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ABSTRACT 

     In this paper, we study three types of finite difference methods, to find the 

numerical solution of reaction difference systems of PDEs in two dimensions. These 

methods are ADE, ADI and Hopscotch, where Gray-Scott model in two dimensions has 

been considered. Our numerical results show that the ADI method produces more 

accurate and stable solution than ADE method and Hopscotch method is the best 

because does not involve any tridiagonal matrix. Also we studied the consistency, 

stability and convergence of the above methods.  

Keywords: Gray-Scott model in two dimensions, finite difference methods, Alternating 

direction explicit method, Alternating direction implicit method,  Hopscotch method. 

 مقارنة طرائق حلول الفروقات المنتهية لنظام الانتشار التفاعلي في بعدين
 3بيانيژ عبدالغفور محمد امين الرو                2سعد عبدالله مناع                1عباس يونس البياتي

 كلية علوم الحاسوب والرياضيات/جامعة الموصل/العراق 1,3
 كلية العلوم/جامعة زاخو/العراق 2

 15/8/200تاريخ قبول البحث:                                          23/4/2007تاريخ استلام البحث:

 الملخص

لإيجاد الحل العددي لنظاام مان ، وبالتفصيل، ندرس ثلاث أنواع من طرق الفروقات المنتهية هذا البحثي ف
ه الواارق هااي طري ااة المتجهااات ذالمعاااد ت التفاضاالية الج غيااة خياار النويااة ماان نااوع ال وااي الم اااف  فااي  عااد ن، هاا 

( لنماااااو   Hopscotchطري اااااة  و  (ADI)( وطري اااااة المتجهاااااات المتعاقباااااة ال ااااامنية ADEالمتعاقباااااة الصاااااريحة  
Gray-Scott  ات  عد ن. واستنتجنا من النتاغج العددية أن طري ة المتجهات المتعاقبة ال منية في ف اء  ADI )

هااي أف اال  Hopscotch( ولكاان  النتيجااة رن طري ااة ADEهااي أف اال ماان طري ااة المتجهااات المتعاقبااة الصااريحة  
ر  الإضاافة رلاز أنهاا   ححتاوي صايمة المصافوفات الالاثياة الأقواار لأنهاا   ححتاا  رلاز خا ن   يا  ADIمن طري اة 

Tridiagonal .ما درسنا ث وحية واست رارية وح ارب لكل من الورق الالاثة  . 

سكوت, طرائق الفروقات المنتهية, طريقة المتجهات المتعاقبة الصريحة , طريقة  -أنموذج گراي الكلمات المفتاحية:

ضمنية , طريقة هبسكوج.المتجهات المتعاقبة ال  

1. Introduction 

     Many Mathematical models, such as partial differential equations, can be used 

to describe some chemical, physical, biological, fluid flow, electricity systems, etc [6]. 

Zegeling [16] discussed a Gray-Scott model in two-dimensions for adaptive grid 

method that is based an a tensor-product approach. Adaptive grids are a commonly used 

tool for increasing the accuracy and reducing costs when solving both PDEs and ODEs. 
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A traditional and widely used form adaptively is the concept of equidistribution. Which 

is well-defined and well-understood in one space dimension? The extension of the 

equidistribution principle to two or three dimensions, however, is far from trivial and 

has been the subject of investigation of many researches during the last decade. Besides 

the non-singularity of the transformation that defines the non-uniform adaptive grid, the 

smoothness of the grid (or transformation) plays an important role as well. The analysis 

of these properties and illustrate their importance with numerical experiments for a set 

of time-dependent PDE models with steep moving pulses, fronts, and boundary layers. 

In this paper we study and apply the finite difference methods to approximate 

the solution and study the consistency, stability and convergence of the numerical 

solution of a model of nonlinear parabolic partial differential systems which is two 

dimensional Gray-Scott models [15]. These methods are combinations of finite 

difference method with 

- Alternating direction explicit method (ADE) 

- Alternating direction implicit method (ADI)  

- Hopscotch method.  

    First we derive the finite differential form of ADE, ADI and Hopscotch methods for 

the given model and then present an algorithm for each method. Also we compare 

between them.  

    The consistency, stability and convergence for the above methods have been 

examined. 

