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ABSTRACT
As a generalization of regular rings, we introduce the notion, of m-regular rings,
that is for all ae R, there is a fixed positive integer m such that a™ is a Von-Neumann
regular element. Some characterization and basic properties of these rings will be given.
Also, we study the relation-ship between them and Von-Neumann regular rings, 7 -
regular rings, reduced rings, locally rings, uniform rings and 2-primal rings.
Keyword: m-regular rings,regular rings, reduced rings, locally rings, uniform rings - =
and 2-primal rings.
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1- Introduction
Throughout in this paper, R denotes an associative ring with identity. For a
subset X of R, the right (left) annihilator of X in R is denoted by r(X) (I(X)). If
X={a}, we usually abbreviate it to r(a) (I(a)). We write J(R), Y(R), Z(R), N(R), P(R) for
the Jacobson radical, right singular ideal, left singular ideal, the set of all nilpotent
element of R and the prime radical of R respectively.
A right R- module M is called p- Injective, if for any principal right ideal aR of R and
any right R- homomorphism of aR into M can be extended to one of R into M. The
ring R is called right p- Injective if Rris p- Injective [12]. An ideal | of a ring R is said
to be essential if and only if | has a non-zero intersection with every non-zero ideal of
R. Aring R is called 7 —regular, if for each a in R, there exist a positive integer n and
an element b in R such that a" = a"ba" [7]. A ring R is called reduced if a*> =0 implies
a=0 forall ain R [10]. Aring R is said to be reversible if ab=0 implies ba=0 for
all ain R [3]. Finally a ring R is said to be right (left) duo if every right (left) ideal is a
two-sided ideal of R [2].
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2- m - Regular ring

This section is devoted to give the definition of m-regular rings with some of its
characterization and basic properties.
A ring R is said to be Von-Neumann regular (or just regular) if and only if for each a in
R there exists b in R such that a=aba [8].

Definition 2.1 [5]:

Let R be aring, if there is a fixed positive integer m =1 such that for all elements
aof R, a" is regular (am = ambam). Then we say that R is m-regular, and it is left
(right) m-regular if 3" =xa™" (a’“ :a””ly) for some X,y eR . The ring R is (left
or right) m-regular if all its elements have this property.

Examples: Z,,7,,Z,,Z, are m-regular rings.

Note: clearly that when m=1 , then R is regular ring, but the converse is not true by
the following example :
Example [5]: The endomorphism ring of G=Q®TI, Z(p) is (left, right) 2-regular but
not regular.
Proposition 2.2:

If y is an element of a ring R such that a™ —a™ya™ is regular element for a
fixed positive integer m =1, then a is m-regular .
Proof :

Let x=a"—-a"ya"
Since x is regular, then x =xux for some ueR.
Hence a™ = x+a"ya"

=(a"-a"ya" )u (a" —a"ya" )+a"ya"

a" (1-ya"Ju (1-a"y )a" +a"ya"
a” [(l— ya" )u (1-a"y )] a™ +amya"
=a" [(1—yam)u (1—amy)+y] a”
Therefore a™ =a"za™ ,where z = (1— ya’“)J(l— a’“y)+ y.m

Theorem 2.3:

A ring R is m-regular if and only if a™R is generated by idempotent for every
a € R and for a fixed positive integer m=1.

Proof:

Let a e R. Choose an idempotent e in R and there exists a fixed positive integer
m =1, such that a"R =eR . Take e =a"b for some beR, then a" =ec for some c
inR,soea” =a"ba" and ea” =e.ec =ec =a". Therefore a" =ea” =a"ba". Thus R
IS m-regular.
Conversely: It is clear.l

62



On m-Regular Rings

Theorem 2.4:
If R is m-regular ring without zero divisor element, then R is a division ring.

Proof :

Let 0=aeR. Since R is m- regular ring, then there exists b in R such that
a™ =a"ba", then
0=a"-a"ba" = am(l—bam): a(am’l(l— ba”‘)). Since a # 0, then am’l(l—ba'”): 0.So

:al(a’“(l— ba"))=0

a(l—bam):

Sol-ba"=0

Thus 1=ba", implies that 1:(bam*1)a.

Hence a is a left invertible. Now, since 1=(bam*1)a. Then a=a(bam*1)a. Hence
(1—abam*l)e I(a)=0. So 1:a(bam*1), implies that a is a right invertible. Therefore R
is a division ring. m

Theorem 2.5:
If Pisaprimaryideal ofaringR,and if R/ p is m-regular, then P is maximal.

