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ABSTRACT 

This paper proposes a new four-dimensional continuous autonomous 

hyperchaotic system based on the 3D Pan system by introducing a nonlinear state 

feedback controller. Dynamical behaviors of the new system are analyzed, both 

theoretically and numerically, including equilibrium points, Lyapunov exponents 

spectrum  stability and bifurcation , finally, an illustrative example is given.   
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 كثير الاضطراب جديد من خلال سيطرة حالة التغذية العكسية  Panتوليد نظام  

 لملخصا
 على  نظىام اقترح نظام جديد رباعي الإبعاد مستمر مستقل ذاتيا كثير الاضطراب معتمدا في هذا البحث تم

Pan  للنظىىاما اليديىىدا  حركىىيال السىىل   وتىىم تحليىىل .سىىيطرح لالىىت الت ذ ىىت العيسىىيت ييىىر ال طيىىت ثلاثىىي اعبعىىاد يتقىىد م
 وأخيرا تم إعطاء مثال ت ضيحي. ، الاستقراريت والتشعب، طيف آسيت ليبان ف، متضمنا نقاط الاتزان، اعدد و نظرياً 

  .الاستقراريت Panشديد الاضطراب,  سيطرح الت ذ ت , اسيت لايبن ف , نظام  لكلمات المفتاحية:ا
Introduction: 

In 1963, Lorenz discovered the first chaotic system when he studied atmospheric 

convection, since then, the Lorenz system has been extensively studied in the field of 

chaos theory and dynamical systems [8]. In recent years, hyperchaos generation and 

control have been extensively studied due to its theoretical and practical applications in 

the fields of communications, laser, neural work, nonlinear circuit, mathematics, and so 

on [6, 8, 10].  

Historically, hyperchaos was firstly reported by Rössler. That is, the noted four-

dimensional (4D) hyperchaotic Rössler system [6, 8], Hyperchaotic system is usually 

defined as a chaotic system with at least two positive exponents [2, 3, 6, 9, 10] and is 

expanded in two or more directions, so the hyperchaotic  system is more complicated 

than chaotic  system [3, 9]. 

Over the last two decades, there are various hyperchaotic systems discovered in 

high-dimensional systems, Typical examples are four-dimensional (4D) hyperchaotic 

Rössler system, 4D hyperchaotic Lorenz-Haken system, 4D hyperchaotic Chua’s 

circuit, and  4D hyperchaotic Chen system [2, 6], very recently, hyperchaos was found 

numerically and experimentally by adding a simple state feedback controller [6, 8, 10].  

In 2006, Chen, Lu, Lü and Yu generated   hyperchaotic Lü system by using a 

state feedback controller and studied the dynamical behaviors for this system [2]. At the 

same year, Wang, Zhen and Li present hyperchaotic Lorenz system and also studied the 

dynamical behaviors for this system [10]. In 2008, Wang modified another  

hyperchaotic Lorenz system which is different from system by Wang, Zhen and Li [7]. 

later more and more hyperchaotic systems are generated such as another  hyperchaotic 

Lü system (2009) [3], hyperchaotic Liu system (2009) [8], four-wing hyperchaotic 

system (2010) [9], finally,  hyperchaotic Pan system (2011) [5].  

In this paper, a new four-dimension  hyperchaotic Pan system is constructed 

based on a three-dimensional Pan system by introducing a nonlinear state feedback 
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controller, and we investigated some basic properties and behaviors for this system 

numerically and analytically, including symmetry and invariance, dissipative and 

existence of attracter, equilibrium points, Lyapunov exponents spectrum, stability and 

bifurcation .  

2- System Description 

Pan system or Lu -like system [5] is  found by L. Pan, D. Xu and W. Zhou in 

2010  which is similar to the Lorenz system , but it is not topological equivalent with the 

Lorenz system [4]. And this system provides another interesting framework for 

advanced control techniques since it is more complex than the Lorenz system and Chua 

system. Moreover, it is more difficult to control the Pan system than the other than those 

already known chaotic systems due to the rapid change of the velocity in the z-direction 

[4]. 

