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ABSTRACT 

 In this paper, we solved the Newell-Whitehead equation approximately using Adomain 

Decomposition method and we have compared this solution with the exact solution; we found 

that the solution of this method is so close to the exact solution and this solution is slower to 

converge to the exact solution when we increase t however,  this method is effective for this 

kind of problems.    
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Decomposition method. 
 (Adomain Decomposition)  باستخدام طريقة (Newell - Whitehead)  ي لمعادلةالحل التقريب 

 سعد مناع 
 كلية العلوم، جامعة زاخو 

 04/04/2011تاريخ قبول البحث:                                   20/01/2011تاريخ استلام البحث: 
 الملخص  

 Adomain) باسمملامام ي  ةممة (Newell - Whitehead) تممف  مما اممحا الجامما حل مماق الاممم اللة   مما ل عاقلممة

Decomposition)  مممم  الامممم  الامممم باسممملامام امممح  الب  ةمممة    ممم  جمممما   أنممممل الامممم ال تممم و  وت ممم    ةوتمممف   مممم مةا  ممم
 مما  ممم اممحا ال ممو  ممم   وان اممح  الب  ةممة  عالممة جممما   tال ت و  و كون أببأ  ا الوصول حلى الام ال تمم و  مل مما زاقم  ي ممة 

 ال سائم. 
 .Adomain Decomposition، ي  ةة  Newell-Whiteheadمعاقلام تفاضلية جزئية، معاقلة  لكلمات المفتاحية:ا

1. Introduction 

 The decomposition method was first introduced by Adomian since the 

beginning of the 1980s [7]. The Adomian method [3] can be used for solving a wide 

range of problems whose mathematical models yield equation or system of equations 

involving algebraic, differential, integral and integro-differential. In this method the 

solution is considered as the sum of an infinite series, rapidly converging to an accurate 

solution. 

It is well known that the key of the method is to decompose the nonlinear term 

in the equations into a peculiar series of polynomials
1 nn
A



= , where An are the so-

called Adomian polynomials [4–6]. 

This iterative method has been proven to be rather successful in dealing with 

linear problems as well as nonlinear. Adomian gives the solution as an infinite series 

usually converging to an accurate solution.  

An Analytical Solution of the Stochastic Navier–Stokes System is shown by 

Adomian [3]. The decomposition method used to solve a system of partial differential 

equations and in reaction–diffusion to the Brusselator model and finding that the 

Adomian series solution gives an excellent approximation to the exact solution [20]. 

Wazwaz [22] developed a fast and accurate algorithm for the solution of sixth-order 

boundary value problems (BVP) and the modified decomposition method [19, 21]. 

Abbasbandy [1, 2] and Allan [8] studied some efficient numerical algorithms to solve a 

system of two nonlinear equations (with two variables) based on Newton’s method and 
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a numerical solution of the Blasius equation. Wang [18] presented a new algorithm for 

solving the classical Blasius equation.  

Hashim [11] studied the Adomian decomposition method for solving BVPs for 

fourth-order integro-differential equations showing  that with a few modifications the 

Adomian’s method can be used to obtain the known results of the special functions of 

mathematical physics and the Blasius equation [13].  

Kechil et al. [15] applied a non perturbative solution of free-convective 

boundary-layer equation by ADM. Chang [9] presented a decomposition solution for 

fins with temperature dependent surface heat flux. Chiu and Chen [10] used a 

decomposition method for solving the convective longitudinal fins with variable thermal 

conductivity. ADM also have used by several researchers to solve a wide range of 

physical problems in various engineering fields such as fluid flow and porous media 

simulation [6, 12, 14, 17].  

