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ABSTRACT
This paper proposes a new four-dimensional continuous autonomous

hyperchaotic system based on the 3D Pan system by introducing a nonlinear state
feedback controller. Dynamical behaviors of the new system are analyzed, both
theoretically and numerically, including equilibrium points, Lyapunov exponents
spectrum stability and bifurcation , finally, an illustrative example is given.
Keywords: Hyperchaos, Feedback control, Lyapunov exponent, Pan system, Stability.
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Introduction:

In 1963, Lorenz discovered the first chaotic system when he studied atmospheric
convection, since then, the Lorenz system has been extensively studied in the field of
chaos theory and dynamical systems [8]. In recent years, hyperchaos generation and
control have been extensively studied due to its theoretical and practical applications in
the fields of communications, laser, neural work, nonlinear circuit, mathematics, and so
on [6, 8, 10].

Historically, hyperchaos was firstly reported by Rdssler. That is, the noted four-
dimensional (4D) hyperchaotic Rossler system [6, 8], Hyperchaotic system is usually
defined as a chaotic system with at least two positive exponents [2, 3, 6, 9, 10] and is
expanded in two or more directions, so the hyperchaotic system is more complicated
than chaotic system [3, 9].

Over the last two decades, there are various hyperchaotic systems discovered in
high-dimensional systems, Typical examples are four-dimensional (4D) hyperchaotic
Rossler system, 4D hyperchaotic Lorenz-Haken system, 4D hyperchaotic Chua’s
circuit, and 4D hyperchaotic Chen system [2, 6], very recently, hyperchaos was found
numerically and experimentally by adding a simple state feedback controller [6, 8, 10].

In 2006, Chen, Lu, L0 and Yu generated hyperchaotic LU system by using a
state feedback controller and studied the dynamical behaviors for this system [2]. At the
same year, Wang, Zhen and Li present hyperchaotic Lorenz system and also studied the
dynamical behaviors for this system [10]. In 2008, Wang modified another
hyperchaotic Lorenz system which is different from system by Wang, Zhen and Li [7].
later more and more hyperchaotic systems are generated such as another hyperchaotic
LU system (2009) [3], hyperchaotic Liu system (2009) [8], four-wing hyperchaotic
system (2010) [9], finally, hyperchaotic Pan system (2011) [5].

In this paper, a new four-dimension hyperchaotic Pan system is constructed
based on a three-dimensional Pan system by introducing a nonlinear state feedback

229


mailto:saad_fawzi78@yahoo.com

Saad F. AL-Azzawi

controller, and we investigated some basic properties and behaviors for this system
numerically and analytically, including symmetry and invariance, dissipative and
existence of attracter, equilibrium points, Lyapunov exponents spectrum, stability and
bifurcation .

2- System Description

Pan system or LU -like system [5] is found by L. Pan, D. Xu and W. Zhou in
2010 which is similar to the Lorenz system , but it is not topological equivalent with the
Lorenz system [4]. And this system provides another interesting framework for
advanced control techniques since it is more complex than the Lorenz system and Chua
system. Moreover, it is more difficult to control the Pan system than the other than those
already known chaotic systems due to the rapid change of the velocity in the z-direction
[4].

The mathematical model of Pan system is a system of nonlinear ordinary
differential equations which has the form:

x=a(y—x)

Yy =CX—XZ ...(0)
Z=xy—-bz

in which a,b and c are real constants. when a=10,b=2, and ¢ =16 the Lyapunov

exponents by Wolf Algorithm are LE, =0.8311, LE, =0.0000and LE, =-12.5113.

The Lyapunov exponents spectrum and Phase portraits of the system (1) are shown in
Fig.1 and Fig.2 respectively [5].
The Lyapunov dimension of system (1) is given as follows [5]:
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Fig. 1. Lyapunov exponents spectrum of Pan chaotic system versus parameter ¢
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Fig. 2. Phase portraits of Pan system in (a) the x-y-z space; and projected on (b) the x-y plane;
(c) the x-z plane; and (d) the y-z plane.

