, 180 1, -0.025t u, (25)
divided eq.(25) by 8t and replaced ry by %%t 8t then

ina i _ % g0 4 ofh?)s % un +0(h?)-0.02

T—?U + +Fuyy+ —U. ui,j,n

ie.

ut-%uix-?u =-0. 02u”n+o(h2)+o(5t), when h=k any implementation of ADE

algorithm in which h individual tend to zero with h—zl =C, c is a constant, thus the

ADE algorithm is consistent.

In the manner we can show that ADE algorithm for the equation (4) that is
bellow.
v, V.. o+ (v

i,j,n+l = i,j,n

+ ot U, 00866’[v

i,j.n |Jn

i-1,j,n 2Vi j.n +V|+1 i, n)+ r-Z(Vi,j—l,n _2Vi,j,n +Vi,j+l,n)

Is consistent.
Thus the ADE algorithm for egs.(1) and (2) is consistent and the local truncation

error is of O(h2 +(6t)).

4.2 Consistency of ADI
the ADI finite difference form of Gary-Scott model in two-dimensions are

'rlui-l,j,n+1+(1+2r1)ui,j,n+1_r1Ui+1,j,n+1 MU jan t (1 2r1)ul in TRY; a0 (26)
—&tu, v, +0.028(-u, )
and
SN jnse +(1+ 2r1)ui,j,n+2 Ui 02 =05 o +(1_2r1)ui it TR na (27)
—&u, Vi, +0.02a(-u, )

Now we write the egs.(26) and (27) in the forms in which we dropped the
subscripts i1 and j from u and write the time at in the super subscripts, and let

o, ot
rn=—1

(- 152 b = (14152 i —0.028t u” (28)
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1-1,62 ™% =1+ 152 U™ —0.02¢ u" (29)
(L-ro b =17 b
The quantity u™?! is first eliminated by multiplying equation (29) by the operator
(1— rﬁf)and thus (29) becomes
(1-182)(1-18% Ju™? = (1+1,82 )(1-1,3% )u™ —0.025t (11,32 )u"
= (141,82 )(1+1,3; Ju" —0.025t (1-1,3% )u"
thus we can verity that

(14126262 u™? —u" ) =1, (62 + 52 Ju™? —u")-0.02& u"(L— 257, (30)

1 %x™y

if we divide eq.(30) by 26t and replace r1 by alft to obtain
h

+2 0N
u

(14125252 un28_t i

2h?

=a, (8;+32) 0.01 (1-78; Ju" (31)

each term appearing in eq.(31) is replaced by its Taylor series expansion taken about
(xi,y;) at time tns1 . It is easy to see that (u"2-u")/25t is the central difference formula
for ur attime tr1 and therefore

n+2_

1¥xYy

n

u™t-u
26t :ut 1+O((6t)2)’
u™? —u" =25t +0((st)?),
Consequently
urun ey (83487 ) 28t )
o (85+3}) T thz +O((8t) )
=03t (ups +upr ) +O((8t)° ,h?)
and
2¢2q2 (. n+2 _.n 2 2
(78555 (u™2-u") 07 (5t) o5 2
e +o((at)’)
=o,” (3t)" ujs, +O( (3¢)" b

the component are now assembled to give
-0.01u"+0.01 rlﬁiu"=-0.0lu”+0.01ahl—§t(ui_lyjyn-2uiyj'n+ui+lyjyn)

=-0.01u" +0.01a, (5t)u”, +O(h?)

thus eq.(31) becomes

u?+1+0((6t)2)+a12 (5t)° u?;xlyy+o(h2,(5t)2)=a15tu;;1+a15tu;;1 @)
0,015t u™+0.01(8t) oy, uj, +O((3t)"h?)

then eq.(32) may be rearranged to give

ur*l-alét(u§;1+u;;1)=-0.016t u"+0.01(5t ), ul-0,” (3t)° Ugey

+0((3t)"h?)
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Thus the ADI algorithm for Gray-Scott model, in two-dimensions, is consistent. Also
we show that the concentration v for eq. (8) and (12) is also consistent. Consequently
the ADI method of Gary-Scott model, in two —dimension, is unconditionally consistent
since h tend to zero. Thus the local truncation error is O((st)? + h?).