 2.  The Principle of the Adomian Decomposition Method (ADM) [3] 

        Beginning with an equation 

Fu(t) = g(t)               (1) 

where F represents a general nonlinear ordinary differential operator involving both 

linear and nonlinear terms. The linear term is decomposed into L + R, where L is easily 

invertible and R is the remainder of the linear operator. For convenience, L may be 

taken as the highest order derivative which avoids difficult integrations which result 

when complicated Green’s functions are involved. Thus the equation (1) can be written 

as 

Lu+Ru+Nu=g               (2) 

where Nu represents the nonlinear terms. Solving for Lu, 

Lu=g–Ru–Nu.               (3) 

Because L is invertible, operating with its inverse L-1   yields 

L-1Lu= L-1g– L-1Ru– L-1Nu             (4) 

An equivalent expression is 

u=Φ+ L-1g– L-1Ru– L-1Nu             (5) 

where Φ is the integration constant and satisfies LΦ=0. For initial-value problems we 

conveniently  for  as the n-fold definite integration operator from t0 to t. 

For the operator   for example, we have  = − −-1  (0) (0)L Lu u u tu  and therefore  

− − −= + + − −1 1 1(0) (0)u u tu L g L Ru L Nu            (6) 

For boundary value problems, indefinite integrations are used and the constants 

are evaluated from the given conditions. Solving for u yields  

− − −= + + − −1 1 1u A Bt L g L Ru L Nu                        (7) 

The Adomian decomposition method [22] assumes an infinite series solution for 

unknown function u given by  
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

=

=
0

n
n

u u                (8) 

and the nonlinear term Nu, assumed to be analytic function f(u), is decomposed as 

follows: 



=

= = 0 1
0

( ) ( , ,..., )n n
n

Nu f u A u u u
            

(9) 

where An are the appropriate Adomian's polynomials. These An polynomials depend on 

the particular nonlinearity and these An Adomian polynomials are calculated by the 

general formula  

=0

1
=  

!







=

   
   
    

0 1
0

( , ,..., )
n

k
n n kn

k

d
A u u u N u

n d
, n ≥ 0       (10)  

Substituting eq. (8) and eq. (9) into eq. (5) gives 

  
− − −

= = =

=+ − −  1 1 1

0 0 0
n n n

n n n

u L g L R u L A          (11) 

Each term of series (8) is given by the recurrence relation 

−=+ 1
0u L g    

− −= − −1 1
1 0 0u L Ru L A    

− −= − −1 1
2 1 1u L Ru L A    

− −= − −1 1
3 2 2u L Ru L A    

           : 

           : 
− −

− −= − −1 1
1 1n n nu L Ru L A            (12) 

where An are the special Adomian polynomials or equivalently   

 

 

 

 

                                                                                                                                                                    

. 

                                                         . 

                                                         .                                                   (13) 

   So, the practical solution for the n-term approximation is, 


−

=

= 
1

0

, 1
n

n i
i

u n             (14) 

and the exact solution is 
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


→
=

= =
0

lim n i
n

i

u u
            

(15) 

3. The Adomian decomposition method applied to Newell-Whitehead model 

The nonlinear wave equation with dissipation and nonlinear transport term 

is given as: [15], [16] 

     (16)  

Where   are distinct real numbers and  ,  are constants. 

For  , Eq. (16) reduces to the nonlinear reaction- diffusion form  

      (17) 

for different choices of the parameters a1, a2, a3 Eq. (17) reduces to the well known 

nonlinear reaction diffusion equations appearing in many different branches of  

sciences: when  we get the Newell-Whitehead equation  [20] 

−+=



),0(),()1( 2 xtuuu

t

u
         (18) 

with the initial and boundary conditions 

.00

0,0,0),(

),()0,( 0

Lxandxat
x

u

Lxandxttxu

xxuxu

===




===

=

       (18a) 

which arises after carrying out a suitable normalization in the study of thermal 

convection of a fluid heated from below. Considering the Perturbation from a stationary 

state, the equation describes the evolution of the amplitude of the vertical velocity if this 

is a slowly varying function of time t and position x.  