2. The Gray-Scott model in two Dimensions [3] 

     Reaction-diffusion models of chemical species can produce a variety of patterns, 

reminiscent of those often seen in nature. The Gray-Scott equations model can be 

consider as reaction. Numerical simulations of this model were performed in an attempt 

to find stationary lamellar patterns like those observed in earlier laboratory experiments 

on ferrocyanideiodate-sulphite reactions [13]. The chemical reactions for this situation 

are described by 

U+2V 3V,

       V P,

→

→
 

where U, V and P are chemical species. The system of reaction-diffusion equations for 

this situation is given by 

( )
2 2

2

t 1 2 2

u u
u uv f 1 u ,

x y

  
=  + − + − 

  
 

( )
2 2

2

t 2 2 2

v v
v uv f g v.

x y

  
=  + + − + 

  
 

where u and v are concentrations of two reactions, 1 and 2 are the diffusion rates in 

the process, g represents the rate of conversion of V to P. And f is the rate of the process 

that feeds U and drains U, V and P ([15], [11]). 

Then we choose the model parameters as 
5

1 8 10 ,− =  5

2 4 10 ,− =   f=0.02 

and g=0.066 to get the model showed in equations (1) and (2) 

From pattern formation the following reaction diffusion system [3] exhibits complicated 

solution behavior: 
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where α1=810-5 and α2=410-5  

The initial conditions are 

u(x,y,0)=1                            ,0 ≤ x ,y ≤ 1, 

v(x,y,0)=1                            ,0 ≤ x ,y ≤ 1, 

on the spatial domain [0,1]×[0,1]. 

In this model self-replicating spots have been observed. These are regions in 

which the (chemical) concentrations of some of the species exhibit large amplitude 

perturbations from a surrounding homogenous state. 

3. Numerical Methods 

    We solve the mathematical model in (1) and (2) with the combination of the finite 

difference methods with ADE method, ADI method and Hopscotch method. 

3.1 ADE Method [14]  

     This method is referred to as alternating direction since a single cycle of 

computation requires the solution of two different finite difference approximations 

written in different physical directions. The end result of the two cycles is taken as the 

answers on the (n+1) plane [7]. 

    When we consider a square region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and u, v are known at all 

points within and on the boundary of the square region. We draw lines parallel to x, y, 

t– axis as 

x = ih ,  i = 0, 1, 2, ... 

y = jk ,  j = 0, 1, 2, … 

t = nδt ,  n = 0, 1, 2, … 

Then the explicit finite difference approximation to Gary-Scott model in two-

dimensions are given by  

( )

i,j,n+1 i,j,n i-1,j,n i,j,n i+1,j,n i,j-1,n i,j,n i,j+1,n

1 12 2

2

i,j,n i,j,n i,j,n

u -u u -2u +u u -2u +u
=α +α

δt h k

                       -u v +0.02 1-u

   
   
                                    (3) 

n,j,i

2

n,j,in,j,i

2

n,1j,in,j,in,1j,i

22

n,j,1in,j,in,j,1i

2

n,j,i1n,j,i

v 086.0vu                      

k

vv2v

h

vv2v

t

vv

−+








 +−
+







 +−
=



−
+−+−+

                (4) 

Multiply eq.(3) and eq.(4) by δt and set h=k, 
12

1 r
h

t
=


 and 

22

2 r
h

t
=


 then we get 

( ) ( )
t02.0t v u           

uuuurut 02.0r41u

2

n,j,in,j,i

n,1j,in,1j,in,j,1in,j,1i1n,j,i11n,j,i

+−

++++−−=
+−+−+

                      (5) 
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and 

( ) ( )
t v u            

vvvvrvt 086.0r41v

2

n,j,in,j,i

n,1j,in,1j,in,j,1in,j,1i2n,j,i21n,j,i

+

++++−−=
+−+−+

                     (6) 

3.2 ADI Method [8] 

 The ADI method is developed by peaceman and Rachford in 1955 [12] and is 

called Alternating Direction Implicit (ADI) Method. This two-step approach requires 

minimal computer storage and is quite accurate. Further, ADI method is unconditionally 

stable. The method involves the alternate of two different finite difference 

approximations to the two-dimensional space [1]. 

 In the ADI approach, the finite difference equations are written in terms of 

quantities at two x levels. However, two different finite difference approximations are 

used alternately, one to advance the calculations from the plan  n  to a plane (n+1) and 

the second to advance the calculations from (n+1) plane to the (n+2) plane [7]. 

 With this method, each of the two steps involves diffusion in both the x and y -

directions. In the first step the diffusion in x is modeled implicitly while diffusion in y 

modeled explicitly with the roles reversed in the second step [9]. 