3- Helping Results:

The first two remarks give us information about the roots of a polynomial and
can be applied to the characteristic polynomial of a matrix.

Remark 1 (Coefficient Test) [1]:
Suppose that:
fA=A+A1"+BA*+CA % +....... +YA+Z ...(3)

where the coefficients are real. If any coefficient of f (1) is either zero or negative,
then, at least, one root has a nonnegative real part.

Remark 2 (Routh— Hurwitz Test) [1]:

All the roots of the indicated polynomial have negative real parts precisely when
the given conditions are met.

e V¥+A1l+B:A>0,B>0 ...(4)

e P+A¥ +BA+C: A>0,C>0, B-C>0. ...(5)

e +ALX+BF+CA+D: A>0,AB-C>0, (AB-C)C-A’D>0,D>0. ...(6)
Remark 3 (Trace Test) [1]:

Suppose that A s an nxn matrix of real constants and that trace
A=a,+a, +... +a,, IS negative (positive). Then, at least, one eigenvalue of A

has a negative (positive) real part. If the trace is zero, then either all eigenvalues have
zero real parts, or there is a pair of eigenvalues whose real parts have opposite signs.
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Proposition 1 [1]:

1) The coefficient test does not apply to the polynomial with a positive coefficient.
2) The Routh — Hurwitz test applies to polynomials of degree no more than four.
3) The trace test applies directly to matrix, so there is no need to find the
characteristic polynomial.
Finally, the Routh—Hurwitz test is the best from the coefficient test and trace test.

Remark 4 (Generating Hyperchaos) [2, 5, 6, 7, 8]:

To generate hyperchaos from the dissipatively autonomously polynomial
systems by using a state feedback controller, the state equation must satisfy the
following two basic conditions:

The minimal dimension of the phase space of an autonomous system is at least
four. The number of terms in the coupled equations giving rise to instability is at least
two, of which, at least, one has a nonlinear function .

Remark 5 (Lyapunov Exponents) [2, 6]:

Assume that the Lyapunov exponents for a simple four dimension hyperchaotic
system are LE; for i =12,3,4 satisfying LE, > LE, > LE, > LE,. Then, the dynamical

behaviors of this system can be classified as follows:
(1) For LE, >LE, >0,LE, =0,LE, <0 and LE, +LE, +LE, <0, system hyperchaos.

(2) For LE, >0,LE, =0,LE, <LE, <0and LE, + LE, + LE, <0, system chaos.
(3) For LE, =0,LE, < LE, < LE, <0, system has a periodic orbit.
(4) For LE, < LE, < LE, < LE, <0, system has an equilibrium point.

In the context of ordinary differential equations ODEs, the word "Bifurcation™
has come to mean any marked change in the structure of the orbits of a system (usually
nonlinear) as a parameter passes through a critical value [1].

Remark 6 (Hopf Bifurcation) [9]:

Any system has a Hopf bifurcation if the following conditions are satisfied:
1- The Jacobian matrix has two purely imaginary roots and no other roots with zero
real parts.

2 L Re(2(0), 0 #0
u

=0

Remark 7 (Generating Hyperchaotic Pan system) [5]:

Hyperchaotic Pan system is generated by introducing an additional state u to the
first equation of system (1). Then, we get the following four-dimensional hyperchaotic
system:

x=a(y—-x)+u

Yy =CX—XZ @
2=xy—bz
U=-xz+du

where (x,y,z,u) e R*, and a,b,c,d e R are constant parameters. This system is called
hyperchaotic Pan system, when parameters a=10,b=8/3,c=28 and d =13, we
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calculate the Lyapunov exponents with the Wolf Algorithm. and the four Lyapunov
exponents of the hyperchaotic system (7) are
LE, =0.7340, LE, =0.2492, LE, =0.0000, and LE, =-11.3437. The Lyapunov

exponents spectrum and Phase portraits of the system (7) are shown in Fig.3 and Fig.4
respectively [5].
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Fig. 3. Lyapunov exponents spectrum of Pan hyperchaotic system versus parameter d
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Fig. 4. Phase portraits of Pan hyperchaotic system in (a)the x-y-z space;(b) the x-y-u space, (c)
the x-z-u space, and(d) the y-z-u space.
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4- Main results:

Based on Pan system and remark 4,we can construct a new four dimension
hyperchaotic system by introducing a state feedback controller, as follows:

Add a nonlinear controller u to the second equation of system (1), let
U = xz + dy, then we obtain a new hyperchaotic system
x=a(y—Xx)
y=CX—Xz—-U
. ...(8)
z=xy-bz
U=xz+dy
where (x,y,z,u)eR*, and a,b,c,d eR are constant parameters. For simplification,

system (8) is called a new hyperchaotic Pan system in this paper.
In the following, we briefly describe some dynamical behaviors of the new
hyperchaotic system (8).

4.1- Symmetry:

System (8) has a natural symmetry under the coordinates
transformation (x, y, z,u) —» (-x,—y, z,~u) which persists for all values of the system

parameters. This means that system (8) is symmetric about the z-axis.
4.2- Dissipative and existence of attracter:

Obviously, from system (8), one has

divy =X Y 2 N o), .9
OX Z Ou
Therefore, to make system(8) be dissipative, it is required that a+b >0 .

4.3- Equilibrium Points:

In order to obtain the equilibrium points of system (8), let x=y=2=u=0, and
we can obtain the following expressions (10):
a(y—-x)=0
cX—xz—u=0 ...(10)
xy—bz=0
xz+dy=0

From the above equations, we obtain three equilibrium points O(0, 0,0, 0)
p,(¥-bd, v=bd, —d,v~bd (c+d)),
p,(~~—bd, —v=bd, —d, —v/—bd (c+d)).

when —bd >0 while if —bd <0 then exists only one equilibrium point O(0,0,0,0).
4.4- Lyapunov Exponents and Lyapunov Dimension :

We calculate the Lyapunov exponents for a new hyperchaotic system with the
Wolf Algorithm by using MATLAB software, the numerical simulation was carried out
with a=10,b=8/3,c=2,d =0.2, for initial value (1,1,1,1) and the four Lyapunov
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exponents of the new hyperchaotic system (8) are LE, =0.0034131, LE, =-0.98703,
LE, =-1.013 and LE, =-10.6689. the Lyapunov exponents spectrum and Phase

portraits of the system (8) are shown in Fig. 5 and Fig. 6 respectively.
So, we can obtain the Lyapunov dimension of the new hyperchaotic system (8),
it is described as

1 LE, +LE, +LE, _  0.0034131-0.98703-1.013

i
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Fig. 5. Lyapunov exponents spectrum of a new hyperchaotic system versus parameter c
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Fig. 6. Phase portraits of new hyperchaotic system in (a)the x-y-z space;(b) the x-y-u space, ()
the x-z-u space, and(d) the y-z-u space.
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Theorem 1: The solution of system (8) at the equilibrium point O(0,0,0,0) when
a,b,d > 0 has the following cases:

1) Asymptotically stable if c¢<0,

2) Unstable if ¢>0,

3) Hopf bifurcation if c¢=0.
Proof: At the equilibrium point O(0,0,0,0), system (8) are linearized, the Jacobian
matrix defined as :

-a a 0 0 -a a 0 O
J - c-z 0 -x -1 _|c 0 0 -1 (D)
y x -b 0 0 0 -b O
z d x 054000 0 d 0 O
and its characteristic equation is :
f(A)=2"+(@a+b) 22 +(ab+d—ac)4* + (bd —abc+ad)A +abd =0 ...(12)
Solving equation (12) gives
A=-Db
and the following equation:
f(A)=2+at*+(d-ac)i+ad =0 ...(13)
Let

A=a, B=d-ac, C=ad

According to the Routh-Hurwitz condition, the real parts of roots A of (13) are
negative if and only if
a>0, ad>0, a(d-ac)—ad>0

Implying A,C >0 since a,d >0 (given) and AB —C >0 itis possible under
the condition ¢ < 0, therefore system (8) is asymptotically stable if ¢ <0 while unstable
if ¢ > 0. Finally, Hopf bifurcation if ¢ =0, the proof is completed.