4.3 Consistent of Hopscotch Method

The Hopscotch finite difference method for Gary-Scott model in two-
dimensions has the following explicit form

ui,j,n+1:ui,j,n+rl(ui 1jn_2UiJn+U|+1Jn)+ rl(ui,j—l,n_zu +U| j+ln) (33)
—&u”n ijn +0.028t —-0.0268;
and the implicit form is
ui,j,n+1 | j.n +r1( i-1,j,n+1 2u| Jn+1+u|+1]n+l)+ rl(ui,j—l,m-l_Zui,1n+1+u| ]+1n+1) (34)
~ &, V7, +0.028 - 0.028,
the linear terms of eq.(33) and (34) without constant are
Ui s = Ui o = 6O + 6O —0.028U, (35)
Uijna —Uijn = r15><2ui,j,n+1 + rlayzui,j,n+1 -0.02&u; ; , (36)
If we divide (35) and (36) by ot and replace r1 by ri=.5t then we have
h2
ui,',n+1 _ui,',n
J & h; 5x2 i,j,n hz 55 i,j,n 002 ui,j,n (37)
ui,',n+ _ui,',n a.
% h; é‘><2 |Jn+l h:zL 5; i,j,n+1 -0.02 ui,j,n (38)

each term in (37) and (38) is now replaced by its Taylor expansion to obtain from (37)

2

Mijn , A0 "0 4 of(@)F )= aur, + Oh )+ ayu?, +0(h?)-0.02u, (39)
a2 ot I
and from (38)
ou, ou,
uét"” % ;t';'” +0((@) )= +0(h? )+ aur +0(h?)-0.02u, (40)
from (39) and (40) we have
u -y, +u,, )=0(n? (&) )-0.02u,,, (41)

thus the Hopscotch algorithm is unconditionally consistent since h and &t tend to zero
and the local truncation error is O(h2 +(8t)3)-

In the same manner we can show that the Hopscotch algorithm of eq. (18) and
(20) is also unconditionally consistent in the end the Hopscotch algorithm of Gray-Scott
model in two dimension is unconditionally consistent.

5. Numerical Stability

There two methods, we used here one including the effect of boundary conditions and
the other excluding the effect of boundary conditions are used to investigate stability.
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Both methods are attributed to John von Neumann. These approaches are Fourier
method and matrix method.
Fourier method, the primary observation in the Fourier method is that the numerical

scheme is linear and therefore it will have solution in the form u(x,t)=A'¢'*. Thus
numerical scheme is stable provided |4| <1 and unstable whenever|4|>1 [14].

5.1 Stability Analysis of ADE Method

The von-Neumann method has been used to study the stability analysis of Gary-
Scott model in two dimensions.
We can apply this method by substituting the solution in finite difference

method at the time t by y ()™ ™, when £, >0 and m=+/-1 [14].

To apply von-Neumann on eq.(1) we have to linearlize the problem and thus we
get after we eliminate non-linear term the following:

d_, (al';+au}+002(1 u) (42)
a ot oy

we have the following finite difference scheme for eq.(42)

u =u, ., +rlu, —4u; ;]

i,j,n+1 = Mi,j,n

+0.02 &t —0.026t u,

i,j,n

+Uu +Uu +Uu

i-1,j,n i+1,j,n i,j+1,n i,j-1,n

(43)

where | _ ad and (h=k). We assume U, in =y (tle™e™ , substituting in eq.(43) then
h? "

we have

\V(t-ﬁ-At)emBX emy _\V( ) me my [w(t)emﬁ(x—Ax)emyy +W(t)emB(X+AX)emW n

y(1)e™rem ) 4y (1)e™e™Y M) —4y (t)e™"e™ |+ 0.02At - 0.02Aty (t)e™e™

or Y(t+ay 1+, [e‘m‘m +eM g™ g™ 4] +0.02At

w(t)
W(%?)t):ézlml {sz (W%j (ngj}ro 02At

For stable situation, we need |£|<1, and hence we have

—131—4r1[sin (ﬂgx}tsm (72yﬂ—0.02m£1

Considering the left-side inequality (as the right-side inequality is always true), we have

—1s1—0.02At—4r1[sin (ﬂﬁxjﬂm (7;)}

for some B andvy, sinZ(ﬂAX) and i ( Ay) is unity. Hence, we have
2 2

—~1<1-0.02At —4r,(2)
r, < 0.25-0.0025At
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This is the condition for stability, in a square region h=k, when we use ADE

method for eq.(1). Thus the ADE method for eq.(1) is conditionally stable.