The mathematical model of Pan system is a system of nonlinear ordinary 

differential equations which has the form: 
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                                                                                                              …(1) 

in which  ba,  and c  are real constants. when ,2,10 == ba  and 16=c  the Lyapunov 

exponents by Wolf Algorithm are 0000.0,8311.0 21 == LELE and 5113.123 −=LE . 

The Lyapunov exponents spectrum and Phase portraits of the system (1) are shown in 

Fig.1 and  Fig.2 respectively [5].  

The Lyapunov dimension of system (1) is given as follows [5]: 
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Fig. 1.  Lyapunov exponents spectrum of  Pan chaotic system versus parameter c 
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Fig. 2. Phase portraits of Pan system in (a) the x-y-z space;  and projected on (b) the x-y plane; 

(c) the x-z plane; and (d) the y-z plane. 

3- Helping Results: 
The first two remarks give us information about the roots of a polynomial and 

can be applied to the characteristic polynomial of a matrix.    

Remark 1 (Coefficient Test) [1]: 

Suppose that: 

ZYCBAf nnnn ++++++= −−−  ........)( 321                                         …(3) 

where the coefficients are real. If any coefficient of )(f  is either zero or negative, 

then, at least, one root has a nonnegative real part. 

Remark 2 (Routh– Hurwitz Test) [1]: 

All the roots of the indicated polynomial have negative real parts precisely when 

the given conditions are met.    

oBABA ++• ,0:2                                                                                …(4) 

.0,0,0:23 −+++• CABCACBA                                             …(5)  

.0,0)(,0,0: 2234 −−−++++• DDACCABCABADCBA      …(6) 

Remark 3 (Trace Test) [1]: 

Suppose that 1A  s an  nn  matrix of real constants and that trace     

nnaaaA +++= ........22111  is negative (positive). Then, at least, one eigenvalue of 1A  

has a negative (positive) real part. If the trace is zero, then either all eigenvalues have 

zero real parts, or there is a pair of eigenvalues whose real parts have opposite signs. 
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Proposition 1 [1]:  

1)  The coefficient test does not apply to the polynomial with a positive coefficient. 

2)  The Routh – Hurwitz test applies to polynomials of degree no more than four. 

3)  The trace test applies directly to matrix, so there is no need to find the 

     characteristic polynomial. 

Finally, the Routh–Hurwitz test is the best from the coefficient test and trace test.  

Remark 4 (Generating Hyperchaos) [2, 5, 6, 7, 8]: 

To generate hyperchaos from the dissipatively autonomously polynomial 

systems by using a state feedback controller, the state equation must satisfy the 

following two basic conditions:  

The minimal dimension of the phase space of an autonomous system is at least 

four. The number of terms in the coupled equations giving rise to instability is at least 

two, of which, at least, one has a nonlinear function . 

Remark 5 (Lyapunov Exponents) [2, 6]: 

Assume that the Lyapunov exponents for a simple four dimension hyperchaotic 

system are iLE  for 4,3,2,1=i  satisfying .4321 LELELELE   Then, the dynamical 

behaviors of this system can be classified as follows: 

 (1) For 0,0,0 4321 = LELELELE  and ,0421 ++ LELELE  system hyperchaos. 

 (2) For 0,0,0 3421 = LELELELE and ,0431 ++ LELELE system chaos. 

 (3) For ,0,0 2341 = LELELELE  system has a periodic orbit. 

 (4) For ,01234  LELELELE  system has an equilibrium point. 

In the context of ordinary differential equations ODEs, the word "Bifurcation" 

has come to mean any marked change in the structure of the orbits of a system (usually 

nonlinear) as a parameter passes through a critical value [1]. 