Due to the system is invariant under the transformation, so one only needs to

consider the stability of any one of the both. The stability of the system (8) at
equilibrium point p, is analyzed in this paper.

Theorem 2: The solution of system (8) at the equilibrium point p, is always unstable.

Proof: Now, to find Jacobian matrix at P we need the following transformation under
the linear transformation (x, y, z,u) —» (X,Y,Z,U):

X= X ++/—hd

y=Y ++/-hd (14)
z=272-d
u=U ++/—bd (c+d)

the system (8) becomes
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X =a(Y - X)

Y =(c+d)X —v/—bdZ -U

Z =yJ-bdX ++/-bd Y -bZ

U =—dX +dY ++/~bdZ
The equilibrium point p, of the system (8) is switched to the new equilibrium

point O'(0, 0, 0,0)of the system (15) under the linear transformation, The Jacobian
matrix of the system (15) at O’'(0, 0, 0, 0) is:

...(15)

—-a a 0 0
10 = c+d 0 —+-bd -1 (16)
~|vJ=bd +—hd —b 0

—d d Jv-bd O

and the characteristic equation is :

A+AL+BF+CAi+D=0 ..(17)
where

A=a+b
B=ab-bd-ca—ad+d
C =—(3abd +bca)

D =-2abd

...(18)

Using Routh-Hurwitz criterion, the equation (17) has all roots with negative real
parts if and only if the conditions are satisfied as follows

A>0,

AB-C >0,
(AB-C)C-A’D>0 ,
D>0.

...(19)

Since D=-2abd and a, b and d are positive parameters, consequently D <0
always therefore then one of Routh-Hurwitz conditions not satisfied, consequently the
system (8) is unstable, the proof is completed.

Proposition 1: Equation (12) has purely imaginary roots if and only if a,b,d >0,
c=0=c,. In this case, the solutions of equation (12) are A4, =-b, A4,=-a,

Ay, =+ iAd.

Proof: First get one root 4, =-b from equation (12), then obtain cubic equation
(equation 13). If A,,==+iw are the complex solutions and A, the real solution of

equation (12) then, from A4, + A4, + 4, =—a = A, =—a. This easily leads to a,b,d >0,
c=0=c,and 4, =-a, 4,; == id, 4, =-b.
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In the following, we will prove that the system (8) displays a Hopf bifurcation at
the point 0(0,0,0,0). For c=c, =0, the point 0(0,0,0,0) loses its stability.
Theorem 3: If ¢ =0, equation (12) has a negative solutions 4, =-b<0, 4, =—a<0
together with a pair of purely imaginary roots 4, , = +ix/d such that Re(4.(c,)) # 0,
therefore the system (8) displays a Hopf bifurcation at the point 0(0,0,0,0) .
Proof: If ¢ =0 the equation (13) is transformed into
(A+a)(#+d)=0
with solutions 4, =—a,4,, = +ivd
, al

322 +2al+d-ca

al
Al(c,)) =
¢ (o) 322 +2al+d—ac oo

Substituting /12’3:ii\/a , the real part and imaginary part of the A/(c,)
respectively are:

o 2a*d
Re(A () = (C2d—ac)’ +4a’d °
Im(4.(c,)) = aJd(2d-a9) _,

(-2d —ac)® +4a’d
Consequently, the system (8) displays a Hopf bifurcation at O(0,0,0,0) .

Corollary 1: System (8) at all equilibrium points O, p,, p, has the following cases:
at least one root positive real part if a<-b,
at least one root negative real part if a>-b,
either all roots have zero real parts, or there is a pair of roots whose real parts have

opposite signs if a=-Db.
Proof: By trace test (remark 3), we get a;, +a,, +a; +a,, =—a—Db for each matrix
(11) and (16) when, then at least one root has positive real part —a—-b>0 = a<-b
and when, finally one root has negative real part, then at least —a—-b<0 = a>-b
when —a—-b=0 = a=-b then either all roots have zero real parts, or there is a pair
of roots whose real parts have opposite signs for all equilibrium points O, p,, p, .

