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ABSTRACT

This paper investigates an interleaved algorithm which combines between the
extended conjugate gradient with the hybrid method of Touati-Storey. This combined
algorithm is based on the exact line search to solve a number of non-linear test functions
with different dimensions. Experimental results indicate that the modified algorithm is

more efficient than the original Sloboda algorithm.
Keywords: A new conjugate gradient method, Numerical Results and Conclusions.
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1. Introduction

The problem to be solved by the Sloboda algorithm is to calculate the least value
of a general differentiable function of several variables. Let n be the number of

variables, x be the vector of variables and q(x) be the objective function and g(x) be the
gradient of q(x). i.e.

9(x) =Va(x) 1)

Conjugate gradient algorithm does not require any explicit second derivatives
and it is an iterative method. The sequences of points X1 , X2 , X3, ... are calculated by
the successive iteration procedure and it should converge to the point in the space of the
variable at which g(x) is least.

The conjugate gradient algorithm was first applied to the general unconstrained
minimization problem by Fletcher & Reeves [7]. However, now there are several
versions of the algorithm for this calculation. Let x1 be a given starting point in the
space of the variable and let i denote the number of the current iteration starting with
i=1. the iteration requires the gradient:

gi = g(xi) ,
if i =1, letd; be the steepest descent direction,
di = - gi (2)

otherwise, for i > 1, we apply the formula:
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di =-gi + Bi di1 3
where @i and yi have the values:

ﬂi ZYiT gi+1/yiT di (4)
Vi = Qi+1 — Ji

The vector norms being Euclidian and by searching for the least value of f(x)
from x; along the direction di we can obtain the vector Xi+1:

Xig =X+ 4 d; ()
Where 2; is the value of A that minimizes the function of one variable.
#,(4) =1(x; + 1)) (6)

This complete the value of the iteration, and another one is begun if f(Xi+1) or gi+1
is not sufficiently small, [10].

Let A denote a symmetric and positive definite ixi matrix. For xeR', we
define:

q(x):%xTAx+bTx+c (7)

Let F: R = R' denote a strictly monotonic increasing function and define:
f(x) =F(a(x)) (8)

Such a function is called an extended quadratic function, Spedicato [12].

When a minimization algorithm is applied to f, the i™" iterate is denoted by xi, the
corresponding function value by fi and its gradient by G; , the function value and
gradient value of ¢ are denoted by gi & gi, respectively and the derivative of F, at q; is
denoted by F.". we note that G, = F'g, and define p, =c, /¢

Assady and Al-Bayati [4]
2. Non-Quadratic Sloboda Method

Sloboda [11] proposed a generalized conjugate gradient algorithm for
minimizing a strictly convex function of the general form:

for i, where ¢, =F', Al-

i+1

dF
69 =F@aC) & >0 (9)
q
This algorithm is as follows:

= Algorithm 1:
Stepl:Set i=1;d1=-G1; G, =9, .
Step 2: Compute A by ELS & set x,,, = X, + 4, d,

Step 3: Compute g , =g(x -4 97)
e

Step 4: Test for convergence, if achieved stop. if not continue.
Step 5: If i=0 nod(n) go to Step 1, else continue.
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d g
T

Step 6: g,,=w(g , -g; where w= g

2 1
2
Step 7: Compute the new search direction d., =-g;, + 3 d. where:

_—_
B =3;T—gl and y, =0, —0; -
Step 8: Set i=i+1; and go to step 2.
Algorithm 1 terminates after i iterations in the case of a nonlinear scaled
quadratic function using ELS.
A more general scaling has been considered by Spedicato [12], such a scaling
transforms F into a new function where (9), is satisfied. He shows that the sequence of
points generated is invariant with respect to nonlinear scaling if:

_ Oiy i
T Vi

®=v{ H'v=29g/ H g

(10)

However, this type of scaling also uses functions for which the analytic form is
known apriority.
Al-Bayati [1] introduced another family of self-scaling VM-methods given by:

T -
Vit:/i by Hi'%(Hi Yi Vi +V; i H) (11)
a

Hi., =H, +(ﬂ+%)

where 0 is again a free parameter; u = % anda=y Hy, b= vy

M=(&;) B+(0) (1- B);0< p<1 (11a)
where £ =® (11b)
M =H, o+ (e D) P02 1y V] v,y H) (12)

If an estimate of the inverse Hessian in maintained (rather than an estimate of
the Hessian itself which is sometime preferred) then there is a strong motivation for

choosing B =0 in (11 a), namely, that H is not required, this gives u = %.