The equation (18) written in an operator form 

)(uNuuuL xxt −+=             (19) 

where 
=


tL
t

 and  3)( uuN = is nonlinear term. Applying the inverse operator to the 

equation (19) and using the initial data (18a) yields 

)()(),( 111

0 uNLuLuLxutxu xx

−−− −++=          (20) 

            The ADM suggests the solution ),( txu  be decomposed by infinite series of 

components  




=

=
0

),(),(
n

n txutxu             (21) 

and the nonlinear operator N(u) by the infinite series of the Adomian polynomials 




=

=
0

)(
n

nAuN              (22) 

The first four components of Adomain polynomials according to (13) read  
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          (23) 

From eq. (21)  and eq. (22),  the iterates are determined by the following recursive way: 

.1,)()(

)(

1

1

11

1

00

−+=

=

−

−

−−

− nALuuLu

xuu

nnnn

         (24) 

        The decomposition method provides a reliable technique that requires less work if 

compared with traditional techniques. 

4. Application and Numerical Results             

To give a clear overview of the methodology, the following example will be 

discussed. All the results are calculated by using the MATLAB 7.4 software. 

Consider the Newell-Whitehead equation [11]  

)1( 2uuu
t

u
−+=




                   

with the initial conditions 

)1(
)0,(

))2(5.0(

2

))2(5.0(

1

))2(5.0(

2

))2(5..0(

1

++

−
−=

−

−

xaxa

xaxa

ecec

ecec

b

a
xu         (25)                                                                                                                                        

And exact Solution 

)(
),(

)2/3(

3

))2(5.0(

2

))2(5.0(

1

))2(5.0(

2

))2(5..0(

1

taxaxa

xaxa

ececec

ecec

b

a
txu

−−

−

++

−
−=  

Substitution the initial condition eq. (25) into eq. (24) and using eq. (23) to 

calculate the Adomian polynomials, yields the following recursive relation  

)1( ))2(5.0(

2

))2(5.0(

1

))2(5.0(

2

))2(5..0(

1
0

++

−
−=

−

−

xaxa

xaxa

ecec

ecec

b

a
u  

        (26) 

We will take . The first few terms of the decomposition 

series are given by:  

    

  

  

       (27) 



 Saad A. Manaa  
 

 

 176 

other components are determined similarly (we will use four).  

Substituting relations (27) into recursive relation (21) yields   

 +                

          

                     (28) 
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Fig.1: Comparison of exact and Adomain solution for t=0.5 
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Fig.2: Comparison of exact and Adomain solution for t=1.0   
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Table 1: Comparison of the exact and  Adomain decomposition solutions 

 

Adomain 

Decomposition 

u(x,t) 

Exact 

Solution 

u(x,t) 

Absolute 

Error 

Adomain 

Decomposition 
u(x,t) 

Exact 

Solution 

u(x,t) 

Absolute 

Error 

Adomain 

Decomposition 

u(x,t) 

Exact 

Solution 

u(x,t) 