Now, Also the stability condition of eq.(2) can be found, for h=k, which is

[ Sl_ﬁAt . Thus the ADE method is conditionally stable.
4

5.2 Stability of ADI Method for Gray-Scott in Two Dimensions
The ADI finite difference form for (9) is

- r.lui—l,j,n+]. +(l+2rl)ui‘j,n+1 ru|+1jn+1 =r ul j-1n (l 2r1)"I| j.n + rul j+ln
— Aty +0.02Atl-u,,,)

i,j,n |1n

Assuming

Uijn = l//(t)emﬁxemw

And substitute (45) in (44) we have

-yt + AR™0 6™ 4 (14 2r y(t + At)e™e™ — ry(t + At™ g™
= lw(t)emﬂemy()’ﬂy) + (1_ 2r1)')y(t)emﬂxemw n rll//(t)emﬁxemr(ymy) _ O.OZAtyI(t)emﬂxemW

e [Fre ™ (14 2r)-re™ Jy(t+At)=[re ™ + (1-2r )+ re™ Jy(t)- 0.02Aty (1)
i o [~ (cos(BAX)—msin(BAx)) +1+2r, -1, (cos(BAX)+ msin (BAX)) |y (t + At) =

[rl cos(yAy) —msin(yAy)+1-2r, —0.02At +1,(cos(yAy ) — msin (yAy))]
i.e. [—2r,cos(BAX)+1+2r, |w(t+At)=]2r,cos(yAy)+1-2r, —0.02At |y (t)

y(t+At) 2rcos(yAy)+1-2r, —0.02At
w(t)  —2rcos(BAX)+1+2r,

or (1 2sin? (V yD+1 2r - 0.02At

D+l+ 21,

—4rsin ( j+1— 2r,—0.02At

—2r. (1 2sin?

—21, + 4r,sin’ (BX) +1+2n,
2

\y(t+At)_l_4rlsin ( j 0.02At

W(t) ) 1+4rsm (B j

Similarity for eg.(10) we obtain
1-4r;sin (Y y) 0.086At
£, = 2
n -
1+4rlsin2(l3ng
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where &, and &, stands for the I plane and Il plane. Each of the above terms &, and
&, are conditionally stable. However, the combined two-level has the form:

1- 4rsm ( zy) 0.02At || 1—-4r,sin (yzyj 0.086At
1+4rlsin2(B§X) 1+4rlsin2([3§xj

Thus the above scheme is unconditionally stable, each individual equation is
conditionally stable by itself, and the combined two-level is completely stable.

aADI = §| ) E}n

5.3 Stability of Hopscotch Method

The stability of explicit form of Hopscotch is the same as the stability of ADE
method i.e. is conditionally stable.
Now we study the stability of implicit form of Hopscotch formula

(1+ 4r1)ui,j,n+1 (1 O OZAt)Jl j.n ( i-1,j,n+1 + ui+1,j,n+l +ui,j—1,n+l + ui,j+1,n+l) (46)
we assume that:
Uijn= l//(t)emﬁxemyy (47)

Substitute (47) in (46) we have

(L+4r, (L + Atle™e™ = (1-0.02At Jy (tle™ €™ + 1y (t + At ™2
+y(t+ ADR™ O™y (t 4 AR ™M 4y (t+ At e™ Y|

or
1+4r y(t+ At) = (1— 0.02At i (t) + rp(t + At )e ™% 4 @M 4 g~ 4 oMY
(L+4n y(t + At) = ( W (t) + rp(t + At)]

= (1-0.02At )y (t)+ 2ry (t+ At)[ cos(BAX)+cos(yAy) ]

(1+4n )y (t+At)=(1-0.02At )y (t)+ 2ry (t + At)[ cos(BAX) +cos(yAy) |
:(1—0.02At)\y(t)+2r1\|/(t+At){l—25in (Bg"ju 2sin’ (vzyﬂ

OF (1+4r)y(t+At)=(1-0.02At)y ()+4r1\|/(t+At){1 sin (ngj sin (ygyﬂ

or {(u 4rl)—4rl(1—sin2(B§Xj sin (Yzymw(t +At) =(1-0.02At )y(t)

: _y(ttAt)  1-0.02At  1-0.02At ‘5 ‘ 1
= = Ho

el Ty () IHAgan(-1) 148y "
thus [1-0.02At <

1+8r,
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Thus the Hopscotch implicit form is conditionally stable. Thus the combination of the
two forms is conditionally stable
I 1-0.02At
&Hop. :éHop.E '&Hop.l = -
(0.25-0.02At) 1+8r,

then we conclude that the Hopscotch method is unconditionally stable.
Lax Equivalence Theorem
Given a properly posed initial value problem,
Lu =f(x,t,u,u,)inD+0D
u(x,0)=wy(x),t=0

A finite-difference approximation that satisfies the consistency condition, stability is the
necessary and sufficient condition for convergence.
Proof : [2]