Remark 6 (Hopf Bifurcation) [9]: 

Any system has a Hopf  bifurcation  if the following conditions  are satisfied: 

1- The Jacobian matrix  has two purely imaginary roots and no other roots with zero 

real parts.  

2-  0)))((Re(
0


=


d

d
 

Remark 7 (Generating Hyperchaotic Pan system) [5]: 

Hyperchaotic Pan system is generated by introducing an additional state u to the 

first equation of system (1). Then, we get the following four-dimensional hyperchaotic 

system: 
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                                                                                                …(7)                           

where 4),,,( Ruzyx  , and Rdcba ,,,  are constant parameters. This system is called 

hyperchaotic Pan system, when parameters 28,3/8,10 === cba  and  3.1=d , we 
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calculate the Lyapunov exponents with the Wolf Algorithm. and the four Lyapunov 

exponents of the hyperchaotic system (7) are 

,2492.0,7340.0 21 == LELE ,0000.03 =LE  and 3437.114 −=LE . The Lyapunov 

exponents spectrum and Phase portraits of the system (7) are shown in Fig.3 and  Fig.4 

respectively [5].  
 

             
 

 
Fig. 3.  Lyapunov exponents spectrum of  Pan hyperchaotic system versus parameter d   

            

 

 
Fig. 4. Phase portraits of  Pan hyperchaotic system in (a)the x-y-z space;(b) the x-y-u space, (c) 

the x-z-u space, and(d) the y-z-u space. 
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4- Main results: 

Based on Pan system and remark 4,we can construct a new four dimension 

hyperchaotic system by introducing a state feedback controller, as follows: 

Add a nonlinear controller u to the second  equation of system (1), let 

dyxzu += , then we obtain a new hyperchaotic system  
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                                                                                                           …(8) 

where 4),,,( Ruzyx  , and Rdcba ,,,  are constant parameters. For simplification, 

system (8) is called a new hyperchaotic Pan system in this paper. 

In the following, we briefly describe some dynamical behaviors of the new 

hyperchaotic system (8). 

4.1- Symmetry: 

System (8) has a natural symmetry under the coordinates 

transformation ),,,(),,,( uzyxuzyx −−−→  which persists for all values of the system 

parameters. This means that system (8) is symmetric about the z-axis.                                                                    

4.2- Dissipative and existence of attracter:   

Obviously, from system (8), one has  
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Therefore, to make system(8) be dissipative, it is required that 0ba +  .  

4.3- Equilibrium Points:   

In order to obtain the equilibrium points of system (8), let 0==== uzyx  , and  

we can obtain the following expressions (10): 
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                                                                                                           …(10) 

From the above equations, we obtain three equilibrium points )0,0,0,0(O  

.))(,,,(

,))(,,,(

2

1

dcbddbdbdp
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+−−−−
 

when 0− bd  while if 0− bd  then exists only one equilibrium point ).0,0,0,0(O    

4.4- Lyapunov  Exponents and Lyapunov Dimension  :   

We calculate the Lyapunov exponents  for  a new hyperchaotic system with the 

Wolf Algorithm by using MATLAB software, the numerical simulation was carried out 

with ,2.0,2,3/8,10 ==== dcba  for initial value )1,1,1,1(  and the four Lyapunov 
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exponents of the new hyperchaotic system (8) are ,0034131.01 =LE ,98703.02 −=LE  

,013.13 −=LE  and 6689.10LE4 −= . the Lyapunov exponents spectrum and Phase 

portraits of the system (8) are shown in Fig. 5 and Fig. 6 respectively.  