However, it is possible to generalize Al-Bayati’s family of self-scaling VM-
updates (12) to be invariant to a nonlinear scaling by the following algorithm, Al-Bayati

[2].

= Algorithm 2:

Stepl:Seti=1;Hi=1;d1=-H1Gy; Glzgi.

Step 2: Compute X, =X, + A d, ; A determined by ELS.
di g;
) 9ivy
Step 4: Test for convergence; if not continue.

* * l
Step3:Set g, =wg.. , -0, ;| W= and g.. , =g(x, —=Ad).
p 9, =W0,y -0 i,y =9(X; 5 )
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Step 5: Update the matrix H using (12).
Step 6: Compute d., =-H, g;,,.
Step 7: Set i=i+1 and go to Step 2.
In this section we shall describe also another algorithm which effectively
interleaves CG & VM-steps. It is also related to one given originally by Buckley [6], but

our implementation differs in that we use the scaled quadratic model instead of the
quadratic itself.

CG-algorithm 1. and the generalized VM-algorithm 2. The objective here is to
show that, using Al-Bayati’s self-scaling VM-update (12), the sequence of the
generating points is the same in the generalized CG-algorithm 1.

Before making a few more observations we shall outline briefly the proposed
strategy for the interleaved generalized CG-VM method Al-Bayati [2].

= Algorithm 3:

Let f be a non linear scaling of the quadratic function f; given x; and a matrix
Hi=1;set G,=g;;i=1andt=1linitially, k is the iteration index.
Step 1: Set d, =-H, g, (13)
Step 2: Fork=t, t+1 , t+2, ... iterate with

Xin =Xy + 4 dy,

_(gH, 7%
g de V'

de,=-H, g*k+1 +pB.d,,

Vi Oru d/ g;
ﬂ =, W:—I !
©odiy, df 9.y,

91+1=Wk DY 'gl
1
9y =g(x, _E/lk dy)

Y =01 -0k
Here i is the index of the matrix updated only at restart steps and K is the index
of iteration and the algorithm is not converged, until a restart is indicated.

Step 3: If a restart is indicated, namely that the Powell [9] restarting criterion is
satisfied, i.e.

ket Ol 2 021951 Gl (14)
Then reset t to the current k , update Hi by:

o =H =D 13 v - (M

where a, =y H.y, and b, =V y,
Step 4: Replace i by i + 1 and repeat from (13).
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3. Hybrid Conjugate Gradient Method

Despite the numerical superiority of PR-method over FR-method the later has
better theoretical properties than the formal see Al-Baali [3]. Under certain conditions
FR-method can be shown to have global convergence with exact line search Powell [10]
and also with inexact line search satisfying the strong Wolf-Powell condition. This
anomaly leads to speculation on the best way to choose [3i .

Touati — Ahmed and Storey in (12) proposed the following hybrid method:

Step 1:if A ||lg.4|* < (2m)"™ , with ;> m>n and >0 go to Step 2. Otherwise, Set

Bi=0.
Step 2: If B <0, Set g =4 , otherwise go to Step 3.

2
Step 3: If ™ < (1/2m)(" 91 %g sz with m =, set & = B Otherwise Set

Bi = iPR-
Here m, m and A4 user supplied parameters. This hybrid was shown to be

globally convergence under both exact and inexact line searches and to be quite
competitive with PR- and FR-methods.

4. New hybrid algorithm (Algorithm 4):

Stepl:Set d,=-H, g,,i=1,t=1, kis the index of iterations.
Step 2: Fork =t, t+1, ... iterate with

X = Xy +ﬂ’k dk )

and

_ (91 H, 7%
ﬂk d"ll(' yk ’

Where i is the index of the matrix updated only at restart steps.
Step 3: If A [|gi4]* < (2m)*** with ;> m > n g0 to Step 1. Otherwise set Bi = 0.
Step 4: If B <0 set p, =p® , otherwise go to Step 5.
Step 5:If BPR < (;m) .4l llg;|? With m > 7, Set B, = B/, otherwise set B; = B".