 Then we advance the solution of the Gary-Scott model, from nth plane to 

(n+1)th plane by replacing 
2

2

x

u




 and 

2

2

x

v




 by implicit finite difference approximation at 

the (n+1)th plane. Similarly  
2

2

y

u




 and 

2

2

y

v




  are replaced by an explicit finite difference 

approximation at the nth plane. With these approximations eq.(1) and eq.(2) in Gary-

Scott model can be written as. 

( )
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1n,j,1i1n,j,i1n,j,1i

2

n,j,i1n,j,i

v 086.0vu                      

k

vv2v

h

vv2v

t

vv

−+








 +−
+







 +−
=



−
+−++++++

          (8) 

 

We set h=k, than we have a square region and multiply eq.(7) and eq.(8) by δt and let 

1
1 2

α δt
r =

h
 and 2

2 2

α δt
r =

h
 then we get 

( ) ( )

( )
1 i-1,j,n+1 1 i,j,n+1 1 i+1,j,n+1 1 i,j-1,n 1 i,j,n 1 i,j+1,n

2

i,j,n i,j,n i,j,n

-r u + 1+2r u -r u =r u + 1-2r u +r u

                                                     -δt u v +0.02 δt 1-u
                (9) 

and 

( ) ( )2 i-1,j,n+1 2 i,j,n+1 2 i+1,j,n+1 2 i,j-1,n 2 i,j,n 2 i,j+1,n

2

i,j,n i,j,n i,j,n

-r v + 1+2r v -r v =r v + 1-2r v +r v

                                                       +δt u  v -0.086 δt v
             (10) 
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 Now we advance the solution from the (n+1)th plane to (n+2)th plane by 

replacing 
2

2

x

u



  and 
2

2

x

v



  with explicit finite difference approximation at  (n+1)th plane 

then 
2

2

y

u



  and 
2

2

y

v



  by an implicit finite approximation at the (n+2)th plane. Then eq.(1) 

and eq.(2) in Gary-Scott model becomes  
 

      (11) 

and 

      (12)    

Multiply eq.(11) and eq.(12) by δt and let 1
1 2

α δt
r =

h
 and 2

2 2

α δt
r =

h
 when h=k then we have 

for a square region,  
 

( ) ( )

( )njinjinji

njinjinjinjinjinji

utvut

ururuururu
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,,,,
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21r21r-

−+−

+−+=−++ ++++−++++−


                   (13) 

and 
( ) ( )

nj,i,

2

,,,,

1,,121,,21,,122,1,22,,22,1,2

 v 086.0                                                           

21r21r-

tvut

vrvrvvrvrv

njinji

njinjinjinjinjinji

 −+

+−+=−++ ++++−++++−
                  (14) 

 These systems are a tridiagonal linear system of equations and can be solved by 

the LU algorithm. 

3.3 Hopscotch method 

 This technique, which lies somewhere between explicit ADE and implicit ADI, 

was suggested by Gordeon [4] and marketed by Gourlay [5] under the name of 

Hopscotch [10]. 

 The Hopscotch method is an interesting combination of the forward-time 

centered-space (FTCS) method and the backward-time centered-space (BTCS) method. 

The basic idea of the Hopscotch method is to make two sweeps through the solution 

domain at each time step. On the first sweep, the explicit FTCS method is applied at 

every other grid point. On the second sweep, the implicit BTCS method is applied at the 

remaining points. That is the explicit equation is first used for those points with (i+j) is 

even and then implicit equation for those points with (i+j) is odd [8]. 

 Now we transform the Gary-Scott model in two dimensions to Hopscotch finite 

difference formula. Thus the explicit formula has the form: 
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and 
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multiply eq.(15) and  eq.(16) by δt and when h=k, we assume that 
12

1 r
h

t
=

  and 
22

2 r
h

t
=

  

then we get 
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ttvu
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and the implicit formula are 

( )

i,j,n+1 i,j,n i+1,j,n+1 i,j,n+1 i-1,j,n+1 i,j-1,n+1 i,j,n+1 i,j+1,n+
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   

  

                      (19)  

 and 

         (20)       

     We multiply eq.(19) and eq.(20) by δt and also when h=k and assume 1
1 2

t
r

h

 
=  and 

2
2 2

α δt
r =

h
 then we have 

( ) ( ) ( )
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,,,,

1,1,1,1,1,,11,,12,,1,,2
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+

++++−=+ +++−+++−+
                      (22) 

4. Numerical Consistency  

    A scheme is said to be consistent if the local truncation error tends to zero as h tends 

to zero [8]. In the context of the diffusion equation, the numerical scheme must be 

consistent with the original partial differential equation. 