Proof :
LetacR,thena+peR/p.

Since R/ p is m-regular ring, then there exists b+ p € R/ p such that
a"+p=(a+p)"(b+p)a+p)”
=a"ba" + p.
So a"—a"ba" € p, thus am(l—ba’“)e p.
Suppose that a™ ¢ p, then (1—bam ) eEp,nez”.

Now, (1-ba" )’ =l—[§ck" (—1)“b”‘a’“(“>]am ep-
Let 7 — ickn (_1)k*1bmam(k_l)_
k=1
Then 1-za™ e p and so 1+ p=(z+ p)(a’“ + p). Therefore a™ + p has an inverse and

hence R/p is a division ring . Therefore P is maximal. B

Theorem 2.6:

Let R be a ring with r( m+l) (am) for a fixed positive integer m=1 .Then R is
m-regular if R/r(a) is m-regular.
Proof :

Suppose that R/r(a) is m-regular ring, then for any a+r(a)eR/r(a), there
exists b+r(a)e R/r(a) such that

(a+r(a)) =(a+r(a)) (b+r(a))(a+r(a))
a"+r(a)=a"ba" +r(a).Soa" —a"ba" er(a).
Hence a(a” —a"ba")=0
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Thatis a™*(L—ba")=0
So 1-ba" e r(a™)< r(a™)
Hence a”‘(l—bam): 0

Thus a™ =a"ba".
Therefore R is m-regular. W

Recall that, a ring R is called bounded index of nilpotency [4] if there exists a positive
integer n such that a" = 0, for all nilpotent elements a in R.
As a result of Theorem 2.6 we obtain the following corollary:
Corollary 2.7:

A ring R is m-regular if and only if R is bounded index of nilpotency and R/r(a)
is m-regular for all aeR.
Theorem 2.8:

Let I be an ideal of R. If R/I is a right m-regular and I is a right n-regular.
Then R is right mn-regular.

Proof :
Let xeR ,then x+1 eR/I.
Since R/1 is right m-regular, then there exists y+1 € R/ such that:

(x+1)"=(x+1)"*(y+1) which implies that x™+1=x""y+1  and hence
x™ —x™y e 1. Since | is right n-regular ideal, then there exists z € I , such that

(x™ = x™y ) = (x™ = x™y )"z, implies that

m+1
x ™y mn—lX m+ly X mn-2 (X 2Iy) —~~-+(X m+1y )n _
a0\
|:an+m _anxm+1y+xmn+m—2 (szlly _.“_{_(Xm+1y)"+l 7
Then
2m+2 ,2
_ 5 X
an :an 1Xm+1y_xmn 2 2|y +_.._an+nyn +
2m+2 ,2
2 X
|:an+n _ anxm+ly+ an+m 2 2' y et an+m+n+lyn+1:|Z
2m+2.,2
X
Xm—ly . X—3 2' y 4 Xn—lyn +
SO an — an+l -
|:Xn—1 ERNLIVILS 2m;lzy2 et Xm+nyn+1:|2
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2m+2,,2

y 2m+2y2
y — Xm—ly _ X—3 2| doeem Xn—lyn + Xn—l _ me + Xm—3 2' —— Xm+nyn+1 7

Therefore R is a right mn-regular . B

Proposition 2.9:
Let R be a ring in which every maximal right ideal is m-regular. Then R is right

non-singular ring if r(a")<r(a) forall aeR and a fixed positive integer m 1.

Proof:
If Y(R)=0, then there exists 0= aeY(R) such that a’ = 0. First suppose that

aR+r(a)= R. Thus, there is a maximal ideal M such that aR +r(a)c M -Since M is
right m-regular , then there exists be M and a fixed positive integer m=1 such that
a™=a™. It follows that a"(L—ab)=0, that is (1—ab)e r(a™)=r(a)c M . Hence
1e M, a contradiction. Therefore aR+r(a)=R. In particular, ar+d =1 for some
reRandd er(a).Then a’r=a.Thus a=0, thatis Y(R)=0.m

Proposition 2.10 :
Let R be m-regular ring, then J(R) is nilideal.

Proof:

Let 0=ae J(R), then a™ € J(R). Since R is m-regular, so there exists C € R
suchthat a" =a"ca".
Hence (1—cam) is invertable, so there exists ueR such that u(l—cam)zl. It
follows that u(@™ —a"ca")=a" =0. Thus a is nilpotent element .Therefore J(R) is
nilideal. m

Corollary 2.11:
Let R be a reduced m-regular ring. Then J(R)=(0).