So, we can obtain the Lyapunov dimension of the new hyperchaotic system (8), 

it is described as  
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Fig. 5.  Lyapunov exponents spectrum of  a new hyperchaotic system versus parameter c 

 

 

 
 

Fig. 6. Phase portraits of new hyperchaotic system in (a)the x-y-z space;(b) the x-y-u space, (c) 

the x-z-u space, and(d) the y-z-u space. 
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Theorem 1: The solution of system (8) at the equilibrium point )0,0,0,0(O  when 

0,, dba  has the following cases: 

1) Asymptotically stable     if     0c ,  

2) Unstable                        if     0c , 

3) Hopf bifurcation            if     .0=c  

Proof: At the equilibrium point )0,0,0,0(O , system (8) are linearized, the Jacobian 

matrix defined as : 
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                                      …(11)  

and its characteristic equation is : 

0)()()()( 234 =++−+−++++= abdadabcbdacdabbaf                   …(12) 

Solving equation (12) gives     

b−=1  

and the following equation:  

0)()( 23 =+−++= adacdaf                                                             …(13)                                     

Let  

adCacdBaA =−== ,,  

According to the Routh-Hurwitz condition, the real parts of roots   of (13) are 

negative if and only if  
0)(,0,0 −− adacdaada  

Implying  0, CA  since 0, da   (given)   and 0−CAB   it is possible under 

the condition 0c , therefore system (8) is asymptotically stable if 0c  while unstable 

if .0c  Finally, Hopf bifurcation if 0=c , the proof is completed. 

  Due to  the system is invariant under the transformation, so one only needs to 

consider the stability of any one of the both. The stability of the system (8) at 

equilibrium point 1p  is analyzed in this paper. 

Theorem 2: The  solution of system (8) at the equilibrium point 1p  is always unstable.  

Proof:  Now, to find Jacobian matrix at 1p  we need the following transformation under 

the linear transformation ),,,(),,,( UZYXuzyx → : 
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                                                                                     …(14) 

the system (8) becomes 
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
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The equilibrium point 1p  of the system (8) is switched to the new equilibrium 

point )0,0,0,0(O of the system (15) under the linear transformation, The Jacobian 

matrix of the system (15) at )0,0,0,0(O  is:  
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and the characteristic equation is : 

0234 =++++ DCBA                                                                        …(17) 

where  
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Using Routh-Hurwitz criterion, the equation (17) has all roots with negative real 

parts if and only if the conditions are satisfied as follows  
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                                                                                         …(19) 

Since abdD 2−=  and a, b and d are positive parameters, consequently 0D   

always therefore then one of Routh-Hurwitz conditions not satisfied, consequently the 

system (8) is unstable, the proof is completed. 

Proposition 1: Equation (12) has purely imaginary roots if and only if ,0,, dba   

00 cc == . In this case, the solutions of equation (12) are b−=1 , a−=2 , 

di=4,3 . 

Proof: First get one root b−=4  from equation (12), then obtain cubic equation 

(equation 13). If iw=3,2  are the complex solutions and 1  the real solution of 

equation (12) then, from a−=++ 321  a−= 1 . This easily leads to ,0,, dba  

00 cc ==  and a−=1 , di=3,2 , b−=4 . 
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In the following, we will prove that the system (8) displays a Hopf bifurcation at 

the point )0,0,0,0(O . For 00 == cc ,  the point )0,0,0,0(o  loses its stability. 

Theorem 3: If 0=c , equation (12) has a negative solutions 04 −= b , 01 −= a  

together with a pair of purely imaginary roots di=3,2  such that 0))(Re( 0  cc , 

therefore the system (8) displays a Hopf  bifurcation at the point )0,0,0,0(o   . 

Proof: If 0=c  the equation (13) is transformed into  

( ) ( ) 02 =++ da     

with solutions a−=1 , di=3,2  
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Substituting di=3,2 , the real part and imaginary part of the )( 0cc  

respectively are: 
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Consequently, the system (8) displays a Hopf bifurcation at )0,0,0,0(O . 

Corollary 1:  System (8) at all equilibrium points 21,, ppO  has the following cases: 

at least one root positive real part  if   ba −  , 

at least one root negative real part  if  ba − , 

either all roots have zero real parts, or there is a pair of roots whose real parts have 

opposite signs if ba −= . 