    A numerical algorithm is said to be stable if the round off error does small errors in 

stay bounded during the numerical process. 

    A scheme converges if it is both consistent and stable as temporal and spatial 

discretisation is reduced [2]. 

4.1 Consistency of ADE Algorithm 

The ADE algorithm for equation (5) where 
2

1

1
h

t
r


=  
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( ) ( )
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 When we examine the consistency we eliminate all terms that not effect on   the 

consistency, non linear terms and constant terms. 

Thus the eq.(23) becomes  
 

( ) ( )

n,j,i

n,1j,in,j,in,1j,i1n,j,1in,j,in,j,1i1n,j,i1n,j,i
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 Now each term in eq.(24) is replaced by its Taylor series expansion taken about 

(xi,yj) at time tn. 
 

2 2

i,j,n+1 i,j,n 1 x i,j,n 1 y i,j,n i,j,n
u -u =rδ  u +rδ  u -0.02δt u                                                 (25) 

 

divided eq.(25) by t  and replaced r1 by 
2
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h

t
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i.e. 

( ) ( )n n n 21 1
t xx yy i,j,n2 2

α α
u - u - u =-0.02u +O h +O δt

 h  h
, when h=k any implementation of ADE 

algorithm in which  h  individual tend to zero with   c
h 2

1 =


, c is a constant, thus the 

ADE algorithm is consistent. 

 In the manner we can show that ADE algorithm for the equation (4) that is 

bellow. 

( ) ( )
   086.0               

22

,,

2

,,,,

,1,,,,1,2,,1,,,,12,,1,,

njinjinji

njinjinjinjinjinjinjinji

vtvut

vvvrvvvrvv

 −+

+−++−+= +−+−+

 

Is consistent. 

 Thus the ADE algorithm for eqs.(1) and (2) is consistent and the local truncation 

error is of ( )( )2O h t+  . 

4.2 Consistency of ADI 

the ADI finite difference form of Gary-Scott model in two-dimensions are  
( ) ( )

( )njinjinji

njinjinjinjinjinji

utvut

ururuururu

,,

2

,,,,

,1,1,,1,1,11,,111,,11,,11
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21r21r-

−+−

+−+=−++ +−++++−


                (26) 

and 
( ) ( )
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njinjinji

njinjinjinjinjinji

utvu

ururuururu
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2

,,,,

1,1,11,,11,1,12,,112,,12,,11
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21r21r-

−+−

+−+=−++ ++++−++++−


                 (27) 

 Now we write the eqs.(26) and (27) in the forms in which we dropped the 

subscripts  i and j from  u and write the time at in the super subscripts, and let 

2

1

1
h

t
r


=  then we have the following form 

( ) ( ) nn

y

n

x uturur  02.011 2

1

12

1  −+=− +                                                              (28) 
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( ) ( ) nn

x

n

y uturur  02.011 12

1

22

1  −+=− ++                                                           (29) 

    The quantity un+1  is first eliminated by multiplying equation (29) by the operator 

( )2

11 xr− and thus (29) becomes  

( )( ) ( )( ) ( )

( )( ) ( )

2 2 n 2 2 2 n 1 2 n

1 x 1 y 1 x 1 x 1 x

2 2 n 2 n

1 x 1 y 1 x

1 r 1 r u 1 r 1 r u 0 02 t 1 r u

1 r 1 r u 0 02 t 1 r u

.

                                    .

+ +−  −  = +  −  −  − 

= +  +  −  − 

  

thus we can verity that  

( )( ) ( )( ) ( )22

1

222

1

2222

1 1 02.01 x

nnn

yx

nn

yx rutuuruur  −−−+=−+ ++ ,           (30) 

if we divide eq.(30) by 2δt and replace r1 by 1

2

t

h

   to obtain 

( ) ( ) ( )
n+2 n n+2 n

2 2 2 2 2 2 2 n

1 x y 1 x y 1 x2

u -u u -u
1+r δ δ =α δ +δ -0.01 1-r δ u

2δt 2h
                               (31) 

each term appearing in eq.(31) is replaced by its Taylor series expansion taken about 