Proof :

If J(R)=(0), then there exists a< J(R) with beR such that a" =a"ba",
then a™ —a™ba™ =0.
Hence a"(1—ba")=0. Since a< J(R), that is a” € J(R) and ba™ € J(R), therefore
1-ba" isinvertable.
Then there exists an invertable ueR such that(l—bam)J =1, implies that
(am - a‘“ba"‘)J =a". Thus a" =0. Since R is reduced. Therefore a=0.®
Preposition 2.12 :

Let R be semi-prime m-regular ring. Then the Center of R is right and left m-
regular ring .

Proof :

Let 0+#a eCent(R), the Center of R, and let a* =0, then a’R =0, which
gives aRa=0. Since R is semi-prime, then a=0[6 p. 9.2.7]. Therefore Cent(R) is
reduced.
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Now, let ¢ € Cent(R) then there exists b e R and a fixed positive integer m =1 such
that ¢" =c"bc™ (R is m-regular).If we set d =c?"b*® e Cent(R). Now,
Cm+ld — Cm+1c2mb3
=cc"c"c"bbb = cc™bc"bc™b
=cc"bc"b
— Cerlb
Since R is m-regular , then every element is left and right m-regular, hence
Cm+1b — Cm
(Cm _c™y )2 _ (Cm _ ™y Xcm _ Cm+1d)
—c2M _p2mHlg ™™ +(Cm+ld ) (Cm+1d )
— 2™ _ 2™y _e™de™ + ™ de™d
— 2™ _cMe™d —c™ide™ + ¢ =0
Since Cent(R) is reduced. Thus ¢" -c¢™"d =0
Thenc™ =c™"d and ¢™ =dc™"
Therefore Cent(R) is right and left m-regular ring . B
Proposition 2.13:

Let I be any right ideal of a duo ring R. Then an element a of 1 is m-regular if
and only if it is m-regular element in the ring R.

Proof:

Let a be m-regular element in I, and let b be any element of the ideal (a)
generated by a in R. Then we have b=na+ua+ av+2uiavi , Where N is a positive
integer and u and v are elements of R. Since a is m-regular element then there exists an
element xel such that a™ =a™xa™, m=1 is a fixed positive integer.
Consequently
b™ =[na+ua+av +> u.av;]"

—[(na+ua)+(av+ S uay, )"

2
=(na+ua)" +(na+ua)" (av +Xu,av,)+(na+ua)""’ (av +22l:‘av‘) +

et (av +Xuav,)”

Hence we have b e (a)', where (a)' denotes an ideal generated by a in I. Therefore b is
m-regular and the element a is m- regular element in R. The converse part is clear. B
Proposition 2.14:

A ring R is m-regular ring if and only if r(a'") is direct summand with every
principal left ideal for a fixed integer m=1.
Proof:

Suppose that r(a‘“)@ Ra™ =R, for every a in R and a fixed positive integer

m=1. In particular x+ba™ =1, then a"x+a"ba™ =a™. SO a™ =a"ba™ .Therefore R
Is m-regular.
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Conversely: Assume that R is m-regular ,then for each a in R a™ =a"ba™ for some b
in R, then am(l—ba'“)zo.So (1—ba'“)e r(a’") . Now, since 1=ba'“+(1—ba'“) then
R=Ra" + r(am). Now to prove Ra™ r(a'“)z 0. Let xeRa™ r(am), then x e Ra"
and a"x=0 and so x=ba"for some b in R then a"™ba™ =0. So a™ =0. Therefore
x=0.1

3- The Relation between m-Regular Ring and Other Rings

In this section we give the relation between m-regular rings and regular rings,
reduced rings, local rings , 7 — regular rings and uniform rings.

Proposition 3.1 :
Every reduced regular ring is left and right m-regular ring.

Proof :
Let R be a regular ring, and let a € R | then there exists an element b e R such
that a=aba ,then a-—aba=0. It follows that a(l-ba)=0, that is

(1-ba)er(a)=I(a)cl(a"). Hence (1-ba)a" =0. So a" =ba"", that is R is left m-
regular ring. Now, (1—ab)a =0, implies that (1-ab)el (a)=r(a)c r(a"). Thus
a"(1-ab)=0.S0a" =a""b .Therefore R is right m-regular ring.