Absolute 

Error 

0≤x≤15 and t=0.5 ×3-10 0≤x≤15 and t=1.0  0≤x≤15 and t=1.5  

X=0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

X=0.5 -0.2772 -0.2778 0.5581 -0.2991 -0.3073 0.0082 -0.2869 -0.3235 0.0365 

X=1.0 -0.5118 -0.5128 0.9418 -0.5462 -0.5594 0.0132 -0.5274 -0.5844 0.0570 

X=1.5 -0.6848 -0.6858 0.9834 -0.7222 -0.7352 0.0130 -0.7078 -0.7611 0.0533 

X=2.0 -0.8008 -0.8015 0.7105 -0.8365 -0.8451 0.0086 -0.8349 -0.8674 0.0325 

X=2.5 -0.8745 -0.8748 0.3278 -0.9065 -0.9097 0.0032 -0.9182 -0.9272 0.0089 

X=3.0 -0.9203 -0.9203 0.0144 -0.9476 -0.9467 0.0009 -0.9678 -0.9597 0.0080 

X=3.5 -0.9487 -0.9485 0.1685 -0.9710 -0.9679 0.0031 -0.9939 -0.9773 0.0166 

X=4.0 -0.9664 -0.9662 0.2401 -0.9840 -0.9802 0.0038 -1.0056 -0.9869 0.0187 

X=4.5 -0.9777 -0.9774 0.2428 -0.9911 -0.9874 0.0037 -1.0096 -0.9922 0.0174 

X=5.0 -0.9850 -0.9848 0.2127 -0.9950 -0.9919 0.0031 -1.0098 -0.9952 0.0145 

X=5.5 -0.9898 -0.9896 0.1723 -0.9971 -0.9946 0.0025 -1.0085 -0.9970 0.0115 

X=6.0 -0.9930 -0.9928 0.1330 -0.9983 -0.9964 0.0019 -1.0068 -0.9981 0.0087 

X=6.5 -0.9952 -0.9951 0.0997 -0.9990 -0.9976 0.0014 -1.0052 -0.9987 0.0065 

X=7.0 -0.9966 -0.9966 0.0732 -0.9994 -0.9983 0.0010 -1.0039 -0.9992 0.0047 

X=7.5 -0.9977 -0.9976 0.0530 -0.9996 -0.9988 0.0007 -1.0028 -0.9994 0.0034 

X=8.0 -0.9984 -0.9983 0.0380 -0.9997 -0.9992 0.0005 -1.0020 -0.9996 0.0024 

X=8.5 -0.9989 -0.9988 0.0271 -0.9998 -0.9994 0.0004 -1.0015 -0.9997 0.0017 

X=9.0 -0.9992 -0.9992 0.0192 -0.9999 -0.9996 0.0003 -1.0010 -0.9998 0.0012 

X=9.5 -0.9994 -0.9994 0.0136 -0.9999 -0.9997 0.0002 -1.0007 -0.9999 0.0009 

X=10.0 -0.9996 -0.9996 0.0096 -0.9999 -0.9998 0.0001 -1.0005 -0.9999 0.0006 

X=10.5 -0.9997 -0.9997 0.0068 -1.0000 -0.9999 0.0001 -1.0004 -0.9999 0.0004 

X=11.0 -0.9998 -0.9998 0.0048 -1.0000 -0.9999 0.0001 -1.0003 -1.0000 0.0003 

X=11.5 -0.9999 -0.9999 0.0033 -1.0000 -0.9999 0.0000 -1.0002 -1.0000 0.0002 

X=12.0 -0.9999 -0.9999 0.0024 -1.0000 -1.0000 0.0000 -1.0001 -1.0000 0.0001 

X=12.5 -0.9999 -0.9999 0.0017 -1.0000 -1.0000 0.0000 -1.0001 -1.0000 0.0001 

X=13.0 -1.0000 -1.0000 0.0012 -1.0000 -1.0000 0.0000 -1.0001 -1.0000 0.0001 

X=13.5 -1.0000 -1.0000 0.0008 -1.0000 -1.0000 0.0000 -1.0000 -1.0000 0.0001 

X=14.0 -1.0000 -1.0000 0.0006 -1.0000 -1.0000 0.0000 -1.0000 -1.0000 0.0000 

X=14.5 -1.0000 -1.0000 0.0004 -1.0000 -1.0000 0.0000 -1.0000 -1.0000 0.0000 

X=15.0 -1.0000 -1.0000 0.0003 -1.0000 -1.0000 0.0000 -1.0000 -1.0000 0.0000 

 

It is clear from the figures (1-3) and the table that Adomain decomposition 

method is so accurate and converging to the exact solution.  
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Fig.3: Comparison of exact and Adomain solution for t=1.5 
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5. Conclusions  

The Adomain decomposition method is effective and powerful method for 

solving nonlinear partial differential Newell-Whitehead equations. The important part of 

this method is calculating Adomain polynomials for nonlinear operator.  
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