(xi,yj) at time tn+1 . It is easy to see that (un+2-un )/2δt  is the central difference formula 

for  ut  at time  tn+1  and therefore  
n+2 n

n+1 2

t

u -u
=u +O((δt) ),

2δt
 

2 1 22 (( ) ),n n n

tu u tu O t + +− = +  

Consequently 

( )
( )

( )( )

( ) ( )

2 2 n+1n+2 n
21 x y t2 2

1 x y 2 2

2n+1 n+1 2

1 txx tyy

α δ +δ  2δtuu -u
α δ +δ = +O δt

2h 2h

                                   =α δt u +u +O( δt ,h )

 

and 

( ) ( )
( )( )

( ) ( )( )

2 22 2 n+2 n 2
21 x y 2 2 n+11

x y t4

2 22 n+1 2

1 txxyy

r δ δ u -u α δt
= δ δ u +O δt

2δt h

                             =α δt u +O δt ,h

 

the component are now assembled to give  

( )n 2 n n 1
1 x i-1,j,n i,j,n i+1,j,n2

n n 2

1 xx

α δt
-0.01u +0.01 r δ u =-0.01u +0.01 u -2u +u

h

                                          =-0.01u +0.01α (δt)u +O(h )  

thus eq.(31) becomes  

( )( ) ( ) ( )( )
( ) ( )( )

2 2 22n+1 n+1 2 n+1 n+1

t 1 txxyy 1 xx 1 yy

2n n 2

1 xx

u +O δt +α δt u +O h , δt =α δtu +α δtu

                                    -0.01δt u +0.01 δt α  u +O δt ,h

             (32) 

then eq.(32) may be rearranged to give  

( ) ( ) ( )

( )( )

22n+1 n+1 n+1 n n n+1

t 1 xx yy 1 xx 1 txxyy

2 2

u -α δt u +u =-0.01δt u +0.01 δt α  u -α δt u

                                                                                    +O δt ,h
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Thus the ADI algorithm for Gray-Scott model, in two-dimensions, is consistent.  Also 

we show that the concentration v for eq. (8) and (12) is also consistent. Consequently 

the ADI method of Gary-Scott model, in two –dimension, is unconditionally consistent 

since h tend to zero. Thus the local truncation error is 2 2O(( t) h ). +  

4.3 Consistent of Hopscotch Method   

 The Hopscotch finite difference method for Gary-Scott model in two-

dimensions has the following explicit form  

( ) ( )
 02.002.0               

22

,,

2

,,,,

,1,,,,1,1,,1,,,,11,,1,,

njinjinji

njinjinjinjinjinjinjinji

tutvtu

uuuruuuruu

 −+−

+−++−+= +−+−+                     (33) 

and the implicit form is 
( ) ( )

 02.002.0               

22

,,

2

,,,,

1,1,1,,1,1,11,,11,,1,,11,,1,,

njinjinji

njinjinjinjinjinjinjinji

tutvtu

uuuruuuruu

 −+−

+−++−+= ++++−++++−+               (34) 

the linear terms of eq.(33) and (34) without constant are 

njinjiynjixnjinji tuururuu ,,,,

2

1,,

2

1,,1,, 02.0  −+=−+                                        (35) 

njinjiynjixnjinji tuururuu ,,1,,

2

11,,

2

1,,1,, 02.0  −+=− +++                                   (36) 

If we divide (35) and (36) by t and replace r1 by r1=
2

1

h

t  then we have 

njinjiynjix

njinji
uu

h
u

ht

uu
,,,,

2

2

1
,,

2

2

1,,1,,
 02.0 −+=

−+








                                       (37) 

 

njinjiynjix

njinji
uu

h
u

ht

uu
,,1,,

2

2

1
1,,

2

2

1,,1,,
 02.0 −+=

−
++

+








                                     (38) 

each term in (37) and (38) is now replaced by its Taylor expansion to obtain from (37) 

( )( ) ( ) ( ) nji

n

yy

n

xx

njinji
uhOuhOutO

t

ut

t

u
,,

2

1

2

1

3

2

,,

2

,,
02.0

2
−+++=+




+






                (39) 

and from (38) 

( )( ) ( ) ( ) nji

n

yy

n

xx

njinji
uhOuhOutO

t

ut

t

u
,,

21

1

21

1

3

2

,,

2

,,
02.0

2
−+++=+




+




++ 

          (40) 

from (39) and (40) we have 

( ) ( )( ) njiyyxxt uthOuuu ,,

32

1 02.0, −=+−                                                    (41) 

thus the Hopscotch algorithm is unconditionally consistent since h and t tend to zero 

and the local truncation error is ( )( )32O h t+  . 