Corollary 3.2:
Let R be a ring whose maximal right ideals are right m-regular. Then R is right

and left m-regular, if r(a'“ ) c r(a) for all a € R, and a fixed positive integer m=1.
Proof:

Let O£aeR. We claim first aR+r(a)=R. If not, there exists a maximal
right ideal M containing aR + r(a). Since M is a right m-regular ideal, then there exists
beM such that a™=a™bh. It follows that a"(l-ab)=0, that is
1-aber(a")cr(a), then 1-aber(a), since acM then abeM and so
1€ M contradiction. Therefore R=aR+r(a). In particular 1=ar+d for some
reRand d e r(a). Hence a=a’r + ad implies a=a’r and then by Proposition
(3.1) ,Ris aright and left m-regular ring.m

Proposition 3.3:
Let R be a ring whose maximal right ideals are right m-regular. Then every right

R-modules is p- injective if r(a™ )< r(a)., forall ae R,

Proof:

By a similar method of proof used in Corollary (3.2) , we have a=a’r for some
rin R, then a=ara. Now, let f:aR— L be any right R- homomorphism, and let

f(ar)=yeL [L is an R- module]. Then for any ceR;
f(ac)= f(arac)= f(ar)ac=yac. This means that every right R-module is p-
injective. B

Lemma 3.4: [9]
If Risaright p-injective, then J(R) = Y(R).
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Corollary 3.5:
Let R be m-regular ring. Then r(a) is essential in R for any a in R, if the set of

non units elements is an ideal of R, with r(a”‘)c r(a) for a fixed positive integer
m=1.
Proof:

Let S be the set of non units element . Then S is contained in unique maximal

ideal M by (p.158 in [11] ), that is; J(R) is a unique maximal left ideal of R. Hence
Ra=R and a< J(R), and J(R) is m-regular ,that is J(R) is a right m-regular and hence

by Proposition(3.3) R is p-injective module, which implies that J( R) =Y ( R) by Lemma
(3.4). So, ae€Y(R), therefore r(a) is essential. ®

Recall that, a ring R is said to be uniform if all non zero- ideal of R is essential.
Recall that, a ring R is said to be local [6] if it has a unique maximal ideal.
Proposition 3.6:

Let R be a right m-regular ring, satisfies r(am)c r(a) forall aeR. Then R is
local ring if and only if R is uniform ring.
Proof:

Let R be a right m-regular , if R is local, then for all non- zero element ae R

,aR essential . Now, if aR = R, then there exists a maximal ideal M such that aR = M
and since R is local ring , then M=J(R) that is a € J(R), then every ideal is right m-

regular and by Proposition(3.3).That is R is right p-injective and by Lemma (3.4) ,we
have a € Y (R), that is r(a) is essential for every a e R and hence R is uniform ring.

Conversely: Assume that R is uniform , that is r(a) is essential for every ae R , and
hence a <Y (R). Since R is right m-regular and by Proposition(3.3).That is R is right

p-injective and by Lemma (3.4) Y (R)=J(R). Thus aeJ(R). Hence (1-a) is
invertible. Therefore R is local ring by [6, Proposition 10.1.3]. 1

Proposition 3.7:
Let R be a reversible ring. Then R is reduced ring if every maximal essential
right ideal of R is right m-regular.

Proof :
Let 0=a<R such that a*> =0 . If there exists a maximal right ideal M of R
containing r(a), then M must be an essential right ideal. Otherwise M =r(e),

0=e’=eeR, since R reversible, then a e M = r(e)=I(e) hence ea=0 and we
geteel(a)=r(a)cM =r(e) thatis e’ =0, contradiction. Hence M is essential
and so M is right m-regular, then there exists be M and an integer m =1 such that
am"=a" .

It follows that a™(1-ab)=0, that is 1-aber(a") since R is reversible. Then
r@")=r(a), so 1-aber(@)c M, and we get 1 M, contradiction. Therefore R is

reduced. i
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Theorem 3.8:

Let R be local ring. Then R is m-regular if and only if R is TT-regular ring with
bounded index of nilpotency.

Proof :

Let R be m-regular ring. Then it is obvious that R is 7 -regular with bounded
index of nilpotency.
Now, let aeR, then if aR=#R, then there exists a maximal ideal M such that
aR < M .Since R is local ring, then M = J(R) that is a e J(R) and by Proposition
(2.10), ae N(R), that is there exists a positive integer n such that a" =0 =a"ba". But

R has property bounded index of nilpotency. Therefore R is m-regular ring. Now, if
aR=R and Ra=R (Since R is locally).
Then ar=1and ca=1, for some c,r eR

Thatis a’r =a and ca’ =a
Hence a" =a™"r and a" =ca™", for a fixed positive integer m =1. That is R is right
and left m-regular . Therefore R is m-regular. B
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