Corollary 2: System (8) has, at least, one root with nonnegative real part at equilibrium

point O (0,0,0,0) if one of the following cases is satisfied:

@ a<-b
—d

2) as——

) -
—bd
d-bc

(4) abd <0

...(20)

3) a<
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Proof: By coefficient test (remark 1), when one coefficient of equation (12)
A,B,C,D <0, then, at least, one root has a nonnegative real part; consequently where

@ A=a+b if A<O0 then a+b<0 = a<-b
(2) B=ab+d-ac if B<O0 then ab+d-ac<0 = asb_—dc
(33 C=bd-abc+ad if C<O then bd-abc+ad<0 = asd_bgc

(4) D=ahd if D<0 then abd<O0

Corollary 3: System (8) has at least one root with nonnegative real part at equilibrium
point p, if one of the following cases is satisfied:

L a<-b
d(b-1)
(2) asi—— .21
3) c>-3d
(4) —2abd <0

Proof: By coefficient test (remark 1), when one coefficient of equation (17)
A,B,C,D <0, then, at least, one root has a nonnegative real part. consequently where

@ A=a+b if A<O0 then a+b<0 = a<-b
d(b-1)

(2) B=ab-bd-ca-ad+d if B<O thenab+d-ac<0 = agb 4

(3) C=-3abd-abc if C<0 then —3abd-abc<0 = c¢>-3d
(4) D=-2abd if D<0 then -2abd<0
5 - llustrative Example:

Example: Investigate the stability and Hopf bifurcation at the equilibrium point
0(0,0,0,0) of the following new hyperchaotic Pan system:

X =10(y — X)

y=3Xx—xz—-u

7=xy-5z ...(22)
U=xz+y

Solution: a=10,c=3,b=5d=1 and linearized system (22) about the equilibrium
point O(0,0,0,0) yield the following characteristic equations:

A +152° +194% 13514 +50 =0 ...(23)
or 4,=-5
A +104* -291+10=0 ...(24)

by using Routh-Hurwitz method on equation (24), we lead A=10, C=10 so
A C>0 and AB=-290<C=10 not satisfied Routh-Hurwitz conditions since
¢ =3> 0(by theorem 1,(2)), the system (22) is unstable when ¢ > 0.
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but, if c<0 (by theorem 1, (1)), let c=-2 then yield the following characteristic
equations:

sA2+104% +211+10=0 ...(25)

where satisfied Routh-Hurwitz conditions, consequently, the system (22) is
asymptotically stable at origin when ¢ < 0.
If ¢ =0 then, yield the following characteristic equations:

A2 +104 +1+10=0 ...(26)

(satisfied Theorem 1(3)) the system (22) is bifurcation at O(0,0,0,0). To justify these
results we found the roots of equations (24 ), (25) and (26) the roots of equation ( 24)

are 4, =2, 4, =—6+—“1264, A =—6——“1264.

While, the roots of equation (25) are 4, =-2, 4, = —4+@, A :_4_@,

And the roots of equation (26 ) are 4, =-10, A, =—1, A, =+I.

Consequently, the system (22) is asymptotically stable at equilibrium point
0(0,0,0,0) if c<0 and unstable if ¢ >0 and Hopf bifurcation if c=0.

6- Conclusion:

This paper presents a new four dimensional hyperchaotic system, which is called
a new hyperchaotic Pan system. This new hyperchaotic system is different from the
hyperchaotic Lorenz system, hyperchaotic Li system, another hyperchaotic L system
as well as hyperchaotic system which was proposed by Pan in Ref [5]. Since, the new
hyperchaotic system has more complex dynamical behaviors than the normal chaotic
systems, it is believed that the system will have broad applications in various chaos-
based information systems.
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