 In the same manner we can show that the Hopscotch algorithm of eq. (18) and 

(20) is also unconditionally consistent in the end the Hopscotch algorithm of Gray-Scott 

model in two dimension is unconditionally consistent. 

5. Numerical Stability  

    There two methods, we used here one including the effect of boundary conditions and 

the other excluding the effect of boundary conditions are used to investigate stability. 
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Both methods are attributed to John von Neumann. These approaches are Fourier 

method and matrix method.  

Fourier method, the primary observation in the Fourier method is that the numerical 

scheme is linear and therefore it will have solution in the form ( ) xitetxu =, . Thus 

numerical scheme is stable provided 1  and unstable whenever 1  [14].  

 5.1 Stability Analysis of ADE Method  

 The von-Neumann method has been used to study the stability analysis of Gary-

Scott model in two dimensions. 

 We can apply this method by substituting the solution in finite difference 

method at the time t by ψ (t) m x m ye  e  , when 0,   and m= 1−  [14]. 

 To apply von-Neumann on eq.(1) we have to linearlize the problem and thus we 

get after we eliminate non-linear term the following: 

( )u
y

u

x

u

t

u
−+












+




=




102.0

2

2

2

2

1                                                                   (42) 

we have the following finite difference scheme for eq.(42) 

nji

njinjinjinjinjinjinji

utt

uuuuuruu

,,

,,,1,,1,,,1,,11,,1,,

 02.0 0.02             

]4[

 −+

−++++= −++−+                                   (43) 

where 
2

1
1

h

t
r


= , and (h=k). We assume  ( ) ymxm

nji eetu =,, , substituting in eq.(43) then 

we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m x x m x xm x m y m x m y m y m y

1

m x m (y y) m x m (y y) m x m y m x m y

t t e e t e e r t e e t e e

t e e t e e 4 t e e 0.02 t 0.02 t t e e

 −  +     

  +   −    

 +  =  +  + +


 + −  +  −  

 

or   ( )
( )

m x m x m y m y

1

t t
1 r e e e e 4 0.02 t

t

−   −   + 
 = + + + + − +  

 

 

( )
( )

2 2

1

ψ t+Δt βΔx γΔy
=ξ=1-4r sin +sin +0.02Δt

ψ t 2 2

    
    
    

  

For stable situation, we need 1 , and hence we have 

 102.0
2

sin
2

sin411 22

1 −














 
+







 
−− t

yx
r


 

Considering the left-side inequality (as the right-side inequality is always true), we have 
















 
+







 
−−−

2
sin

2
sin402.011 22

1

yx
rt


 

for some    and γ, 






 

2
sin 2 x  and 







 

2
sin 2 y  is unity. Hence, we have 

 ( )2402.011 1rt −−−  

  tr − 0025.025.01
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 This is the condition for stability, in a square region h=k, when we use ADE 

method for eq.(1). Thus the ADE method for eq.(1) is conditionally stable. 

 Now, Also the stability condition of eq.(2) can be found, for h=k, which is  

tr −
8

086.0

4

1
2

. Thus the ADE method is conditionally stable. 

5.2 Stability of ADI Method for Gray-Scott in Two Dimensions  

 The ADI finite difference form for (9) is 
( ) ( )

( )njinjinji

njinjinjinjinjinji

utvut

ururuururu

,,

2

,,,,

,1,1,,1,1,11,,111,,11,,11

1 02.0                                                             

21r21r-

−+−

+−+=−++ +−++++−                       (44) 

Assuming  

( ) ymxm

nji eetu =,,
                                                                        (45) 

And substitute (45) in (44) we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ymxmyymxmymxmyymm

ymxxmymxmymxxm

eetteetreetreet

eettreettreett









−+−+=

+−++++

+−

+−

02.021r

21r-

)(

11

)(

1

)(

11

)(

1       

i.e. ( )  ( ) ( )  ( ) ( )ttterrertterrer ymymxmxm   −+−+=+−++− −− 02.02121 111111
 

i.e. ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

1 1 1

1 1 1

r cos x msin x 1 2r r cos x msin x t t

r cos y msin y 1 2r 0.02 t r cos y msin y

 −  −  + + −  +   +  = 

  −  + − −  +  −  

 

i.e.  ( ) ( ) ( ) ( )1 1 1 12r cos x 1 2r t t 2r cos y 1 2r 0.02 t t−  + +  +  =  + − −        
 