6. Numerical results

The exact solution of the Gray-Scott model problem in two dimensions cannot
be found by using analytic method, thus we need numerical methods such as FDADE
method, FDADI method and FD Hopscotch method. We take the parameter o, =8x10°°

and o, =4x107°. Also we compute the stability of each above methods and we conclude

0.02At

that the FDADE method is conditionally stable where r <0.25- and

0.086At

r, <0.25- compared with FDADI and FD Hopscotch method that are

unconditionally stable. Also we prove that FDADE method is conditionally consistent
but FDADI method and Hopscotch methods are unconditionally consistent. Using Lax
Equivalence Theorem then FDADE method, FDADI method and Hopscotch method are
convergence. However, our numerical results show that the region of convergence of
the FDADI and FD Hopscotch methods are bigger than FDADE method. Thus we can
use FDADI and FD Hopscotch methods with any values of the space step size h and k

and time step size &t but in FDADE method must the condition r, 30,25_0-082At and

r, <0.25- 2080 s, Table (1) contains the numerical solution of the Gray-Scott model in
8

two dimensions by using the above three methods with space step size h=k=0.1 and
time step size At =0.1. Also we present comparison figures for values of concentrations
u and v by the methods.

Table (1). comparison between the methods FDADE, FDADI and FD Hopscotch
for the values of concentrations u and v that computed at time
step size 6t=0.1 and space step size h=k=0.1.

ADE method ADI method Hopscotch method
Concentration u

Point (i,j,n)

(6,8,1) 1 1
(9,4,2) . 0.89999942583805 | 0.89856459330144
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(5,3,3)

0.7929955036

0.79299550359847

0.79299097460478

(4,9,4)

0.68125995063869

0.68125994821486

0.67857021869709

(10,7,5)

0.56678772627119

0.56709825767783

0.56587046171125

(2,5,6)

0.45758846348854

0.45794347250011

0.45619039859748

(3,2,7)

0.35702127347594

0.35702298348826

0.35663165633968

(10,5,8)

0.26938672979787

0.26974325366916

0.26988367809689

(7,10,9)

0.19728167818297

0.19728267819338

0.19816561442277

(8,6,10)

0.14054354179992

0.14054355158273

0.14055604868282

0.10022376177821

0.08561961389106

0.010023046907569

Concentration v

1

1

1

(9.4,2)

1.0914

1.09139982565501

1.09052827476038

(5,3,3)

1.1892176564

1.18921765639976

1.18921624710288

(4,9,4)

1.29113846978462

1.29113846841503

1.28723963348004

(10,7,5)

1.39066262285382

1.39054460703718

1.38749874608211

(2,5,6)

1.48776132420422

1.48764753175995

1.47899897905992

(3,2,7)

1.57565081627314

1.57564735519975

1.56418588597058

(10,5,8)

1.65011689132299

1.65008668455253

1.64306636189790

(7,10,9)

1.70861958154437

1.70861958150998

1.70044504584434

I
I
I
I
I
I
I
(10,10,11)
I (6,8,1)
I
I
I
I
I
I
I
I
I

(8,6,10)

1.76025514009007

1.76025512184087

1.76011226769665

(10,10,11)

1.7680883916045

05

1.79210211432531

u concentration

1.76804705226718

ADE method
—— ADI method |4
Hopscotch

0451

04t

035+

03r

= 0251

02

015

01

0051

1}

i} U.I1 IJ.II! U.I3 IJ.IA U.!Ea D.IB DIY U.IE IJIB 1
Figure (1). show that the comparison between ADE, ADI and Hopscotch methods
for finding the concentration values u(6,:,6) at level n=6, row i=6 and for all

columns j When a, =8x107°, a, =4x10"°, and h=k=5t=0.1.
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¥ concentration
15 T T

ADE method
— ADI method
Hopscotch method

05F
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Figure (2). shows that the comparison between ADE, ADI and Hopscotch methods
for finding the concentration values v(6,:,6) at level n=6, row i=6 and for all

columns j. When «, =8x10™°, o, =4x10°°, and h=k=5t=0.1.

7. Conclusion

When we compared the results of ADE algorithm with an ADI algorithm on a
number of complex PDE, our results observes, that ADI yielded significantly greater
accuracy ( the local truncation error of ADI is smaller than ADE) but required more
computing time. on the other hand the Hopscotch method has minimal storage
requirements compare with ADI method and Hopscotch method also does not involve
any tridiagonal matrix solver, but ADI algorithm for the Gray-Scott model in two
dimensions have four tridiagonal matrix form. Both methods are unconditionally stable,
consistent and convergence compared with ADE method.
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