Proof: By trace test (remark 3), we get baaaaa −−=+++ 44332211  for each matrix 

(11) and (16) when, then at least one root has positive real part baba −−− 0  
and when, finally one root has negative real part, then at least baba −−− 0  
when baba −==−− 0  then either all roots have zero real parts, or there is a pair 

of roots whose real parts have opposite signs for all equilibrium points 21,, ppO  . 

Corollary 2: System (8) has, at least, one root with nonnegative real part  at equilibrium 

point )0,0,0,0(O  if one of the following cases is satisfied: 
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Proof: By coefficient test (remark 1), when  one coefficient of equation (12) 

0,,, DCBA , then, at least, one root has a nonnegative real part; consequently where  

baA +=)1(                 if    0A    then    baba −+ 0  

acdabB −+=)2(      if    0B    then    
cb

d
aacdab

−

−
−+ 0  

adabcbdC +−=)3(    if    0C    then    
bcd

bd
aadabcbd

−

−
+− 0  

abdD =)4(                  if    0D    then    0abd . 

Corollary 3: System (8) has at least one root with nonnegative real part  at equilibrium 

point 1p  if one of the following cases is satisfied: 
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Proof: By coefficient test (remark 1), when  one coefficient of equation (17) 

0,,, DCBA , then, at least, one root has a nonnegative real part. consequently where 

baA +=)1(               if   0A    then   baba −+ 0  

dadcabdabB +−−−=)2(   if  0B     then 
dcb

bd
aacdab

−−

−
−+

)1(
0  

abcabdC −−= 3)3(    if   0C    then   dcabcabd 303 −−−  

abdD 2)4( −=             if   0D    then    02 − abd . 

5 - Illustrative Example: 
Example: Investigate the stability and Hopf bifurcation at the equilibrium point 

)0,0,0,0(O  of the following  new hyperchaotic Pan system: 
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                                                                             …(22)  

Solution: 1,5,3,10 ==== dbca and linearized system (22) about the equilibrium 

point )0,0,0,0(O yield the following characteristic equations:  

0501351915 234 =+−++                           …(23) 

or  54 −=  

0102910 23 =+−+                    …(24)  

by using Routh-Hurwitz method  on equation (24), we lead ,10=A  10=C   so  

0, CA   and 10290 =−= CAB  not satisfied Routh-Hurwitz conditions since 

03 =c (by theorem 1,(2)), the system (22) is unstable when .0c   
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but, if 0c  (by theorem 1, (1)), let c=-2 then yield the following characteristic 

equations: 

s 0102110 23 =+++                                                                                           …(25) 

where satisfied Routh-Hurwitz conditions, consequently, the system (22) is 

asymptotically stable at origin  when .0c   

If 0c =  then, yield the following characteristic equations:  

01010 23 =+++                                                                                        …(26) 

(satisfied Theorem 1(3)) the system (22) is bifurcation  at )0,0,0,0(O . To justify these 

results we found the roots of equations (24 ), (25) and (26) the roots of equation ( 24) 

are .
2

164
6,

2

164
6,2 321 −−=+−==     

While, the roots of equation (25) are ,21 −= ,
2

44
42 +−=  .

2

44
43 −−=   

And the roots of equation (26 ) are .,,10 321 ii +=−=−=     

Consequently, the system (22) is asymptotically stable at equilibrium point 

)0,0,0,0(O  if 0c  and unstable if 0c  and Hopf bifurcation if 0=c . 

6- Conclusion: 

This paper presents a new four dimensional hyperchaotic system, which is called 

a new hyperchaotic Pan system. This new hyperchaotic system is different from the 

hyperchaotic Lorenz system, hyperchaotic Lü system, another  hyperchaotic Lü system 

as well as hyperchaotic system which was proposed by Pan in Ref [5]. Since, the new 

hyperchaotic system has more complex dynamical behaviors than the normal chaotic 

systems, it is believed that the system will have broad applications in various chaos-

based information systems.  
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