( )
( )

( )
( )

1 1

1 1

t t 2r cos y 1 2r 0.02 t

t 2r cos x 1 2r

 +   + − − 
=

 −  + +
 

             
2

1 1

2

1 1

y
2r 1 2sin 1 2r 0.02 t

2

x
2r 1 2sin 1 2r

2

   
− + − −   

  =
   

− − + +  
  

  

             
2

1 1 1

2

1 1 1

y
2r 4r sin 1 2r 0.02 t

2

x
2r 4r sin 1 2r

2

 
− + − −  

 =
 

− + + + 
 

 

( )
( )

2

1

I
2

1

y
1 4r sin 0.02 t

t t 2

xt
1 4r sin

2

 
− −   +   = = 

  
+  

 

 

Similarity for eq.(10) we obtain 

2

1

II
2

1

y
1 4r sin 0.086 t

2

x
1 4r sin

2

 
− −  

  =
 

+  
 

 



 Abbas Y. Al-Bayati - Saad A. Manaa  and  Abdulghafor M. Al-Rozbayani  
 

 

 32 

where 
I
  and 

II
  stands for the I plane and II plane. Each of the above terms 

I
  and 

II
  are conditionally stable. However, the combined two-level has the form: 

2 2

1 1

ADI I II
2 2

1 1

y y
1 4r sin 0.02 t 1 4r sin 0.086 t

2 2
.

x x
1 4r sin 1 4r sin

2 2

        
− −  − −       

    =   =    
       + +            

 

 Thus the above scheme is unconditionally stable, each individual equation is 

conditionally stable by itself, and the combined two-level is completely stable. 

 

 

5.3 Stability of Hopscotch Method 

 The stability of explicit form of Hopscotch is the same as the stability of ADE 

method i.e. is conditionally stable. 

Now we study the stability of implicit form of Hopscotch formula 

( ) ( ) ( )1,1,1,1,1,,11,,11,,1,,1 02.0141 +++−+++−+ ++++−=+ njinjinjinjinjinji uuuurutur                 (46) 

we assume that: 

( ) ymxm

nji eetu =,,                                                                                             (47) 

Substitute (47) in (46) we have 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) )()()(

)(

11 02.0141

yymxmyymxmymxxm

ymxxmmxyxmymxm

eetteetteett

eettreetteettr

+−+

−

++++++

++−=++







  

or 

( ) ( ) ( ) ( ) ( ) ymymxmxm eeeettrttttr −− +++++−=++  11 02.0141  

( ) ( ) ( ) ( ) ( )11 0.02 t t 2r t t cos x cos y= −   +  +   +     

i.e. 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 4r t t 1 0.02 t t 2r t t cos x cos y+  +  = −   +  +   +     

( ) ( ) ( ) 2 2

1

x y
1 0.02 t t 2r t t 1 2sin 1 2sin

2 2

      
= −   +  +  − + −    

    

 

or ( ) ( ) ( ) ( ) ( ) 2 2

1 1

x y
1 4r t t 1 0.02 t t 4r t t 1 sin sin

2 2

      
+  +  = −   +  +  − −    

    

 

or ( ) ( ) ( )2 2

1 1

x y
1 4r 4r 1 sin sin t t 1 0.02 t (t)

2 2

       
+ − − −  +  = −        

     

 

( )
( ) ( )

Hop.I

1 1 1

ψ t+Δt 1-0.02Δt 1-0.02Δt
ξ = = =

ψ t 1+4r -4r -1 1+8r
,  1. IHop  

thus  

1

1-0.02Δt
1

1+8r
  
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Thus the Hopscotch implicit form is conditionally stable. Thus the combination of the 

two forms is conditionally stable 

( )
1

Hop. Hop.E Hop.I

1

r 1-0.02Δt
ξ =ξ .ξ =

0.25-0.02Δt 1+8r
 

then we conclude that the Hopscotch method is unconditionally stable. 

Lax Equivalence Theorem 

 Given a properly posed initial value problem, 

DDin  )uu,t,f(x,Lu x +=  

u(x,0)= )x( ,t=0 

A finite-difference approximation that satisfies the consistency condition, stability is the 

necessary and sufficient condition for convergence. 