Step 6: Compute d, ,, =-H; g*k+1 + f, d,, where 91+1 =Wy Oypy - g;

Step 7: If a restart is indicated, namely that the Powell, restarting criterion is satisfied,
ierlg’ g, | = 0.2]g" g, | . thenresettto the current k, update Hi by:

o =H - YD 123 v (R 1

Step 8: Replace i by i+1 and repeat from (13).
5. Conclusions and Numerical results:

Several standard test functions were minimized (2 < n < 400) to compare the
proposed algorithm with standard Sloboda algorithm which are coded in double
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precision Fortran 90. The proposed hybrid algorithm needs matrix calculation for
400x400, this is the approximately the latest range for this computation of the matrix.
The numerical results are obtained on personal Pentium IV Computer. The compete set
of results are given in tables 5.1 and 5.2.

The linear search routine used was a cubic interpolation which use function and
gradient values and it is adaptation of the routine published by Bunday [5].

We tabulate for all the algorithms; the number of functions evaluations (NOF)
and the number of iterations (NOI). Overall totals are also given for NOF and NOI with
each algorithm.

Table 5.1 gives the comparison between the standard Sloboda algorithm and the
proposed algorithm. Table 5.2 indicates that the suggested algorithm is more efficient
than the standard Sloboda algorithm. Namely, there are an improvement of about (53
%) in both NOI and NOF according to our selected group of test functions.

Table 5.1
Comparison between Sloboda method and the proposed hybrid method for 2 < n < 400

Sloboda method Hybrid method

Test function Dimension
NOI NOF NOF

ROSEN 33 85 30
BEAL 10 26 20
DIXON 6 17 14
NON.DI 16 49 30
ROSEN 16 49 30
POWELL 51 77
WOOD 33 80 70
SHALLO 8 21 19
BEAL 8 20 23
POWELL-3 17 37 25
POWELL 60 88
ROSEN 17 48 30
WOOD 72
WOLFE 52 79
POWELL 90 99
WOOD 98 72
BEAL 8 23
POWELL 90
WOLFE 53 79
WOOD 72
WOLF 53 79

TOTAL

Table 5.2
Performance of the new algorithm in relation to Sloboda’s algorithm

Measurement Sloboda New Algorithm

NOI | 100 | 47.35
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NOF 100 47.72

All the algorithms terminated when | f -f . |<5x10™ .

min

Appendix
These test function are from general literature [8].

1. Generalized Powell Function
n/4

F(X) = Z[(xm-s -10 X4i-2)2 +5(Xyi4 - X4i)2 + (X4 -2 X4i-1)4

i=2
+10 (X, 'X4i)4]
x,=(3,-1,0,1,...)"

2. Generalized Wood Function
n/4

F(X) = 2[100(X4i_2 —Xia) + (1-X45)°
2
+90(X,; - Xgi0) + (L= %5 ,)* +1.0]
x,=(-3,-1,-3,-1,..)"

3. Non-diagonal Functions:
F() =>_[100(x; - x5)* +(1-x;)°]
i=2

x,=(-1,..)7

4. Generalized Dixon Function
9

F() = (1= %)% + (1= X,)* + D (X; - X;1)
i=2

X,=(-1,...)"
5. Wolfe Functions:

F(X) = (- X (3-X,/2) + 2x, -1)* + 'nz_l(xi_1 =X, (3-X%,12) + 2%, -1)* + (X, - X, (3%,/2)-1)*

i+l

X,=(-1,...)"

6. Shallo Function
n/2

F(X) = Z(Xgi—l - X2i)2 +(1- Xzi-l)2
x0=(-é,-2,...)T

7. Generalized Rosenbrock Function
n/2

F() = Zloo(xzi — X54)" +(1=X5,)°
i=2
x,=(-1,2,1,...)"
8. Beale Function
F(X) =(1.5-X,(1-%2)) +(2.25—X,(1—%2))* +(2.625—x,(1—x3))*
X, =(0,0)"
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