Proof : [2] 

6. Numerical results 

 The exact solution of the Gray-Scott model problem in two dimensions cannot 

be found by using analytic method, thus we need numerical methods such as FDADE 

method, FDADI method and FD Hopscotch method. We take the parameter 5

1 108 −=  

and 5

2 104 −= . Also we compute the stability of each above methods and we conclude 

that the FDADE method is conditionally stable where 
8

02.0
25.01

t
r


−  and 

8

086.0
25.02

t
r


−  compared with FDADI and FD Hopscotch method that are 

unconditionally stable. Also we prove that FDADE method is conditionally consistent 

but FDADI method and Hopscotch methods are unconditionally consistent. Using Lax 

Equivalence Theorem then FDADE method, FDADI method and Hopscotch method are 

convergence. However, our numerical results show that the region of convergence of 

the FDADI and FD Hopscotch methods are bigger than FDADE method. Thus we can 

use FDADI and FD Hopscotch methods with any values of the space step size h and k 

and time step size δt but in FDADE method must the condition   
8

02.0
25.01

t
r


−  and 

tr −
8

086.0
25.02

, Table (1) contains the numerical solution of the Gray-Scott model in 

two dimensions by using the above three methods with space step size h=k=0.1 and 

time step size 0.1t = . Also we present comparison figures for values of concentrations 

u and v by the methods. 
 

Table (1). comparison between the methods FDADE, FDADI and FD Hopscotch  

for the values of concentrations u and v  that computed at time  

step size δt=0.1 and space step size h=k=0.1. 
 

Point (i,j,n) 
ADE method ADI method Hopscotch method 

Concentration u 

(6,8,1) 1 1 1 

(9,4,2) 0.9 0.89999942583805 0.89856459330144 
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(5,3,3) 0.7929955036 0.79299550359847 0.79299097460478 

(4,9,4) 0.68125995063869 0.68125994821486 0.67857021869709 

(10,7,5) 0.56678772627119 0.56709825767783 0.56587046171125 

(2,5,6) 0.45758846348854 0.45794347250011 0.45619039859748 

(3,2,7) 0.35702127347594 0.35702298348826 0.35663165633968 

(10,5,8) 0.26938672979787 0.26974325366916 0.26988367809689 

(7,10,9) 0.19728167818297 0.19728267819338 0.19816561442277 

(8,6,10) 0.14054354179992 0.14054355158273 0.14055604868282 

(10,10,11) 0.10022376177821 0.08561961389106 0.010023046907569 

 Concentration v 

(6,8,1) 1 1 1 

(9,4,2) 1.0914 1.09139982565501 1.09052827476038 

(5,3,3) 1.1892176564 1.18921765639976 1.18921624710288 

(4,9,4) 1.29113846978462 1.29113846841503 1.28723963348004 

(10,7,5) 1.39066262285382 1.39054460703718 1.38749874608211 

(2,5,6) 1.48776132420422 1.48764753175995 1.47899897905992 

(3,2,7) 1.57565081627314 1.57564735519975 1.56418588597058 

(10,5,8) 1.65011689132299 1.65008668455253 1.64306636189790 

(7,10,9) 1.70861958154437 1.70861958150998 1.70044504584434 

(8,6,10) 1.76025514009007 1.76025512184087 1.76011226769665 

(10,10,11) 1.7680883916045 1.79210211432531 1.76804705226718 

 

 
 

Figure (1). show that the comparison between ADE, ADI and Hopscotch methods  

for finding the concentration values u(6,:,6) at level  n=6, row  i=6 and for all  

columns j When 
5

1 108 −= ,  
5

2 104 −= , and  h=k=δt=0.1. 
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Figure (2). shows that the comparison between ADE, ADI and Hopscotch methods  

for finding the concentration values v(6,:,6) at level  n=6, row  i=6  and for all  

columns j. When 
5

1 108 −= , 5

2 104 −= , and  h=k=δt=0.1. 

7. Conclusion 

 When we compared the results of ADE algorithm with an ADI algorithm on a 

number of complex PDE, our results observes, that ADI yielded significantly greater 

accuracy ( the local truncation error of ADI is smaller than ADE) but required more 

computing time. on the other hand the Hopscotch method has minimal storage 

requirements compare with ADI method and Hopscotch method also does not involve 

any tridiagonal matrix solver, but ADI algorithm for the Gray-Scott model in two 

dimensions have four tridiagonal matrix form. Both methods are unconditionally stable, 

consistent and convergence compared with ADE method. 
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